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Abstract: The advancement of quantum computing threatens the security of conventional public-key
cryptosystems. Post-quantum cryptography (PQC) was introduced to ensure data confidentiality
in communication channels, and various algorithms are being developed. The National Institute of
Standards and Technology (NIST) has initiated PQC standardization, and the selected algorithms for
standardization and round 4 candidates were announced in 2022. Due to the large memory footprint
and highly repetitive operations, there have been numerous attempts to accelerate PQC on both
hardware and software. This paper introduces the RISC-V instruction set extension for NIST PQC
standard algorithms and round 4 candidates. The proposed programmable crypto-processor can
support a wide range of PQC algorithms with the extended RISC-V instruction set and demonstrates
significant reductions in code size, the number of executed instructions, and execution cycle counts of
target operations in PQC algorithms of up to 79%, 92%, and 87%, respectively, compared to RV64IM
with optimization level 3 (-O3) in the GNU toolchain.

Keywords: post-quantum cryptography; PQC; RISC-V; crypto-processor; programmability; domain-
specific processor

1. Introduction

With the emergence of 5G communication and the development of various services,
including Internet-of-Things and cloud services, a large amount of personal information,
such as medical and financial records, is transmitted through communication channels.
Public-key cryptography has been commonly used as a traditional method for maintaining
confidentiality and integrity and preventing attackers or sniffers on the channel from
disclosing this information. Diffie and Hellman introduced public-key cryptography in
1976 [1]. The cryptosystem is based on a complex mathematical problem that takes a
long time to solve. Traditional public-key cryptography schemes, such as Elliptic-Curve
Cryptography (ECC) [2] and the Rivest–Shamir–Adleman (RSA) algorithm [3], are based
on the discrete logarithm problem and factorization problem, respectively.

In 1994, Peter Shor introduced Shor’s algorithm [4], which proves that quantum com-
puters can solve the mathematical problems for ECC and the RSA algorithm in polynomial
time. This discovery makes quantum computers a potential threat to the security of tradi-
tional public-key cryptography. In recent years, Google has proposed a quantum processor
called Sycamore, which takes about 200 s to solve an operation that would take a state-of-
the-art supercomputer about 10,000 years to complete. In addition, IBM Q System One was
introduced in 2019, and related studies are underway. As quantum computers are now
widely deployed worldwide, it is necessary to develop quantum-resistant cryptosystems
to ensure information security; this is known as post-quantum cryptography (PQC). As
the importance of quantum-safe algorithms is well understood globally [5] and various
cryptography algorithms have been developed, the National Institute of Standards and
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Technology (NIST) initiated the standardization process of post-quantum cryptography
in 2017.

The number of PQC publications in the past 5 years has accounted for nearly half of the
articles published in this field over the past 25 years [6]. Previous works have studied the
implementation of post-quantum cryptography algorithms [7]. However, due to various
schemes, frequent memory access, and iterative operations, it is inefficient to implement
these algorithms solely in software [8]. Various studies on hardware accelerators have
recently been proposed and can be categorized into three types of implementation methods,
as shown in Figure 1 [9].
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Figure 1. Comparison of hardware accelerator implementation methods. (a) Memory-mapped
accelerator, (b) tightly coupled accelerator, and (c) coprocessor.

The first method attaches a memory-mapped accelerator to system buses such as
AMBA AXI and AHB. The CPU core accesses this accelerator by storing values in a specific
memory space allocated to the accelerator, which triggers a specific operation depending on
the data written to the memory address [10,11]. This method does not require modifications
to the CPU core’s microarchitecture and enables parallel processing alongside the CPU.
However, the memory-mapped accelerator leads to additional memory access latency due
to load and store operations for workload offloading to the accelerator.

The second method implements a tightly coupled accelerator within the CPU microar-
chitecture as a functional unit. This method allows easy access to the general-purpose
register file in the CPU core and incurs low area overhead. However, custom instructions
must be decoded before execution, which requires modifications to the CPU’s microar-
chitecture. Additionally, concurrent operation with the main thread in the CPU core is
limited in a single-thread processor, resulting in lower performance compared to an exter-
nal accelerator. Previous works, such as [12–14], defined custom RISC-V instruction sets
for targeted post-quantum cryptography algorithms.

The third method involves a coprocessor attached to the CPU core through a dedi-
cated interface. This method is widely adopted in modern CPU architectures such as Arm
and RISC-V and allows for easy extension of the CPU core’s capabilities with additional
coprocessor instructions, without significant modifications to the baseline CPU’s microar-
chitecture [9,15]. A high-performance vector coprocessor for lattice-based cryptography
was designed in [16].

Our proposed programmable crypto-processor aligns with the coprocessor scheme,
which reduces the design complexity caused by the use of a system bus and memory
map, in comparison to studies involving memory-mapped PQC accelerators [10,11]. Also,
compared to previous studies [12–14], there is no need to change the internal design of the
existing CPU core because of the introduction of the coprocessor interface in this paper,
which can connect the proposed crypto-processor to the main CPU core.

Several studies have been conducted on accelerating lattice-based cryptography, such
as Kyber and Dilithium. Previous works, such as [11,16], mainly focused on accelerat-
ing lattice-based algorithms. However, less attention has been given to the hardware
acceleration of other cryptographic schemes. Although various PQC schemes based on
mathematical bases have been developed, as described in [8,17], hardware implementa-
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tions of PQC algorithms commonly require a large memory footprint and highly repetitive
computations, which are significant obstacles in efficient hardware implementations. To
address this issue, this paper proposes a custom RISC-V Instruction Set Architecture (ISA)
extension that can support all round 4 candidate algorithms in the NIST PQC standard-
ization process, as well as algorithms yet to be standardized. This paper also introduces a
programmable crypto-processor that can be attached to the main RISC-V CPU core via a
widely used coprocessor interface, known as the CORE-V extension interface [15]. With
the proposed RISC-V instruction set extension, the crypto-processor can flexibly support
various PQC algorithms across various applications. Furthermore, this approach can re-
duce the code size of cryptosystems, leading to a smaller instruction memory requirement
for PQC computation. Additionally, the number of executed instructions in the overall
architecture and the execution clock cycle are significantly improved compared to baseline
RISC-V implementations (Figure 2).
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Figure 2. Proposed crypto-processor based on RISC-V architecture.

The remainder of this paper is organized as follows. Section 2 provides an overview
of the targeted NIST PQC algorithms and their analysis from a performance point of view.
Section 3 discusses the proposed instruction set for NIST PQC algorithms, including the
algorithms to be standardized, round 4 candidates, and crypto-processor architecture
that can support custom instructions. Section 4 presents the experimental results and the
discussion, including a comparison with previous works. Finally, Section 5 contains the
conclusions drawn in this paper.

2. Target PQC Algorithms

PQC algorithms can be categorized based on their arithmetic foundations. This section
provides an overview of the NIST PQC standardization algorithms and their arithmetic
background. Additionally, we describe their fundamental operations, which can result in
performance bottlenecks in hardware implementations.

2.1. NIST PQC Standard and Round 4 Algorithms

The target PQC algorithms in this paper are the round 4 candidates of NIST PQC
standardization and the algorithms selected to be standardized, as declared on 5 July 2022,
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as denoted in Table 1. The algorithms can be categorized into public-key encryption/key-
establishment or digital signature algorithms.

Table 1. NIST post-quantum cryptography standard and round 4 candidates.

Class Algorithm
Type

Public-Key Encryption/
Key-Establishment Disigtal Signature

NIST PQC
Standard

Latice CRYSTALS-Kyber CRYSTALS-Dilithium
Falcon

Hash - SPHINCS+

NIST PQC
Round-4

Candidate

Code
BIKE
HQC

Classic McEliece
-

Isogeny SIKE -

The SIKE teams acknowledged that SIKE is insecure and should not be used.

Figure 3a depicts the fundamental operation flow of the key-establishment mechanism
that enables key establishment. This mechanism comprises three main components: key
generation, encapsulation, and decapsulation. During key generation, security parameters
are input, generating a pair consisting of a public key (pk) and a secret key (sk). The public
key pk is then transmitted to the P2 side. Encapsulation receives pk as input and produces
a ciphertext and a shared key K. The ciphertext, an encapsulation of the key K, is sent
to the P1 side. Finally, decapsulation returns a shared key based on a secret key and the
ciphertext [18].

pk : Public Key

sk : Secret Key

P1

Ciphertext

Shared key K

sk

pk

Encapsulation

Shared key K

P2

pk

Ciphertextsk Ciphertext

pk

Security parameters

Decapsulation

Time Time

Key Generation

(a)

(b)

Signature

Verification

pk

Digital Signature 
Algorithm

Hash
Function

Plaintext
Digest

Signature
Digest

pkSignatureMessage

Communication Channel

Signed Message

Comparison

Message

Hash
Function

Digital Signature
Algorithm

Signature

Key
Generation

Plaintext
Digestskpk

Figure 3. Fundamental flow of (a) key-establishment mechanism, (b) digital signature algorithm.
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The digital signature algorithm consists of key generation, a signature, and verification
steps, as shown in Figure 3b. First, the sender generates a public key, pk, and a secret key,
sk, for communication. Next, the message is input to the hash function and signed by the
secret key. Finally, the receiver verifies the sender’s authenticity by comparing the plaintext
digest and the signature digest using the sender’s public key [19].

The PQC algorithms targeted in this paper can be categorized into lattice, hash, and
code-based algorithms based on their arithmetic basis, as indicated in Table 1. Specifically,
CRYSTALS-Kyber and CRYSTALS-Dilithium are based on the module-LWE problem,
whereas SPHINCS+ relies on the security of hash functions such as SHAKE256, SHA-256,
and Haraka. Code-based algorithms, including BIKE, HQC, and Classic McEliece, are
based on quasi-cyclic moderate-density parity-check (QC-MDPC) codes or binary Goppa
codes [20]. SIKE, based on the Supersingular Isogeny Diffie–Hellman (SIDH) protocol, is
not included in the scope of this paper since the SIKE team has acknowledged potential
security issues.

Lattice-based cryptography algorithms rely on the hardness of the Shortest Vector
Problem (SVP), which involves finding the shortest non-zero vector in a lattice and is
known to be a difficult problem [21]. A lattice is a set of points in an n-dimensional space
with a periodic structure defined by n linearly independent basis vectors [22]. The most
commonly used problems in lattice-based cryptography are LWE and LWR. LWE involves
finding the vector s given a matrix A and a vector b = As + e, where e is a small additive
error [23]. If there is no error on the right side, the vector s can be easily found using
Gaussian elimination. However, with a small additive error, this problem becomes very
hard. Ring-LWE [24] and module-LWE [25] are the main variants of the LWE problem.
Ring-LWE uses polynomial rings over a finite field as a domain, where the vectors s and e
are polynomials from a polynomial ring [12]. On the other hand, module-LWE replaces the
single-ring elements with a matrix of polynomials.

The hash-based algorithm was introduced by Lamport in the 1970s as a one-time sig-
nature scheme, where the key pair can only be used to sign one message [26]. However, this
scheme is vulnerable if the same key is used to sign two different messages. To address
this issue, the extended Merkle signature scheme (XMSS) was developed as a stateful
signature that can be used multiple times [27]. Nonetheless, stateful signature algorithms
encounter difficulty synchronizing states between different participants in communica-
tion [28]. SPHINCS+, on the other hand, is a stateless hash-based signature scheme that is
a variant of XMSS but eliminates the need to maintain state.

Code-based cryptography was introduced by McEliece in 1978 [29]. This cryptosystem
is based on the property of error-correcting codes that are easy to encode but hard to decode.
The Classic McEliece uses the property of the Goppa code, which is a linear error-correcting
code that can encrypt and decrypt a message [30] and is defined by a sequence of distinct
n elements and a Goppa polynomial g(z). BIKE implements the McEliece scheme that uses
QC-MDPC codes and the equivalent Niederreiter scheme. HQC employs a concatenated
code of duplicated Reed–Muller and Reed–Solomon codes.

2.2. Core Operations for Post-Quantum Cryptography

The NIST PQC standards and round 4 candidates utilize the SHA-3 family [31]
in their submissions, which comprises four hash functions and three extendable output
functions (XOFs). A hash function takes input data of any size and generates a fixed-
length digest, whereas an XOF produces variable-sized output data commonly used to
randomly generate coefficients of polynomials in a lattice-based cryptosystem [13]. The
hash functions in the SHA-3 family are based on the Keccak- f permutation, which is one of
the most time-consuming components of PQC algorithms [12].

The Keccak- f [1600] permutation consists of iterative rounds that include five step
mappings: θ, ρ, φ, χ, and ι, as shown in Algorithm 1. The input state for these mappings is
an array of 25 elements, whose data size is determined by the permutation parameter and
updated throughout the processes. The θ step mapping XORs all bits in two columns of the
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state array and XORs them with a bit-wise rotation. In the ρ mapping, the bits of the state
array elements are rotated along the rotation offset, described as ROT in Algorithm 1, which
depends on the x- and y-coordinates of the element. Then, the state array elements are
rearranged in the φ step mapping. The bits in two state elements of different x-coordinates
are XORed with a non-linear function in the χ mapping. Finally, the round constant,
denoted as RC and depending on the current round index, is XORed with a state element,
with both x- and y-coordinates being zero.

Algorithm 1: Keccak-f [1600] Permutation

Input : state[x, y] from (x,y) = (0, 0) to (4, 4)
ROT[x, y] from (x,y) = (0, 0) to (4, 4) . Rotation offset
RC[x] from x = 0 to NROUNDS − 1 . Round constants

Output : state[x, y] from (x,y) = (0, 0) to (4, 4)

1 RoundCount = 1
2 NROUNDS = 24 . Number of rounds
3 while RoundCount ≤NROUNDS do
4 RoundCount ++
5 for x = 0; x < 5; x ++ do . θ−step
6 C[x] = state[x, 0]XOR state[x, 1]XOR state[x, 2]
7 XOR state[x, 3]XOR state[x, 4]
8 D[x]= C[x− 1]XOR RotateLeft(C[x + 1], 1)
9 end for

10 for x = 0; x < 5; x ++ do
11 for y = 0; y < 5; y ++ do
12 state[x, y]= state[x, y]XOR D[x]
13 end for
14 end for
15 for x = 0; x < 5; x ++ do . ρ−step
16 for y = 0; y < 5; y ++ do
17 state[x, y] = RotateLeft(state[x, y],ROT[x, y])
18 end for
19 end for
20 for x = 0; x < 5; x ++ do . π−step
21 for y = 0; y < 5; y ++ do
22 B[y, 2x + 3y] = state[x, y]
23 end for
24 end for
25 for x = 0; x < 5; x ++ do . χ−step
26 for y = 0; y < 5; y ++ do
27 state[x, y] = ((NOT B[x + 1, y]) AND B[x + 2, y])
28 XOR B[x, y]
29 end for
30 end for
31 state[0, 0] = state[0, 0] XOR RC[RoundCount− 1] . ι−step
32 end while

Polynomial multiplication requires high computation resources and is a time-consuming
operation, so it is considered a bottleneck in lattice-based cryptography [32]. The naive method
for polynomial multiplication, known as the schoolbook algorithm, has a computational
complexity of O(n2), where n is the degree of the polynomial. The number-theoretic transform
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(NTT) [33] is an efficient method for performing polynomial multiplication, as it can reduce
the time complexity to O(nlogn).

âi =
n−1

∑
j=0

ajw
ij
n mod q, ∀i ∈ [0, n− 1] (1)

The NTT is a discrete Fourier transform in finite fields and is commonly used in
post-quantum cryptography. It exploits polynomial multiplication over Rq, denoted by
a polynomial ring Zq[x]/(xN + 1), where Zq represents the group of integers 0, · · · , q− 1.
ωn is the n-th primitive root of unity in the finite ring Zq, also known as the twiddle factor.
The twiddle factor satisfies ωn

n = 1 mod q and ωn
i 6= 1 mod q for all i ∈ [0, · · · , n− 1].

ai =
1
n

n−1

∑
j=0

âjw
−ij
n mod q, ∀i ∈ [0, n− 1] (2)

The NTT and inverse NTT are defined as (1) and (2), respectively. Polynomial f con-
tains the coefficient sequence a = {a0, · · · , an−1} in Rq, whose degree is n. The polynomial
f is transformed into f̂ after the NTT, whose coefficient sequence is â = {â0, · · · , ân−1}.
The NTT and inverse NTT can be described as f̂ = NTT( f ), f = NTT−1( f̂ ).

f · g = NTT−1(NTT( f ) ◦ NTT(g)) (3)

The NTT involves several computation stages that include butterfly operations.
Figure 4 illustrates an 8-point NTT based on the Cooley–Tukey butterfly algorithm [33].
For an 8-point polynomial multiplication, three stages for each NTT and inverse NTT are
required. The CT butterfly multiplies an operand with a twiddle factor, which is a power
of a root of unity, and then begins addition and subtraction after modular reduction. In
Kyber, Dilithium, and Falcon, Montgomery reduction [34] is utilized. Modular reduction is
one of the main bottlenecks during polynomial operations [35]. Algorithm 2 describes how
Montgomery reduction is performed on an integer A. The Montgomery factor is β = 216 in
Kyber and Falcon and β = 232 in Dilithium.

Coefficient가실제로는더많으니까MR의 overhead가실제론더크다
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Polynomial multiplication can be transformed into the component-wise multiplication
of the NTT of polynomials f and g, denoted as ◦ in (3). NTT-based polynomial multiplica-



Sensors 2023, 23, 9408 8 of 19

tion is achieved through iterative butterfly operations, which are detailed along with our
proposed instruction set in Section 3. This property makes polynomial multiplication based
on the NTT a target for accelerating efficient PQC computations.

Sampling coefficients for lattice-based cryptosystems is a performance bottleneck [16].
It is more efficient to sample coefficients from a centered binomial distribution than from
a discrete Gaussian distribution [13]. The centered binomial distribution, which is sym-
metrical around zero, is generated by computing the Hamming weight of two η-bit values
and then subtracting one from the other using a modular operation. Algorithm 3 describes
the centered binomial distribution of width η. The parameter η determines the range of
polynomial coefficients, which is [−η, η]. To generate uniformly random coefficients of
polynomials that do not exceed a bound, rejection sampling can be used with the modulus
q as the bound to generate the polynomial coefficients in Zq.

The target code-based algorithms use arithmetic with bit polynomials over the finite
field GF2[x], whose coefficients are either 0 or 1. Bit polynomial multiplication is a perfor-
mance bottleneck in these algorithms [36,37]. In Classic McEliece and HQC, bit polynomial
inversion over the finite field involves finite-field arithmetic, including repetitive multi-
plication and square operations. Accelerating the finite-field arithmetic can improve the
execution time of the target code-based PQC algorithms.

Algorithm 2: Montgomery Reduction for PQC algorithms
Input : 2K-bit Integer A

Montgomery Factor β = 2K

Modulus Prime Integer q
Precomputed qinv = q−1 mod β

Output : Reduced A′ = Aβ−1 mod q
1 X = Aqinv mod β
2 if Unsigned Montgomery Reduction then . Falcon
3 Y = A + Xq
4 else . Kyber, Dilithium
5 Y = A− Xq
6 end if
7 Z = Y >> K . Shift with Most-Significant Bit
8 if Unsigned Montgomery Reduction then
9 if Z > q then

10 A′ = Z− q
11 else
12 A′ = Z
13 end if
14 else
15 A′ = Z
16 end if

Algorithm 3: Sampling based on Centered Binomial Distribution

Input : Random Bit Vector B = {b0, · · · , b2Nη−1}
Output : Polynomial f = a0 + a1X + · · ·+ aN−1XN−1 ∈ Rq

1 for i = 0; i < N; i ++ do
2 x = ∑

η−1
j=0 b2iη+j . Hamming Weight of η bits

3 y = ∑
η−1
j=0 b2iη+η+j

4 ai = x− y
5 end for
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3. Proposed Crypto-Processor Architecture with PQC Instructions

To address the significant computational complexity and repetition involved in core
operations in PQC algorithms, optimal hardware and software co-design is necessary.
This section introduces the RISC-V instruction set extension that accelerates NIST PQC
standards and round 4 candidates. Additionally, the hardware architecture of the proposed
crypto-processor is discussed in detail.

3.1. Proposed RISC-V Instruction Set Extension

Due to its flexibility in instruction set extension, we use the RISC-V instruction set ar-
chitecture as the baseline to support the NIST PQC algorithms and round 4 candidates [38].
As the primary performance bottlenecks in PQC algorithms are commonly due to the repet-
itive computation of similar core operations, a carefully designed instruction set extension
can significantly enhance the efficiency of PQC computations.

The instruction format for the proposed RISC-V post-quantum cryptography exten-
sion is presented in Table 2. The basic formats in the RISC-V standard are Type-R and
Type-R4. R-type instructions utilize two register values with indices rs1 and rs2, whereas
R4-type instructions require three indices for the source registers. In the proposed crypto-
processor, each source register index in the R4-type instructions is used to access the
32 × 64-bit coprocessor register file (CR) instead of the general-purpose register in the
baseline CPU core. Types Custom1 and Custom2 are newly defined PQC operations.

Table 2. Proposed crypto-processor’s 32-bit instruction format.

Type Encoding Map
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Functon 7 rs2 rs1 Function 3 rd Opcode
R4 rs3 Func. 2 rs2 rs1 Function 3 rd Opcode

Custom1 Immediate rs2 rs1 Function 3 rd Opcode
Custom2 Function 7 - rs1 Function 3 rd Opcode

Table 3 provides a detailed description of the proposed instruction set, which can
be classified into seven groups based on a comprehensive analysis of the target NIST
PQC algorithms: Keccak- f permutation, Montgomery reduction for the NTT, binomial
and rejection sampling, finite-field and conditional arithmetic, and access to coprocessor
registers. Depending on the current instruction’s opcode, the source operands RS1 and RS2,
as well as the destination register RD in Table 3, can be selected between the GPR in the
baseline core and the CR. As shown in Table 4, the proposed crypto-processor supports all
NIST PQC algorithms yet to be standardized and round 4 candidates.

In post-quantum cryptosystems, the Keccak- f permutation is the basis for SHA-3,
encompassing hash functions (such as SHA3-256 and SHA3-512) and XOFs (such as
SHAKE128 and SHAKE256). The number of iterations and the data size of the input
and output array vary according to the permutation parameter, selectable from 25, 50,
100, 200, 400, 800, and 1600. The proposed instructions in this paper can accelerate any
Keccak- f permutation parameter by simply adjusting the operand data size. For instance,
for the Keccak- f [1600] permutation acceleration, the user can adjust the state array element
data size to 64-bit and the number of rounds to 24. However, the Keccak- f permutation
is time-consuming because of the high number of iterations, and it requires a significant
number of registers for storing the permutation state. With the proposed PQC instructions,
the five steps in Algorithm 1 for the Keccak- f permutation can be accelerated, as explained
in Section 4.
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Table 3. The architecture of the proposed PQC instruction set.

Operation Instruction Description

Keccak-f
Permutation

XOR5 RD = CR[rs1] ^CR[rs1+1] ^CR[rs1+2] ^CR[rs1+3] ^CR[rs1+4]
ROLX RD = ROL(RS1, 1) ^RS2
ANDX RD = CR[rs1] ^(∼CR[rs2] & CR[rs3])
XROL RD = ROL(RS1 ^RS2, Imm)

Montgomery
Reduction

MR4 RD = (RS1 - ((RS1 × q−1) & 64’hFFFF) ∗ RS2) >> 16
MR4U RD = (RS1 + ((RS1 × q−1) & 64’hFFFF) ∗ RS2) >> 16
MR8 RD = (RS1 − ((RS1 × q−1) & 64’hFFFF_FFFF) ∗ RS2) >> 32

Binomial Sampling
SND2 RD = {61’b0, ({1’b0, ({1’b0, RS1[Imm]} + {1’b0, RS1[Imm+1]})})

− ({1’b0, ({1’b0, RS1[Imm+2]} + {1’b0, RS1[Imm+3]})})}

SND3 RD = {61’b0, ({1’b0, ({1’b0, RS1[Imm]} + {1’b0, RS1[Imm+1]} + {1’b0, RS1[Imm+2]})})
− ({1’b0, ({1’b0, RS1[Imm+3]} + {1’b0, RS1[Imm+4]} + {1’b0, RS1[Imm+5]})})}

Rejection Sampling

REJH

RD[11:0] = (RS1[11:0] < RS2) ? RS1[11:0] : 12’b0
RD[23:12] = (RS1[23:12] < RS2) ? RS1[23:12] : 12’b0
RD[35:24] = (RS1[35:24] < RS2) ? RS1[35:24] : 12’b0
RD[47:36] = (RS1[47:36] < RS2) ? RS1[47:36] : 12’b0
RD[63:48] = 16’b0

REJ
RD[23:0] = (RS1[22:0] < RS2) ? {1’b0, RS1[22:0]} : 24’b0
RD[47:24] = (RS1[46:24] < RS2) ? {1’b0, RS1[47:24]} : 24’b0
RD[63:48] = 16’b0

Finite Field
Arithmetic

SQR RD = {1’b0, RS1[31], 1’b0, RS1[30], ... , 1’b0, RS1[1], 1’b0, RS1[0]}
CLMUL RD = (RS2[0] ? (RS1 << 0) : 64’b0) ^... ^(RS2[63] ? (RS1 << 63) : 64’b0 )

CLMULH RD = (RS2[0] ? (RS1 >> 63) : 64’b0) ^... ^(RS2[63] ? (RS1 >> 0) : 64’b0 )
Conditional
Arithmetic

CON4 RD = RS1[15] ? RS2 : 64’b0
CON8 RD = RS1[31] ? RS2 : 64’b0

CR
Access

RDCR GRP[rd] = CR[rs1]
WRCR CR[rd] = GPR[rs1]

GPR : General Purpose Register in Baseline CPU Core. CR : Coprocessor Register. ROL : Rotate Left

Table 4. Supporting algorithms for the proposed PQC ISA.

Supportin
Algorithm

Proposed RISC-V Post-Quantum Cryptography ISA
Keccak-f

Permutation
Montgomery

Reduction Sampling Finite Field
Arithmetic

Conditional
Arithmetic

CR
Access

PKE/KEM

Kyber O O O O
BIKE O O O
HQC O O O

Classic
McEliece O O O

DS
Dilithium O O O O

Falcon O O O O
SPHINCS+ O O

PKE/KEM : Public-Key Encryption / Key-Establishment DS : Digital Signature

As demonstrated in numerous prior works [14,32,39], accelerating the NTT can im-
prove the performance of polynomial multiplication. Modular reduction is included in each
operation in both the NTT and inverse NTT. Since the complexity of modular reduction is
higher compared to other operations, such as addition, subtraction, and multiplication in
the NTT, accelerating the reduction operation can efficiently improve the overall perfor-
mance of the NTT. Montgomery reduction is the most commonly used reduction scheme in
lattice-based cryptosystems that require polynomial multiplication. The proposed instruc-
tion set for Montgomery reduction supports all parameters used in PQC standards and
round 4 candidates that use the NTT.

The parameter η in the binomial sampling instructions determines the number of bits
used in the operation and the range of the result [−η, η]. For ease of use, Function 3 in the
binomial sampling instruction set is equivalent to η, as shown in Table 3. The instruction set
supports all possible values of η (2 and 3) used in NIST standard algorithms. In addition,
the instruction set for rejection sampling includes REJH for sampling on 12-bit integers,
which supports Kyber, and REJ for 23-bit integers, which supports Dilithium.

The finite-field arithmetic instructions consist of SQR for square operations and CLMUL
and CLMULH for carry-less multiplication of bit polynomials. As discussed in Section 2,
combining these fundamental operations can also speed up bit polynomial inversion.
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CON4 and CON8 support conditional arithmetic operations. The result of the CON4
instruction depends on the value of RS1[15]. If RS1[15] is 0, the result is a 64-bit zero.
If RS1[15] is 1, the result is RS2 as a 64-bit value. For CON8, the result of the instruction is
determined by the value of RS1[31].

Recently, a scalar cryptography extension for RISC-V was announced, which sup-
ports the Advanced Encryption Standard (AES) and hash functions, including the SHA-2
family [40]. The proposed crypto-processor also includes a scalar cryptography extension
to support NIST PQC standards, their variants, and finalists. Kyber introduced their 90s
versions that use AES and SHA-2, and hardware acceleration of AES and SHA-2 can sup-
port SPHINCS+ [41]. AES is also used for random number generation in variants of PQC
algorithms [42].

3.2. Proposed Crypto-Processor Microarchitecture

Figure 5 illustrates the overall architecture of the proposed crypto-processor. The co-
processor interface, a subset of the CORE-V extension interface [15], connects the crypto-
processor to the baseline CPU core, CVA6 [43]. CVA6 consists of six pipeline stages and
supports the RV64IMAC ISA. When an instruction is fetched from the instruction cache, it is
passed to the decode stage. Since CVA6 does not support the scalar cryptography extension
or any proposed PQC instructions, they are considered invalid at the decode stage and of-
floaded through the coprocessor interface, with source operands from the general-purpose
register in the baseline core, a 32-bit instruction, and the Program Counter (PC).

Figure 5. Overall architecture of the proposed crypto-processor.

The crypto-processor has a three-stage pipeline architecture with an instruction decode
stage, an execution stage, and a writeback stage, where all instructions require only a single
cycle for the execution stage. The proposed coprocessor decodes the instruction with Func-
tion 7, Function 3, and Opcode fields to generate control signals. The Opcode determines
the source operands for the current instruction from either the general-purpose register in
the offload request packet or the coprocessor register. Based on the PC and source operands,
as well as the index of the destination register and immediate value from the instruction,
the execution stage of the coprocessor initiates an operation according to the control signals
from the decode stage. The result is then passed to either the coprocessor register with
the rd index or the general-purpose register through the writeback stage, along with the
PC and index rd. The results that need to be written back to the baseline core are stored
in the result buffer and wait to pass through the coprocessor interface. In the writeback
interface, they become a result packet and are passed to the general-purpose register file in
the commit stage of the baseline CPU core. Data stored in CR[rs1] can be loaded to the CPU
core through the RDCR instruction, whereas the WRCR instruction allows a source operand
in the general-purpose register to be written to the CR[rd]. The coprocessor register reduces
frequent access to memory and the register file in the baseline core.
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Figure 6 shows the hardware architecture of the proposed XOR5, ROLX, ANDX, and
XROL instructions used in the Keccak- f permutation in the coprocessor execution stage.
By utilizing a dedicated register file in the coprocessor to store the permutation state,
repetitive access to the general-purpose register file in the baseline CPU core to update the
state array every round can be avoided. Instead, these instruction sets utilize data stored
in the coprocessor register as operands and write back computation results. During the
decode stage, the index of the coprocessor register for each instruction’s source operand
is determined.

The XOR5 and ROLX instructions support the θ step in the permutation. The XOR5
instruction accelerates repetitive 64-bit XOR operations with five 64-bit operands from
CR[rs1] to CR[rs1+4], which would otherwise be executed for each clock cycle and repeated
four times. The ROLX instruction first shifts the source operand CR[rs1] left by 1 bit
and XORs it with CR[rs2]. The ANDX instruction supports the χ step in the Keccak- f
permutation. In this instruction, the bit-inverted CR[rs2] and CR[rs3] are ANDed and then
XORed with CR[rs1]. The XROL instruction accelerates the rest of the θ step and the whole
part of the ρ and φ step mapping. The source elements CR[rs1] and CR[rs2] are XORed
with each other and shifted by an amount specified in immediate[5:0]. The result is then
written back to CR[rd].

Figure 6. Hardware architecture of the Keccak- f permutation unit.

The proposed Montgomery reduction instruction set is executed, as depicted in
Figure 7. The parameter q−1, which is the inversion of the prime factor q, is selected
based on the value of RS2. The instruction decode stage controls the number of bits to be
extracted and shifted and determines whether operands should be added or subtracted.
MR4 and MR8 require 32-bit addition, whereas MR4U requires 64-bit subtraction. The shift
amount is 16 bits for the execution of the MR4 and MR4U instructions and 32 bits for the
MR8 instruction.
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Figure 7. Hardware architecture of Montgomery reduction unit for the NTT instruction set.

Figure 8a shows the execution unit for sampling based on a centered binomial distribu-
tion. A 6-bit immediate determines the bit of the 64-bit source operand. Depending on the
control signal from the instruction decode stage, η bits are extracted twice. The first set of η
bits is obtained from RS1[Imm] to RS1[Imm+(η− 1)], and the second set of η bits is obtained
from RS1[Imm+η] to RS1[Imm+(2η−1)]. For instance, in the SND2 instruction, where η
is 2, RS1[Imm] and RS1[Imm+1] are extracted, and each bit is extended to 2 bits by zero
extension. Then the two 2-bit values are added, and the result is zero-extended to 3 bits.
RS1[Imm+2] and RS1[Imm+3] are computed similarly. The two 3-bit values are subtracted,
extending the result to 64 bits with zero. This produces the result of binomial sampling
within the range of [−2, 2]. The proposed instructions and crypto-processor support all η
values used in the target NIST PQC algorithms.

The rejection sampling unit uses RS1 as the random bit stream generated by SHAKE
or AES in PQC algorithms, and RS2 as the bound for rejection. By setting the bound as the
modulus prime q, it is possible to select the polynomial coefficients within the appropriate
range. The control signal from the instruction decode stage determines the bit widths of
the configurable extractors, as shown in Figure 8b.

Figure 8. Hardware architecture of (a) binomial sampling unit; (b) rejection sampling unit.

The execution stage also includes units for scalar cryptography [40]. The proposed
crypto-processor can support AES encryption and decryption, as well as SHA-2 hash
functions, including SHA-256 and SHA-512. These algorithms’ complex operations can
be computed efficiently by a combination of appropriate instructions. For example, the
AES unit supports instructions for key scheduling, middle encryption rounds (including
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ShiftRows, SubBytes, and MixColumns steps), and final encryption rounds (including
ShiftRows and SubBytes steps). The instruction extension can also support AES decryption
through inverse operations. For SHA-2 hash functions, transformations such as sigma0,
sigma1, sum0, and sum1, which consist of rotation operations, are mapped to the RISC-V
instruction format.

4. Experimental Results

This section presents a performance analysis of the proposed crypto-processor with
PQC instructions. We evaluate the code size, number of executed instructions, and execu-
tion cycle counts. Furthermore, we compare the hardware implementation results with
previous works.

4.1. Performance Analysis

In addition to reducing the cycle count, which was the primary focus of most previous
works, the code size and number of executed instructions are also critical in demonstrating
the effectiveness of the proposed instruction set. For the experimental setup in this study,
we used a 64-bit CPU core, CVA6, as the baseline, and we employed the RISC-V GNU
toolchain with the golden simulator, Spike. We measured the improvement based on the
RV64IM with optimization level 3 (-O3) assembly source code of the target NIST PQC
algorithms. As part of standardization, the NIST releases the C-based source code of
each PQC algorithm, which we used in our experiments with the RISC-V compiler. To
ensure a fair comparison, we modified only the assembly instructions that can be replaced
with the proposed ISA and left everything else unchanged except for the target assembly
instructions. We also provided execution clock cycle count reductions for each target
cryptographic operation when the proposed crypto-processor was attached to the CVA6
core through the coprocessor interface, as shown in Figure 5.

Table 5 presents the comparison results for the Keccak- f [1600] permutation. The Keccak-
f [1600] permutation cycle counts of the RV64IM software implementation based on the
version 2.0 ISA for 32-bit [44], hardware–software co-design [45], and this work are shown
in Table 5. Our study demonstrates that compared to the RV64IM software implementation
of the permutation with optimization level 3, our proposed crypto-processor reduced the
execution cycle counts by up to 86%.

Table 5. Execution cycle counts (kilo cycles) for Keccak- f [1600] permutation.

RV64IM (-O3) E31 (RV32IMAC) [44] Cortex-M4 [44] Accelerator [45] This Work
11.722 13.774 12.969 1.8 1.632

Table 6 compares the NTT cycle counts according to the parameters used in NIST PQC
standards. The parameter n refers to the degree of the polynomial, whereas q is a prime
integer. Our work demonstrated a 46% to 50% reduction in cycle counts for the NTT com-
pared to RV64IM with optimization level 3. Moreover, due to the well-defined instruction
set, our proposed crypto-processor required fewer cycle counts for the NTT compared to
previous works [14,32,39].

Table 6. Execution cycle counts (kilo cycles) for the NTT.

Parameter
(n, q)

Implementation
RV64IM (-O3) Accelerator [32] Accelerator [14] Cortex-M4F [39] This Work

(256, 3329) 25.53 43.76 18.49 - 13.88
(253, 8380417) 29.50 43.76 18.55 - 15.16

(512, 12289) 108.20 81.06 75.90 55.20
(1024, 12289) 237.74 180.24 157.70 119.98

A comparison of execution cycle counts between the software implementation of sam-
pling and previous works [13,46] is denoted in Table 7. The parameter n is the polynomial
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degree, and η determines the range of polynomial coefficients, as described in Section 2. As
the rejection sampling in Kyber-512 reference implementation includes SHAKE-128, the
proposed Keccak- f permutation and rejection sampling instruction set were used for the
measurement. Our study shows that compared to RV64IM with optimization level 3, the
proposed crypto-processor can reduce cycle counts for binomial sampling by 38% to 50%
and rejection sampling by 77%.

Table 7. Execution cycle counts (kilo cycles) for sampling.

Target
Algorithm Parameter Implementation

RV64IM (-O3) Accelerator [13] This Work
Binomial
Sampling

n = 256, η = 2 2.46 - 1.24
n = 256, η = 3 3.01 2.36 2.86

Rejection
Sampling

Parameter RV64IM (-O3) Cortex-M4 [46] This Work
n = 256 206.36 60.43 47.36

Table 8 displays the execution clock cycle improvement for applications that use
finite-field arithmetic, specifically the Syndrome decoder in mceliece348864 and the Reed–
Solomon decoder in HQC-128. The reference implementation for NIST round 4 submissions
was used for each experiment. The improvement of Karatsuba bit polynomial multipli-
cation was measured based on the source code of the gf2x library [47], written in C. The
code-based round 4 candidates, BIKE and HQC, use the gf2x library for efficient bit polyno-
mial arithmetic, which can be supported by Karatsuba multiplication acceleration. GF2[x]
polynomial multiplication significantly impacts the execution time of BIKE [36], and it
is also utilized in all the primitives in the HQC implementation. The proposed crypto-
processor exhibited execution cycle count improvements of 65%, 39%, and 87% for the
respective algorithms.

Table 8. Execution cycle counts (kilo cycles) for applications based on finite-field arithmetic.

Target Algorithm Implementation
RV64IM (-O3) This Work

Reed-Solomon Decoder (HQC-128) 861.17 300.24
Syndrome Decoder (mceliece348864) 45,556.83 27,830.81

Karatsuba Multiplication 2311.75 305.98

The reduction ratios for the code size and executed instructions are presented in
Figure 9. For the Keccak- f [1600] permutation, the proposed instruction set achieved a
reduction of 79% and 81% in terms of the code size and executed instructions, respectively.
Regarding the NTT with standardized parameters for NIST PQC algorithms, the proposed
instruction set achieved a reduction of 13% to 20% in terms of the code size and 38% to 48%
in terms of the executed instructions. Additionally, the instruction set for binomial sampling
achieved reductions of 32% to 45% and 32% to 38%, respectively. For rejection sampling,
reductions of 52% and 76% were achieved in the corresponding experiments. Among the
applications based on finite-field arithmetic, the proposed instruction set reduced the code
size from 4% to 40% and the executed instructions from 41% to 92%.
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Figure 9. Comparison results of target applications. (a) Code size. (b) The number of executed instructions.

4.2. Hardware Implementation Results

The proposed crypto-processor is described in Verilog HDL and synthesized with a
28 nm CMOS process at an operating frequency of 150 MHz. The total gate count is 54 kGE
(NAND2 Gate Equivalent) and the ratio of each component is depicted in Figure 10. The
PQC unit and scalar cryptography unit occupy 27.8% and 17.4% of the total gate counts,
respectively. The 32 × 64-bit coprocessor register and the result buffer account for 31% and
18.5% of the coprocessor, respectively.

id_stage
ex_ctrl
PQC_logic
CR
K1
result buf

PQC Unit

(27.8%)
Crypto-Processor

54 kGE

Instruction Decode Stage (3.3%)
Execution Control (2.0%)

Coprocessor

Register

(31%)

Scalar Crypto. 
Unit

(17.4%)

Result Buffer
(18.5%) 15 kGE

17 kGE

Figure 10. Gate-count ratio of proposed crypto-processor.

Although the gate count of the proposed crypto-processor is slightly higher compared
to other tightly coupled PQC accelerators [13,14,32], as shown in Table 9, mainly due
to the coprocessor’s register file and result buffer, which occupy about 50% of the total
gate count, the proposed architecture as a programmable coprocessor supports all round
4 candidate algorithms in the NIST PQC standardization process, as well as algorithms yet
to be standardized.
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Table 9. Comparison of hardware PQC accelerations.

Design TCHE’20
[13]

IEEE Access’21
[14]

FPL’20
[32]

TCHE’19
[11]

TCAS-I’20
[16] This Work

Platform ASIC
(65nm)

FPGA
(ZCU106)

FPGA
(VIRTEX-7)

ASIC
(40nm)

ASIC
(28nm)

ASIC
(28nm)

Frequency
(MHz) 45 100 - 72 300 150

Gate Counts
(kGE) 57 a - - 106 e 37 + 942 f 477 + 54 g

Complexity
(LUT/FF/DSP/BRAM) - 178/0/5/0.5 b

377/0/10/0.5 c 417/462/0/0 d - - -

Accelerator Type Tightly Coupled Tightly Coupled Tightly Coupled Memory-mapped Coprocessor Coprocessor

Supported
NIST PQC algorithms

Kyber
Saber

Kyber
Dilithium

Kyber
Dilithium

Falcon

Kyber
Dilithium Kyber

Kyber
Dilithium

Falcon
SPHINCS+

BIKE
HQC

Classic McEliece
a Includes Pulpino w/o FPU. b Only for additional ALU logic for Kyber. c Only for additional ALU logic for
Dilithium. d Only for additional accelerator. e Includes baseline CPU core. f SCR1 core and the vector coprocessor,
respectively. g CVA6 core and the coprocessor, respectively

5. Conclusions

We propose an instruction set for all NIST PQC algorithms yet to be standardized and
round 4 candidates, along with a programmable crypto-processor that can be easily attached
to the baseline RISC-V CPU core as a coprocessor. This proposed architecture can alleviate
computational bottlenecks in PQC algorithms, such as the Keccak- f permutation, the NTT,
binomial and rejection sampling, and finite-field arithmetic. Additionally, the proposed
crypto-processor supports RISC-V scalar cryptography extensions, including SHA-256,
SHA-512, and AES. By combining the proposed instruction set with low complexity, the
proposed architecture can support various PQC algorithms and cover various applications
in real life. The proposed crypto-processor can reduce the code size and number of executed
instructions of target operations in PQC algorithms by up to 79% and 92%, respectively.
When compared to software implementations, execution cycle counts can be reduced by
up to 87%. The proposed crypto-processor operates at 150 MHz and occupies 54 kGE with
the 28 nm CMOS process.

Our proposed PQC coprocessor enables more secure communication compared to
existing encryption systems. It is possible to keep information secure on communication
channels with PQC algorithms. However, its disadvantage is that the operation of algo-
rithms takes a long execution time. Our proposed crypto-processor can accelerate the
computation of PQC algorithms to address these shortcomings. Therefore, the crypto-
processor can be used in fields where PQC algorithms must be calculated in a short time by
connecting to the main CPU.

The proposed ISA in this paper targets the PQC standard and round 4 candidate algo-
rithms. It can also be applied to other algorithms, which can be accelerated by commands
supported by the ISA. However, the limitation is that PQC algorithms that mainly use
operations not supported by the proposed ISA cannot be accelerated. In this case, adding
new instructions to the ISA will also reduce the computational time of various newly
developed PQC algorithms, which is a potential avenue for future work in this paper.
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