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Abstract: In recent years, the convergence of edge computing and sensor technologies has be-
come a pivotal frontier revolutionizing real-time data processing. In particular, the practice of data
acquisition—which encompasses the collection of sensory information in the form of images and
videos, followed by their transmission to a remote cloud infrastructure for subsequent analysis—has
witnessed a notable surge in adoption. However, to ensure seamless real-time processing irrespective
of the data volume being conveyed or the frequency of incoming requests, it is vital to proactively
locate resources within the cloud infrastructure specifically tailored to data-processing tasks. Many
studies have focused on the proactive prediction of resource demands through the use of deep
learning algorithms, generating considerable interest in real-time data processing. Nonetheless, an
inherent risk arises when relying solely on predictive resource allocation, as it can heighten the
susceptibility to system failure. In this study, a framework that includes algorithms that periodically
monitor resource requirements and dynamically adjust resource provisioning to match the actual
demand is proposed. Under experimental conditions with the Bitbrains dataset, setting the network
throughput to 300 kB/s and with a threshold of 80%, the proposed system provides a 99% perfor-
mance improvement in terms of the autoscaling algorithm and requires only 0.43 ms of additional
computational overhead compared to relying on a simple prediction model alone.

Keywords: cloud computing; edge computing; autoscaling; real-time processing; deep learning

1. Introduction

In recent years, the convergence of edge computing and sensor technologies has
emerged as a major frontier for the augmentation of real-time data processing. This
includes applications in which the effective processing of data collected from a multitude
of sensors is of the utmost importance, encompassing various fields, such as transportation,
healthcare, and emergency response, all of which are based on 6G communication [1]. One
example is the use of intelligent traffic control systems, wherein high-speed autonomous
vehicles on highways require real-time interaction with their surroundings, other vehicles,
and humans. Unfortunately, a considerable portion of the existing artificial intelligence
(AI)- and cloud-based research centers for static data processing have failed to address
the requirements of real-time processing. Recent studies have shown that AI solutions
implemented in edge networks—wherein intelligent prediction, reasoning, and decision-
making tasks are performed—can decrease service response times and provide genuine
real-time services [2–4].

As the demand for these applications increases, problems related to resource allocation
and potential resource overload have become evident [5,6]. The basic premise of this tech-
nology is to facilitate rapid response times by localizing data processing near the Internet
of Things (IoT) devices. However, the increased demand and potential resource overload
can lead to serious problems, such as increased response latency and system failure.

One way to solve this problem is through container orchestration. Kubernetes is the
most popular container orchestration platform and offers the horizontal pod autoscaling
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method, designed to dynamically fine-tune resource allocation based on current utilization
metrics [7]. Nonetheless, this post-processing method involves time-consuming state vali-
dation and the creation or removal of resources when predefined thresholds are exceeded,
which can introduce system-overload-related problems. Concurrently, research efforts
have explored the use of deep learning techniques for the proactive prediction of resource
allocation [5,8–12]. Most of these studies engage in time-series forecasting by leveraging
log data such as HTTP requests and CPU utilization. A major benefit of this predictive
approach is that resource tuning can be executed proactively, thereby mitigating the risk of
overload. However, it is crucial to acknowledge that resource overload problems can still
exist if the prediction model is unstable.

This paper presents a system architecture for the operationalization of this methodol-
ogy within a real container orchestration system. To address these problems for effective
resource provisioning, we propose a novel resource demand prediction method that com-
bines deep-learning-based forecasting with subsequent monitoring and dynamic resource
adjustment to overcome forecasting failures. This predictive capability aims to preemp-
tively adjust resources in response to evolving demands, thereby ensuring efficient resource
utilization within the dynamic landscape of IoT-enabled edge computing. In other words,
the proposed system aims to pre-emptively forecast the resource demand to facilitate proac-
tive resource allocation before overload scenarios manifest. The proposed system provides
a basic predictive capability by forecasting the future resource demand based on historical
time-series data using deep learning algorithms combined with periodic inspection phases,
to reduce the uncertainty inherent in predictive modeling. These inspection phases enable
dynamic adjustments to be made if the initially allocated resources are insufficient to meet
the actual demand.

The contributions of this research can be summarized as follows:

(1) The development of a resource forecasting method that enables proactive resource
adjustments before overload situations occur;

(2) An intermediate inspection process based on network throughput for adjustment
when the actual demand differs from deep-learning-based forecasts;

(3) A 99% improvement in the elastic speedup value through actual system implementa-
tion by applying the proposed methodology in an authentic container orchestration
environment, under experimental conditions with the Bitbrains dataset, setting the
network throughput to 300 kB/s and using a threshold of 80%.

The remainder of this paper is organized as follows. Section 2 reviews related research,
both in terms of resource prediction and post-processing methods. In Section 3, we present
our proposed methodology and elaborate on each step of the method. Section 4 provides
insights into the experiments conducted to evaluate the proposed method, along with an
analysis of the experimental results. Finally, Section 5 concludes the study and summarizes
the key findings and implications.

2. Related Work

In this section, we present an overview of studies relevant to the research presented
here. These studies can be classified into two primary categories—demand forecasting and
post-processing. Within the purview of demand forecasting, our research delves into the
distinctions between univariate predictions (which focus on the consideration of a single
variable) and multivariate predictions (which entail the use of multiple variables), all of
which are grounded in the analysis of time-series data. Moreover, a bidirectional long
short-term memory (Bi-LSTM) [13] model is introduced, which serves as the designated
prediction model employed in this study.

2.1. Demand Forecasting Using Deep Learning

Time-series data constitute a sequential collection of records ordered by time and serve
as a pivotal resource for the analysis of underlying trends, patterns, and recurring phenom-
ena. Their primary value is the capacity to anticipate future trends and discern changes
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over time. Within the context of resource demand forecasting, this analytical approach
entails a systematic examination of periodic patterns grounded in data sources, such as
the temporal evolution of HTTP requests, network traffic, and CPU utilization, to provide
insights into near-term demand fluctuations. This predictive approach can be segregated
into two distinct categories—univariate predictions (which rely on a solitary data variable)
and multivariate predictions (which harness multiple data variables in tandem).

Prachitmutita et al. [8] introduced an innovative autoscaling framework underpinned
by long short-term memory (LSTM) [14] and multilayer perceptron (MLP) models, pri-
marily designed for univariate datasets, with a specific focus on the FIFA World Cup
dataset [15], a valuable repository of HTTP request data. The results revealed that the
LSTM model outperformed the MLP model, with greater precision in terms of workload
prediction.

Mahmoud et al. [9] harnessed HTTP request data from the FIFA World Cup dataset [15]
for predictive purposes. Their study compared the LSTM model with the autoregressive
integrated moving average (ARIMA) model, culminating in the observation that the ARIMA
model exhibited superior accuracy, although the LSTM model demonstrated a remarkable
advantage in terms of prediction speed, being approximately 100 times faster.

Zhu et al. [10] investigated workload prediction by leveraging the CPU workload
dataset from Alibaba cluster-trace-v2018 [16] and Dinda [17]. They proposed an inventive
method using an LSTM-based encoder–decoder network augmented by an output layer. A
comparative evaluation demonstrated that their method outperformed both the ARIMA
and LSTM models, as evidenced by the improved root mean squared error (RMSE) scores.

Yoo et al. [11] conducted a predictive study employing both the NASA dataset [18] and
the FIFA World Cup dataset [15], employing a Bi-LSTM [13] model tailored to time-series
forecasting. Their model not only exhibited expedited predictions but also demonstrated
enhanced accuracy when juxtaposed against the conventional LSTM and ARIMA models.

Xu et al. [12] introduced an efficient supervised-learning-based deep neural network
(esDNN) method designed for cloud workload prediction in the domain of multivariate
datasets. Their research drew from a realistic trace dataset derived from the Alibaba [16]
and Google Cloud data centers [19], and the esDNN model yielded a noteworthy reduction
in the mean square error (approximately 15% lower than when employing the GRU alone).

Yoo et al. [11] introduced a novel methodology using the GWA-T-12 dataset [20],
in which they judiciously selected memory usage and network reception data with the
highest correlation as pertinent features, and subsequently trained a bi-LSTM model. Their
method, characterized by the incorporation of multivariate data, demonstrated remark-
able performance superiority over univariate data analysis methods. Furthermore, when
compared against other deep learning algorithms—such as LSTM and CNN-LSTM [21]
algorithms—the proposed model consistently exhibited better performance.

Building on these foundational studies, this study advances the field by developing a
prediction algorithm.

2.2. Post-Processing Algorithm

A noteworthy post-processing algorithm is the horizontal pod autoscaling algorithm
proposed by Kubernetes [7]. This algorithm determines the optimal allocation of resources
by assessing the ratio between the desired and current metric values, thereby enabling the
dynamic adaptation of resource allocation in response to demand fluctuations. Nonetheless,
this algorithm has limitations, primarily because it relies on threshold exceedances to
trigger adjustments, which can lead to delays until the adjustments are fully implemented.
Moreover, in edge computing environments characterized by heterogeneous resource
demands across nodes, the algorithm falls short because it lacks the ability to intelligently
allocate resources considering these variations.

To overcome these limitations, an alternative method has emerged that entails the
allocation of additional pods to worker nodes experiencing a higher demand, as opposed
to indiscriminately assigning pods to any available node upon a surge in cluster traffic.
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Although this approach retains its post-processing nature, it brings about substantial
enhancements in terms of response time and throughput by allocating additional resources
to nodes grappling with elevated request volumes. Moreover, it offers the advantage of
cost efficiency [22].

The architectural framework, as shown in Figure 1, serves as the foundational infras-
tructure underpinning the system developed within the scope of this study, leveraging
Kubernetes’ horizontal pod autoscaler system. Metrics encompassing network traffic and
CPU utilization gleaned from the cluster are diligently gathered by the collector, after
which these metrics are relayed to the system, positioned externally to the cluster, and
facilitated by a monitoring server. The core system function involves scrutinizing whether
the received metrics surpass predefined thresholds. In the event of threshold exceedance,
the system computes the required number of nodes, based on which it orchestrates resource
adjustments within a cluster.
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2.3. Bi-LSTM Model for Demand Prediction

In the context of our time-series forecasting task, the proposed system employs a
Bi-LSTM model, as shown in Figure 2, which is an extension of the LSTM architecture. The
Bi-LSTM model represents a specific recurrent neural network (RNN) category adept at
processing sequential data by bidirectionally propagating information, allowing for the
incorporation of past context into the current state.

The LSTM was initially introduced to address the issue of long-term dependency,
which can often plague standard RNNs. The Bi-LSTM model builds upon the LSTM frame-
work and enhances its capabilities by enabling a bidirectional information flow. The Bi-
LSTM model comprises four critical components—the input gate (1), forget gate (2), output
gate (4), and cell state (3). Here, a concise description of the respective functions follows.

(1) Input Gate: The input gate determines the pertinent information to be retained based
on the current input and the prior state. This decision is made using a sigmoid
function. The output value of the input gate is a crucial determinant in shaping the
cell state.

(2) Forget Gate: The forget gate plays a pivotal role in deciding which information to
discard from the previous state. It considers both the prior state and current input,
and its computations are governed by the sigmoid function.

(3) Cell State Update: The cell state update process involves the transition of the cell state
of the previous time step to the current time step. Subsequently, a new cell state is
calculated by integrating the inputs from the input gate and the current input. This
operation plays a key role in storing and updating the network memory.

(4) Output Gate: The responsibility of the output gate is to determine the information
that should be extracted from its current state. This plays a key role in shaping the
hidden state in (5) for the current timestep.
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(5) Hidden State: The hidden state is computed by combining the gate output and current
cell state. This composite state encapsulates the network representation of the current
time step and serves as the primary output of the model.
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In summary, the Bi-LSTM model built on LSTM fundamentals excels at capturing
complex dependencies in sequential data by processing information bidirectionally through
these meticulously orchestrated components, ultimately making it an excellent choice for
time-series forecasting tasks.

it = σg(Wixt + Uiht−1 + bi) (1)

ft = σg

(
W f xt + U f ht−1 + b f

)
(2)

ct = ft·ct−1 + it·σc(Wcxt + Ucht−1 + bc) (3)

ot = σg(Woxt + Uoht−1 + bo) (4)

ht = ot·σh(ct) (5)

Table 1 summarizes a comparison of recent studies related to the proposed approach.
Related studies using multiple performance metrics—such as CPU utilization, memory
usage, disk I/O, and network throughput—are limited [21]. The data type indicates the clas-
sification of the time-series data used, which can be categorized into two types—univariate
and multivariate data. ML/DL signifies whether the method is based on machine learning,
deep learning, or another methodology, whereas Method denotes the technique employed.
Resource Allocation Approach denotes whether the implemented approach aims to make
forecasts or merely perform checks.

In most prior studies, resource adjustments were predominantly performed through
preemptive resource allocation based on predictions or by surpassing a threshold based
on current usage. Predictive methods can be categorized into machine-learning-based
methods—such as ARIMA and MLP—and deep-learning-based methods—which use
LSTM and neural networks. Although deep-learning-based models tend to outperform
machine-learning-based models, both methods share the limitation that they require re-
adjustments if the predictions fail [5,10,11].

Compared to a forecast-driven prediction strategy, post-processing using the interme-
diate check method offers the benefit of computing the necessary resources once a certain
threshold is surpassed and making precise adjustments. Nonetheless, it has the drawback
of requiring a cooldown period for the creation of new VMs, during which processing must
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rely on existing resources. Consequently, in this study, we devised a system that addressed
the limitations of both methods by integrating an intermediate check process that used a
predictive model as a foundation and a post-processing method between forecasts.

Table 1. Comparison of autoscaling- and resource-estimation-related studies in cloud computing.

Ref. Performance
Metrics Data Type ML/DL Method Resource Allocation

Approach

2018, [8] HTTP request Univariate Both LSTM and MLP Forecasting

2019, [9] HTTP request Univariate DL LSTM Forecasting

2019, [10] CPU utilization Univariate DL LSTM-based
encoder–decoder Forecasting

2022, [11] HTTP request Univariate DL Bi-LSTM Forecasting

2022, [5] Network throughput,
Memory usage Multivariate DL Bi-LSTM Forecasting

2022, [12] CPU utilization,
Memory usage Multivariate DL Deep neural

network Forecasting

2022, [22] CPU utilization,
Memory usage

Univariate/
Multivariate - - Periodic

Checking

2023, [7] CPU utilization,
Memory usage

Univariate/
Multivariate - - Periodic

Checking

Ours Network throughput,
Memory usage Multivariate DL Bi-LSTM Forecasting/Interim

Checking

3. Methods
3.1. System Architecture

Figure 3 shows the system architecture and demonstrates the application of the pro-
posed model in a practical container orchestration system. Metrics such as network recep-
tion and memory usage are collected from a managed cluster through collectors and sent
to a time-series database, such as Prometheus [23]. The collected data are then transmitted
to an autoscaler located outside the cluster. At this stage, the proposed system predicts and
plans resource demand adjustments. Following this phase, adjustments are made based on
the established plan. When configuring the prediction and inspection cycles, it is essential
to consider factors such as the workload of the managed cluster and the time required for
implementation.
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If the cycle duration is set too short, frequent incorrect adjustments can occur owing
to rapid fluctuations. Moreover, there is a risk of making readjustments before observing
the effects of previous adjustments [6]. To address these concerns, there is a waiting period
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after executing the adjustments that allows for a brief pause before initiating inspections.
After resource adjustments are made during the planning phase, there is a one-minute
interval during which no further action is taken. The prediction cycle occurs every five
minutes, with the timing based on the reference point following the waiting period after the
initial prediction. Over the subsequent five minutes leading up to the next prediction, the
proposed system engages in an interim inspection, and resource adjustments are performed
if deemed necessary. This interim inspection process occurs every minute. Even if actual
adjustments are enacted during this phase, another waiting period is incorporated, allowing
time for the effects of these adjustments to materialize.

Figure 4 shows a flowchart illustrating the system’s operation. Initially, information
on server usage is collected from the metric server. If at least 5 min elapse, predictions are
made; otherwise, inspections are performed. Subsequently, the required number of VMs is
calculated, and a plan for system adjustments is formulated. Finally, the system performs
modifications according to the plan and concludes its operation.
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3.2. Forecasting Stage

During the forecasting stage, the proposed system performs periodic workload predic-
tions. In this study, the Bi-LSTM model was selected for our prediction model, as described
in Section 2.3. The model leverages both antecedent and subsequent data at the present
time step. This unique approach permits the use of future information, thereby contributing
to enhanced prediction accuracy.

Upon the collection and incorporation of metrics into the system, the system harnesses
our pretrained model to formulate predictions. These predictions serve as the foundation
for subsequent actions. Specifically, the planning algorithm (elaborated upon in Section 3.4)
computes the requisite quantity of resources essential for accommodating the anticipated
workload guided by the predicted outcomes. This seamless integration of forecasting and
resource planning is a pivotal strategy that enables the judicious allocation of resources
and the optimization of system performance.

3.3. Proposed Interim Inspection Stage

Relying solely on a prediction algorithm would be ideal in the pursuit of flawless pre-
dictions. However, these aspirations are often unattainable. Hence, an interim inspection
algorithm was introduced, as presented in Algorithm 1, assuming the role of assessing
whether the existing quantity of resources was sufficient to manage the current network
reception input. This algorithm draws inspiration from Kubernetes’ horizontal pod au-
toscaling algorithm and hinges on the assessment of the ratio between the desired and
prevailing metric values. Moreover, the proposed algorithm integrates considerations for
the maximum network throughput of a VM and threshold values to ensure adaptability to
fluctuations in the network throughput attributed to VM performance variations, thereby
facilitating the calculation of an appropriate network throughput value consistent with the
defined criteria.

In the proposed interim inspection phase, four essential inputs are required—the
input denoting the presently received network throughput; nowvm denoting the num-
ber of currently active VMs; threshold denoting the VM utilization limit; and networkmax
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denoting the maximum network throughput achievable on a VM. Additionally, the sys-
tem computes network, which denotes the network throughput constraints. This value is
derived by multiplying the maximum network throughput by the threshold value. Sub-
sequently, the requisite number of VMs can be ascertained through the following for-
mula: requiredvm = ceil[nowvm × (input/network)]. If the computed number of required
resources deviates from the current resource count (i.e., nowvm), it serves as an indicator
of the potential scaling requirements, either upscaling or downscaling. In such cases, the
algorithm triggers the planning function and initiates a new planning phase in alignment
with the observed resource requirements.

Algorithm 1 Interim Inspection

Input: input//Currently received network throughput
nowvm//Number of VMs currently in use
threshold//Limit of VM utilization
minvm//Number of minimum VMs
networkmax//Maximum network throughput on a VM
Output: Scheduled planning actions
1: Initialization
2: network = networkmax ∗ threshold
3: requiredvm = ceil[now vm ∗ (input/network)]
4: if required vm is not nowvmthen
5: Planning(input, nowvm)
6: else
7: Sleep
8: end if

Before delving to the planning phase, it is important to clarify the underlying rationale
behind the adoption of periodic predictions and interim inspection procedures. As listed in
Table 2, the time required to conduct periodic predictions and interim inspections can be
quantified. Considering the time spent on these two activities while excluding the fixed
time allotted for resource adjustments, there is a substantial contrast. Periodic predictions,
conducted at 5-min intervals, require approximately 19.46 ms, whereas interim inspections
require a mere 0.4528 ms (a 43× difference). This stark disparity underscores the effi-
ciency achieved by incorporating interim inspections in tandem with periodic predictions.
Nonetheless, it is important to acknowledge that both time intervals fall within the one-
second range, rendering any noticeable difference in practical terms negligible. Moreover,
the impetus behind instituting interim inspection lies in the intrinsic divergence between
the prediction outcomes and actual resource demand. As discussed in the forthcoming
Section 4.4, the prediction results often exhibit disparities, particularly during periods char-
acterized by heightened demand. Consequently, even if predictions are made at frequent
intervals, their consistent inadequacy, particularly during high-demand scenarios, can lead
to an amplified overhead associated with resource adjustments. Consequently, the expected
benefits of resource preparation remain unknown.

Table 2. Comparison of the time between prediction and interim inspection.

Phase Time

Prediction 19.46 ms
Interim inspection 0.4528 ms

However, a paradigm shift can be accomplished by subjecting the actual resource de-
mand to interim inspection and subsequently executing resource adjustments solely when
warranted. This provides an avenue for the optimization of resource management by miti-
gating waste and promoting efficient resource utilization. While an ideal scenario would
entail the accurate provisioning of all resources grounded solely in perfect predictions,
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reality underscores the fallibility of predictions. In this context, the incorporation of an
interim inspection process not only enhances the prediction accuracy but also augments the
resource efficiency. This, in turn, provides more fitting predictions for the actual resource
demand, thereby fortifying the effectiveness of resource management.

3.4. Planning Stage

Subsequent to the execution of forecasting or post-processing operations, periodic ver-
ification of the actual resource demand is of great importance. In this context, Algorithm 2
serves as a manifestation of the planning phase and is dedicated to ascertaining the requisite
number of resources, which is a prerequisite for both prediction and periodic verification
scenarios.

Within the planning stage, a set of four vital inputs is mandated—the input denoting
the anticipated network workload derived from the prediction; now_vm denoting the
prevailing count of active VMs; threshold denoting the threshold value governing VM
utilization; and networkmax denoting the upper limit of the network throughput achievable
on a VM.

Algorithm 2 Planning

Input: input//predicted network workload
nowvm//Number of VMs currently in use
threshold//Limit of VM utilization
minvm//Number of minimum VMs
networkmax//Maximum network throughput on a VM
Output: Scheduled scaling actions
1: Initialization
2: network = networkmax ∗ threshold
3: nextvm = ceil[min vm ∗ (input/network)]
4: if next vm > nowvm then
5: SCALE_UP(nextvm)
6: else if nextvm < nowvm then
7: SCALE_DOWN(nextvm)
8: else
9: Sleep
10: end if

In Line 1, the proposed system computes network, denoting the network through-
put constraint, computed as the product of the maximum network throughput and the
threshold value. In Line 2, the essential number of VMs is determined using the following
formula: nextvm = ceil[nowvm × (input/network)]. In Lines 3–6, the calculated number of
required resources diverges from the current resource count (i.e., nowvm), and the system
promptly initiates either upscaling or downscaling, depending on the prevailing state of
the system.

In Line 7, if the calculated figure aligns with the existing resource count, the system
maintains its current resource allocation configuration. This planning algorithm exemplifies
the adaptability of the system, ensuring the dynamic adjustment of resource allocation to
harmonize with forecasted or actual workloads. This adaptive approach culminates in the
optimization of resource utilization and augments the overall performance of the system.

4. Results
4.1. Dataset

The GWA-T-12 Bitbrains dataset [20], generously provided by Bitbrains, served as
the primary data source for both training and testing in this study. This extensive dataset
encompasses performance metrics gathered from 1750 VMs situated within the distributed
data centers of Bitbrains. The dataset is bifurcated into two distinct files—namely, the
“FastStorage” and “Rnd” files. The “FastStorage” file comprises data originating from VMs
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tasked with hosting frequently accessed programs, while the “Rnd” file encapsulates data
emanating from less frequently accessed and lower-performance VMs. Notably, for the
scope of this study, the “FastStorage” dataset was employed exclusively.

The dataset comprised a diverse array of performance metrics encompassing param-
eters such as CPU usage, CPU utilization, memory usage, disk read throughput, disk
write throughput, network reception throughput, and network transmission throughput.
In the context of model training, the memory usage and network reception throughput
metrics were selected. This selection was underpinned by the highest Pearson correlation
coefficient, denoting a robust and substantial relationship with the target variable [5]. Prior
to commencing model training, the dataset was normalized, standardizing its values to fall
within the [0, 1] range, thereby ensuring uniformity in the data distribution. Subsequently,
the dataset was partitioned, allocating 80% to train the model while reserving the remaining
20% for the critical task of evaluating the model’s performance. This partitioning strategy
enabled the assessment of the model’s capacity to effectively generalize unknown data
instances.

4.2. Experiment Details

First, a training phase was initiated to develop a predictive model. For training pur-
poses, we selected the network received throughput and memory usage as they exhibited
the highest correlation value, and the training process employed a Bi-LSTM model, fol-
lowing the tuned hyper-parameter specific configuration detailed in Table 3 [5]. Initially,
the training was scheduled to encompass 100 epochs; however, to optimize the efficiency,
we introduced an early stopping mechanism. When triggered, this mechanism ceased the
training process if it discerned no significant improvement, thereby conserving the compu-
tational resources. This strategy is particularly advantageous for low-performance VMs.

Table 3. Multi-bi-LSTM model configuration.

Hyperparameter Values

Number of layers 2 layers (forward and backward)
Number of features 2

Input size 3
Number of hidden units per neuron 50

Loss function MSE
Batch size 64

Epochs 100
Activation function ReLU

Second, we conducted a comparative analysis of the outcomes obtained by implement-
ing the proposed algorithm on the trained Bi-LSTM model and those derived without its
application. To facilitate this assessment, we leveraged system-oriented elasticity metrics
tailored to gauge the efficiency of resource provisioning. During the prediction phase,
coupled with an interim inspection, a cooldown period of 1 min was imposed after any re-
source adjustment. This precautionary measure aimed to forestall additional modifications
before the effects of the preceding actions became discernible. Additionally, predictions
occurred at 5-min intervals, with interim inspection routines executed every 1 min.

Conversely, in the prediction phase without interim inspection, predictions transpired
every minute if no resource adjustments occurred. In the non-autoscaling scenario, the
number of autoscalers was fixed at 2, with a specified network throughput threshold per
VM set at 0.8. The maximum network throughput was 300 kB/s. Notably, the network
number was intentionally kept minimal, accentuating the magnitude of fluctuations in the
required number of VMs, thus facilitating the performance assessment.
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4.3. Evaluation Metrics

To gauge the efficacy of resource provisioning, we employed the efficiency criteria
prescribed by the Standard Performance Evaluation Corporation (SPEC) research orga-
nization [24], with the computation of efficiency metrics conducted in accordance with
Equations (6)–(10).

θu =
100
T

ΣT
t=1

max(dn − pn, 0)
dn

∆t (6)

θo =
100
T

ΣT
t=1

max(pn − dn, 0)
dn

∆t (7)

τu =
100
T

ΣT
t=1max(sgn(dn − pn), 0)∆t (8)

τo =
100
T

ΣT
t=1max(sgn(pn − dn), 0)∆t (9)

εn =

(
θU,n

θU,a
· θO,n

θO,a
·τU,n

τU,a
·τO,n

τO,a

) 1
4

(10)

The under-provisioning resource metric (Θu ) serves as an indicator of the extent to
which the allocated resources fall short of fulfilling the genuine demands of the system.
Essentially, it quantifies the frequency at which a system encounters resource deficiencies,
leading to performance degradation. A higher Θu value signifies a higher incidence of
under-provisioning, potentially resulting in bottlenecks or reduced user satisfaction. Con-
versely, the over-provisioning resource metric (Θo) assesses the degree to which resources
are allocated in excess of the system’s actual requirements. This metric sheds light on
scenarios in which resources are wasted because of overallocation. A higher Θo value
indicates a prevalence of over-provisioning, leading to suboptimal resource utilization.

The metrics denoted as “duration the system is under-provisioned” (τu) quantify the
cumulative period during which the system operates in an under-provisioned state. This
measurement encapsulates the total time required by the system to cope with insufficient re-
source allocation, potentially resulting in performance bottlenecks and user dissatisfaction.
By contrast, the metrics labeled “duration the system is over-provisioned” (τo) calculate
the cumulative period during which the system contends with an excess of resources. This
metric highlights instances of resource inefficiency and suboptimal resource utilization.

Elastic speedup (εn) denotes a metric devised to assess the performance enhancement
of a specific approach relative to a scenario without autoscaling. This metric is particu-
larly valuable in comparing two distinct strategies—that is, one incorporating autoscaling
(denoted as a) and another devoid of autoscaling (referred to as n). The objective is to
quantify the degree to which autoscaling improves the performance in comparison with a
non-autoscaling scenario. By evaluating the system-oriented metrics such as Θu , Θo , τu,
and τo of method “a”, we can assess its efficiency relative to the baseline “n” scenario. A
fundamental step involves computing the geometric mean of the ratios between the paired
metrics. A value exceeding one indicates that the proposed method surpasses the non-
autoscaling scenario, signifying a positive performance gain. Conversely, a value below
1 suggests that the proposed method underperforms compared to the non-autoscaling
scenario.

4.4. Experimental Results
4.4.1. Prediction Performance Results

The training progress is visually represented in Figure 5, which shows a consistent
reduction in loss as the training epochs advance. To provide additional insight into the
performance of the model, Figure 6 shows the predicted workload when subjected to
testing using the trained model. Although the predicted workload is consistent with the
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underlying trend, instances of prediction failure can be highlighted, particularly when the
incoming workload reaches elevated levels.
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4.4.2. Autoscaling Results and Comparison

Figure 7 demonstrates the results of the proposed approach that combines forecasting
and inspection, in comparison to the approach that solely employs simplistic forecasting.
The result expresses the number of VMs with three colored lines, blue, red, and green, and
the blue line represents the actual number of VMs. Specifically, the red line illustrates the
number of VMs acquired through the application of the autoscaling model coupled with
our interim inspection algorithm. By contrast, the green line shows the VM count achieved
exclusively through the application of the autoscaling model, excluding the inspection
algorithm. These visualizations provide insights into the impact of the interim inspection
algorithm on the performance of the autoscaling model.
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algorithm.

Additionally, Table 4 provides a comprehensive comparative analysis of three dis-
tinct methodologies—that is, no autoscaling, autoscaling without interim inspection, and
autoscaling with the interim inspection algorithm. A thorough examination of Table 4
reveals that autoscaling using the proposed algorithm outperforms the alternative methods.
This superiority is underscored by the smaller over-provisioning metric values compared
with the other methods. Furthermore, it boasts superior elastic speedup (εn) values, with
a notable increase of 99% (2.31 compared to 1.16). This outcome accentuates the fact
that the autoscaling method using the proposed algorithm achieves a more substantial
autoscaling gain than the version lacking the algorithm. The observed disparities in the
under-provisioning values within the context of autoscaling without the proposed algo-
rithm can be ascribed to the inclination toward low-workload predictions. Moreover, when
estimating the number of VMs to accurately represent the ever-changing real-time demand,
the cooling-down period is not considered. Consequently, this scenario exhibits higher
volatility in its values than the other scenarios, leading to inferior outcomes.

Table 4. Estimation of autoscaling model with and without proposed post-processing algorithm.

Type No Autoscaling Autoscaling
without Proposed Algorithm

Autoscaling
with Proposed Algorithm

Θu (%) 7.99 19.5 5.31

Θo (%) 60.94 22.65 26.56

τu (%) 17.96 33.59 9.37

τo (%) 60.94 19.53 14.06

εn (%) 1.0 1.16 2.31
Θu Θo τu τo are metrics where smaller values are better; εn is a metric where larger values are better.
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5. Discussion

The use of predictive models for autoscaling in real-time latency-sensitive IoT envi-
ronments is important. This study leveraged a deep learning model to predict resource
demands with the added implementation of intermediate verification steps in the event
of prediction failures. This approach aims to mitigate the limitations of relying solely on
predictive systems.

However, there are several problems associated with the methods described. First,
the dataset used in this study did not represent applications that were heavily reliant on
GPU and CPU resources. The data used in this study primarily pertained to the correlation
between network throughput and memory usage, which were the most significant factors.
If the dataset had encompassed applications that predominantly relied on GPU or CPU
resources, adjustments to the algorithm and the choice of appropriate metrics would have
been necessary. However, this issue is not a factor that significantly changes the proposed
framework; it simply means that there may be discussions on evaluation methods for key
metrics at each stage. Therefore, one can expect future improvements to methods that are
effective even for datasets that rely on GPU and CPU resources.

Second, the autoscaling system in this study only considered scenarios in which
resources were 100% available. It did not address the cases in which certain VMs had limited
availability. Consequently, methods of calculating the overall system capacity by assessing
the availability of VMs are required. Thus, the current system can adequately adjust
resource allocation (even as resource availability increases), but further enhancements are
essential to improve the efficiency and stability.

6. Conclusions

In this study, we introduced and implemented an interim inspection algorithm to
mitigate the disparities between the predicted and actual demand. Following the prediction
phase, this algorithm periodically assessed the demand, and, if disparities emerged, post-
processing solutions were initiated. Notably, the proposed algorithm operated with a
time requirement that was approximately 43 times shorter than the prediction process
itself. By extending the prediction cycle and integrating the algorithm within an extended
timeframe, the overhead imposed on the system was greatly reduced. Furthermore, this
study recognized that exclusive reliance on prediction models for demand estimation could
result in errors. To address this concern, an interim inspection was conducted to identify
and rectify these errors. Notably, when prediction was combined with interim inspection,
there was a substantial 99% improvement compared to the method without the proposed
algorithm. When equipped with the proposed algorithm, the efficiency of the system
surpassed that of systems that lacked optimization measures. Using this methodology, we
aim to achieve the efficient provisioning of server resources for tasks that demand seamless
real-time operations.

It is important to emphasize that this study primarily focused on assessing the overall
demand for the entire cluster and performed post-processing accordingly. However, this
study did not explicitly account for variations in demand among individual nodes within a
cluster. Consequently, it did not address scenarios in which specific high-demand nodes
might encounter resource allocation challenges. Future research should explore strategies
that incorporate per-node demand considerations, thereby enabling more precise prediction
and post-processing techniques to address demand variations at the node level.
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