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Abstract: Smart cities provide integrated management and operation of urban data emerging within
a city, supplying the infrastructure for smart city services and resolving various urban challenges.
Nevertheless, cities continue to grapple with substantial issues, such as contagious diseases and
terrorism, that pose severe financial and human risks. These problems sporadically arise in vari-
ous locales, and current smart city frameworks lack the capability to autonomously identify and
address these issues. The challenge intensifies especially when trying to recognize and respond to
unprecedented problems. The primary objective of this research is to predict potential urban issues
and support their resolution proactively. To achieve this, our system makes use of semantic reasoning
to understand the ongoing situations within the city. In this process, the 5W1H principles serve as
inference rules, guiding the extraction and consolidation of context. Firstly, utilizing domain-specific
annotation templates, we craft a semantic graph by amalgamating information from various sources
available in the city, such as municipal public data and IoT platforms. Subsequently, the system
autonomously infers and accumulates contexts of situations occurring in the city using 5W1H-based
reasoning. As a result, the accumulated contexts allow for inferring potential urban problems by
identifying repeated disruptions in city services at specific times or locations and establishing connec-
tions among them. The main contribution of this paper lies in proposing a comprehensive conceptual
model for the suggested system and presenting actual implementation cases and applicable use cases.
These contributions facilitate awareness among city administrators and citizens within a smart city
regarding potential problem-prone areas or times, thereby aiding in the preemptive identification
and mitigation of urban challenges.

Keywords: semantics; smart city; context extraction; semantic reasoning

1. Introduction

According to a 2018 survey by the United Nations, 55% of the world’s population
resides in urban areas. This urban concentration precipitates various challenges in fields
such as habitation, transportation, and the urban environment. The term urban problems
refers to issues that arise due to city population density and urbanization, such as un-
employment and traffic congestion during commuting hours. A smart city refers to an
urban area that offers services aimed at resolving these issues through the comprehensive
management of data collected from sensors installed throughout the city [1]. Based on an
open IoT platform, a smart city secures real-time data and supports smooth data flow, such
as traffic volume and a wide array of other substantial data. This enables services such
as air pollution measurement to tackle environmental pollution issues, providing infor-
mation about air quality, and measuring and predicting traffic volume to address traffic
congestion issues [2,3].

However, for the establishment of smart cities to result in the resolution of urban
issues, it is crucial, first and foremost, to perceive urban situations in real time and to
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comprehend or predict in advance the causes of the problems emerging within cities. There
are persistent challenges in urban areas such as infectious diseases, housing shortages, and
unemployment, yet smart cities to date encounter difficulties in autonomously recogniz-
ing these urban problems [4]. Specifically, issues like chronic congestion and a decrease
in subway ridership during commute hours persistently occur in major cities and vari-
ous sections, but pinpointing the exact times, locations, and causes of these problems is
not straightforward.

This difficulty is primarily due to the characteristics of smart cities that provide various
industry services, including parking management and energy management, across different
fields. In most cases, the causes of urban problems that occur in various parts of the city
cannot be attributed to only a single factor due to the diverse services offered by smart cities.
Such urban problems generally emerge from a complex overlay of multiple situations. For
example, even when analyzing a single traffic accident that occurred within a city, various
factors, such as the driver’s driving habits, the size of the intersection, and the speed of the
vehicle, all serve as contributing causes to the accident, leading to variations in the severity
of injuries and the extent of damage [5].

A context-awareness system utilizing semantic technology can offer a solution to
the difficulty of identifying the causes of urban problems in smart cities [6]. Semantic
technology establishes logical relationships between data, allowing for the identification
of places or times where urban problems frequently occur based on the city’s character-
istics, thereby connecting all related data. Data linked in this manner can be organically
connected through a context-awareness system without being confined to a specific field
or domain, aiding in the identification of various causes of urban problems. Specifically,
the development of technology that can infer potential risks by considering various urban
situations comprehensively is necessary in order to provide specialized cause analysis and
intelligent predictive services for urban problems in smart cities [7,8].

In this study, we first extracted the requirements and conceptual model of a Semantic
Context Inference System (SeCIS) which can deduce urban situations as contexts and
predict urban problems through logical reasoning. The proposed SeCIS is composed of
a four-layer architecture: data access layer, semantic acquisition layer, context extraction
layer, and inference application layer. The data access layer collects smart city data, which
describe factors influencing urban problems from various sources such as IoT platforms
and public data portals, and unifies the format of diverse data sets based on smart city data
schemas for reusability. In the semantic acquisition layer, a semantic graph is constructed
based on smart city ontology, and contexts are deduced in the context extraction layer using
the 5W1H principles. Our prediction approach accumulates contexts that are connected as
a single context considering factors like time, place, and weather. When SeCIS recognizes a
service disruption in the city, it infers events causing urban problems by connecting contexts
based on location and time. As a result, the inference application layer can preemptively
warn administrators or individual city dwellers of potential urban problems or service
disruptions when events causing these problems are detected at the same time and place.
Moreover, feedback on the causal relationship between events and urban problems from
city administrators is collected and circulated back to the context extraction layer, thereby
establishing continually evolving rules for logical reasoning.

In summary, our main contributions are as follows:

• Definition of the conceptual model and layer-specific requirements of the Semantic
Context Inference System for an urban problem.

• An approach that performs real-time semantic annotation for the relationships between
smart city data using a smart city ontology.

• A mechanism for extracting semantic context for describing the current urban situation.

The rest of this paper is organized as follows. In Section 2, we study the related
technologies and extract the requirements for the four layers. Section 3 presents the
conceptual model and composition of the Semantic Context Inference System (SeCIS).
In Section 4, we describe the methodology and implementation used to estimate urban
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problem inferences and introduce use cases that employ this system. Section 5 details the
validation of the SeCIS implementation, demonstrating the system’s effectiveness within a
controlled setting. Finally, Section 6 concludes the paper and discusses future work.

2. Previous Research and Requirements

In this section, a system is proposed that extracts contextual knowledge from data
collected in smart cities, enabling the recognition of various situations occurring within
the city. This section aims to examine, from a comprehensive perspective, an overview
of the contextual knowledge that can be inferred from smart cities and the component
technologies of semantic context inference, categorized by field (data access, semantic
acquisition, context extraction, inference application). Additionally, requirements for the
Semantic Context Inference System (SeCIS) are identified based on existing literature related
to semantic technologies.

2.1. Overview of Semantic Knowledge and Context

While syntactic knowledge encompasses the way words are assembled and sentences
are structured in a particular language, semantic knowledge involves the meaning found
in the actual text, symbols, and signs, with a focus on understanding the situations and
contexts in urban environments. In comparison with humans, contextual knowledge refers
to new knowledge and features that constitute concepts that individuals have acquired and
abstracted from their experiences [9]. Traditional smart city systems can collect data and
generate statistics, but they are incapable of classifying or analyzing data to discern their
contextual meaning and derive new insights.

Conversely, semantic technology enables not only the understanding of sentence
structures and word meanings but also the derivation of semantic data, such as concepts,
features, and domains. Furthermore, it allows for the derivation of new concepts and
knowledge [10]. Especially in smart city environments, where massive numbers of data
from various domains are generated, the advantages of semantic technology are more pro-
nounced. However, despite these advantages, semantic technology remains underutilized
due to the high barrier of requisite background knowledge needed for understanding it, as
well as the complexity involved in defining inference rules to meet the information needs
of the intended system.

Typically, citizens or administrators in a smart city assume that their information
needs can be satisfied since large volumes of data are being collected. However, in many
cases, it is challenging to realize this assumption in practice. While it is possible to provide
information that citizens wish to know in some cases, like weather and air quality, it is
often difficult for them to explicitly articulate their information needs in most instances.
Particularly for recognizing current phenomena or situations occurring in a smart city, the
system should be structured to reflect citizens’ information needs and incorporate clear
inference rules for this purpose.

2.2. Research on Key Technologies by Layer

Syntactic knowledge extraction necessitates understanding not only the relationships
between domains but also the ability to perform logical inference based on the complex
connection information between data to provide satisfactory knowledge extraction results.
However, there are limitations to fragmented approaches through simplistic conceptual
architectures like statistics or analysis of the existing data. Therefore, in this section, we will
explore related research from a comprehensive perspective, dividing the key technologies
of semantic context inference into four layers: data access layer, semantic acquisition layer,
context extraction layer, and inference application layer. Through these four layers, we
can extract semantic information from data, transform it into high-level knowledge, and
ultimately apply this contextual knowledge to real use cases.
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2.2.1. Data Access

Efforts are being made in smart cities to efficiently operate the cities and enhance
the quality of life for their residents by adopting and utilizing big data platforms for data
access [11]. In this context, technology that performs data collection from various urban
infrastructures is pivotal, serving to systematically manage and utilize the diverse and vast
data generated within a city [12]. Research on distributed processing systems like Apache
Hadoop is ongoing to facilitate this need.

For instance, South Korea’s smart city data platform technology, known as City Data
Hub, exemplifies one of these efforts. The City Data Hub collects raw data through inter-
national standard protocols and standard interfaces from various city systems, including
IoT platforms, administrative systems, integrated smart city platforms, and legacy systems.
This approach enables the integrated management of the collected data [13].

Specifically, it employs protocols such as MQTT and CoAP for real-time data com-
munication between IoT devices and interfaces that adhere to OpenAPI specifications
for seamless integration between different systems. Furthermore, for data format and ex-
change, it utilizes JSON and XML, which are widely recognized and accepted standards in
the industry. To store vast numbers of data, one can utilize NoSQL databases like MongoDB
and Cassandra, relational databases, or Big Data processing tools such as Apache Hadoop
and Apache Spark.

However, the utilization of NoSQL databases and Big Data processing tools like
Apache Spark also brings forth challenges and limitations. NoSQL databases, while provid-
ing scalability and flexibility, may pose issues regarding data consistency and transactional
integrity, which are crucial in managing critical urban infrastructure data reliably. Addi-
tionally, these databases require specialized skills and knowledge to manage, which might
escalate the operational complexity and learning curve for the administrators. Big Data
processing tools, on the other hand, necessitate substantial computational resources and ex-
pertise for optimization and maintenance, posing a challenge in environments where these
resources are limited or costly. Also, ensuring data privacy and security while processing
and analyzing large datasets is a constant challenge, given the sensitive nature of urban
data collected in smart cities.

2.2.2. Semantic Acquisition

Ontologies, pivotal in semantic technologies, establish structured frameworks for
information representation. They adopt a triple-form structure (subject, predicate, object)
that enables a more intuitive and accessible semantic processing of data. Semantic acquisi-
tion’s primary goal is to convert disparate content sources—including text, images, and
multimedia—into semantic metadata informed by ontological structures.

Fundamental technologies in the perspective of semantic information acquisition
include natural language processing (NLP), statistical methods, and machine learning
techniques. Libraries for NLP such as SpaCy, NLTK, and Gensim; information retrieval
tools like Apache Lucene and Elasticsearch; and machine learning libraries such as scikit-
learn, TensorFlow, and PyTorch can all be utilized in the process of semantic acquisition.

On the other hand, prior research has demonstrated varied ontology-based approaches
to semantic technology applications [14,15]. For example, ontologies have been leveraged
in urban planning, healthcare, and environmental monitoring, showcasing their versatility
across different domains. In urban environments, semantic ontologies have played a
significant role in integrating heterogeneous data sources, which has been crucial for the
development of smart cities. Studies have shown how ontologies can be employed to
consolidate information across transportation, utility, and emergency response systems to
facilitate better urban management [16,17].

The benefits of using ontological models include the enhanced ability to standardize
and link data, thus providing a more cohesive view of complex systems [18,19]. For
instance, the adoption of the SSN ontology (semantic sensor network) in environmental
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monitoring projects has yielded improved data interoperability and analysis capabilities,
enabling better-informed decision making processes.

However, limitations also emerge, primarily related to the complexity of ontology
development and maintenance. The difficulty of capturing the nuanced and evolving nature
of real-world relationships in a static ontological model presents a constant challenge [20,21].
Moreover, the extensive effort required to annotate data manually for ontology-based
systems is a limitation that ongoing research aims to address through automation [22].

Illustrative case studies offer concrete insights into the practical application of these
technologies. In Barcelona’s smart city initiative, semantic technologies facilitated data
integration from diverse domains such as public transportation, energy consumption, and
citizen services, thereby enhancing urban planning and operational efficiency [23]. Simi-
larly, Singapore’s semantic traffic management system illustrates how machine learning,
intertwined with ontology-driven analytics, can enhance real-time traffic flow management,
reducing congestion and improving urban mobility [24].

Reflecting on the feedback received, this section could be improved by providing a
more comprehensive analysis of how ontologies are specifically tailored for various urban
challenges. Additionally, future research should focus on the ontological engineering pro-
cess, detailing the selection, customization, and validation of ontologies within the context
of semantic acquisition. Competency questions that define the scope and requirements
of ontological models could further refine the process and ensure alignment with the
targeted outcomes.

2.2.3. Context Extraction

Context extraction plays an essential role in transforming raw, unstructured data
into meaningful, actionable insights within smart cities by analyzing the context in which
data are generated and applied. Semantic reasoning can be a pivotal tool in this pro-
cess, enabling the system to understand and interpret the relationships and meanings
embedded in diverse data sources such as IoT devices, administrative records, and social
media feeds [25].

Semantic reasoning allows the extraction process to identify connections and relation-
ships among disparate data points, providing a coherent and integrated view of various
urban phenomena [26]. The employment of machine learning (ML) and data mining
techniques further enhances the capability of context extraction. ML algorithms, with
their ability to learn and adapt from the data autonomously, and data mining techniques
that uncover patterns and connections within the data collectively support the process of
turning unrelated data points into significant knowledge.

Moreover, the Semantic Web Rule Language (SWRL) is commonly used in conjunction
with ontology languages like OWL for inferencing purposes, serving as an example of rule-
based reasoning. The field has also seen the development of various semantic reasoning
methods, including SPARQL Inferencing Notation (SPIN), probabilistic reasoning, and
ontology-based data access (OBDA). Despite these advancements, a definitive guide or
“how-to” is still lacking, with specific methods being employed based on the unique use
case and requirements of each project. Tools such as Protégé for ontology management,
knowledge graph databases, and the inference engine Apache Jena can be utilized in the
process of knowledge extraction.

Current challenges in the field encompass the need for more efficient reasoning al-
gorithms capable of handling large and complex datasets typically found in smart cities.
Furthermore, integrating heterogeneous data sources and ensuring the quality and consis-
tency of the extracted knowledge remain significant tasks. Research is ongoing to address
these challenges and develop more sophisticated and user-friendly tools and methodologies
that can facilitate the process of knowledge extraction and semantic reasoning in various
applications, including smart city initiatives.
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2.2.4. Inference Application

The final layer in the SeCIS system is dedicated to applying the knowledge generated
during the context extraction phase to practical application scenarios. Within this layer,
operations like responding to user queries, recommending information aligned with user
interests, and similar tasks are executed by leveraging the generated context. The appli-
cation of this context can take various forms, such as search engines, conversational AI,
recommendation systems, question-answering systems, and decision support systems.

For instance, linked open data (LOD) visualization and semantic-based search services
exemplify the diverse applications in this layer. IBM’s Watson is a notable example that has
developed capabilities to comprehend questions and provide relevant answers, demon-
strating the potential and effectiveness of applying semantic knowledge in real-world
scenarios [27]. Furthermore, various AI development platforms and libraries are available
to support the implementation of knowledge application systems, including Rasa and
OpenAI GPT-3 for AI development and LightFM and Surprise for building recommenda-
tion systems. Additionally, tools like Elasticsearch and Apache Solr are often utilized for
creating advanced search engines that leverage semantic knowledge.

However, in the process of applying context knowledge, several challenges and con-
siderations need attention [28]. The accuracy and reliability of the application’s responses
or recommendations are crucial, necessitating rigorous validation and testing processes.
Also, ensuring that the system can understand and interpret the user’s intent accurately
is vital for providing relevant and satisfactory services. Ongoing research in this area is
focused on overcoming these challenges, improving the usability and reliability of infer-
ence applications, and exploring new ways of leveraging inferred contextual knowledge to
address a broader range of urban issues in smart cities.

2.3. Semantic Context Inference System Requirements

Based on the existing literature on semantic context inference, the following sum-
marizes the primary requirements for a SeCIS, categorized into the data access, semantic
acquisition, context extraction, and inference application layers:

The fundamental task at the data access layer is providing access to raw data. This
necessitates features capable of handling structured, semistructured, and unstructured data,
efficient search methodologies, support for large data processing, and functions for data
cleaning and preprocessing. The system should also be adaptable to processing various
data sources within a smart city, including databases, APIs, web pages, and documents.

In the semantic acquisition layer, there is a need for semiautomated construction
technologies capable of transforming collected smart city data into high-quality semantic
metadata, alongside strategies for structuring metadata. Given the vast number of data
generated within smart cities, it is imperative to derive high-quality semantic metadata
that satisfy the requirements for knowledge extraction. Support for ontology mapping
and semantic annotation, connecting smart city data to domain ontology concepts, is also
essential. While there is ongoing research into powerful NLP features, including named
entity recognition (NER), dependency parsing, and coreference resolution, there is a lack of
concrete application examples, and continuous research is necessary in order to generate
high-quality, meaningful metadata.

The primary objective of the context extraction layer is extracting useful syntactic
knowledge from semantically rich data. This includes incorporating semantic reasoning
functions as previously discussed. Both machine learning and rule-based technologies
can be employed for context extraction in this layer. Additionally, there may be a need
to handle uncertainties, manage discrepancies, and support the evolution of knowledge
over time.

The inference application layer can be examined from three perspectives:

• System interactivity: Consideration for interactivity in the SeCIS is crucial for reflecting
the needs of context extraction. An easy-to-use interface allowing for interaction
between users or applications and the context base is vital. Such interfaces should not
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be overly complicated or difficult to manipulate, as this would render them impractical
and unusable, necessitating careful consideration.

• Value-added services: The system should provide value-added services using the ex-
tracted context. This might include advanced search functions, knowledge visualiza-
tion, intelligent recommendations, and automatic summarization. If these services are
too complex, users unfamiliar with the semantic characteristics requiring significant
background knowledge may resist using them.

• Performance evaluation: This layer should be able to evaluate the performance of the
knowledge extraction process and provide feedback for improvement.

The requirements for SeCIS are summarized in Table 1.

Table 1. Requirements for Semantic Knowledge Extraction System.

Layer Requirements

Data access

• Access to raw data
• Efficient search
• Large data processing
• Data cleaning and preprocessing
• Adapt to various data sources

Semantic acquisition

• Semiautomated construction
• Semantic metadata transformation
• Ontology mapping and annotation
• Continuous research for metadata

Context extraction

• Extract context from semantic data
• Include semantic reasoning
• Employ ML or rule-based tech
• Handle uncertainties and discrepancies
• Support syntactic knowledge evolution

Inference application
• System interactivity
• Value-added services provision
• Performance evaluation and feedback

3. Conceptual Model of the SeCIS

This section presents a conceptual model of SeCIS, designed to incorporate the require-
ments outlined previously. The SeCIS model is designed to integrate advancements and
functionalities in semantics, ensuring robustness and capability to handle semantic context
inference tasks in diverse applications.

3.1. Proposed Conceptual Architecture

The conceptual model of SeCIS is organized into four layers: the data access layer,
semantic acquisition layer, context extraction layer, and inference application layer. Each
layer plays a crucial role in transforming raw data into actionable insights. The concept
overview of the proposed system is shown in Figure 1.

Upon examining the architecture outlined, we begin with the data access layer, where
the target encompasses all data that can be collected within a smart city. This layer ad-
dresses the question, “Where is the target (baseline data) from which syntactic knowledge
is intended to be extracted?” It achieves this by gathering a vast number of data from
various sources, including different IoT platforms, open data portals, public APIs, and
legacy platforms.

Next, the semantic acquisition layer targets the extensive data aggregated by the data
access layer. Its primary role is to transform raw data into meaningful metadata, providing
annotations with semantic information. This process facilitates efficient context extraction
and application in subsequent layers. To ensure that the data are interpretable by both
humans and machines (software), it is represented using machine-readable languages like
RDF and OWL.
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Figure 1. Interaction overview with SeCIS in semantic smart city.

The third layer, the context extraction layer, focuses on the semantic data assembled
by the semantic acquisition layer. This section is dedicated to solving the problem of “How
to extract context?” It accomplishes this by conducting semantic mashups and inference
based on specific rules, ultimately deriving results.

Finally, the inference application layer, targeted at smart city residents or administra-
tors, is an active interface where enhanced services, drawn from the extracted semantic
context, are provided to users. This interactive layer utilizes the extracted semantic context
to offer enhanced services to users, providing an elevated level of utility and value through
the efficient application of semantic context in various user-centric services and solutions.

3.2. Layered Composition of the Conceptual Model

Our proposed SeCIS system is structured into four distinct layers, each with a special-
ized function that contributes to the system’s ability to understand and infer meaningful
context from urban data. Figure 2 is the architecture of the overall conceptual model.

Figure 2. An architecture of conceptual model.
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3.2.1. Data Access Layer

At the foundation of SeCIS is the data access layer, which serves as the primary
interface between the system and the myriad of data sources present in a smart city
ecosystem. This layer is equipped with various adaptors that are tailored to the unique
protocols and data formats encountered in urban data environments. The open data adaptor
retrieves data from open portals provided by organizations, governmental bodies, and
institutions, handling various formats like CSV, XML, and JSON. The public API adaptor,
interfacing with public APIs, facilitates access to data offered by service providers, social
media platforms, and other organizations, supporting protocols like REST, SOAP, and
GraphQL. The IoT platform adaptor, designed for data accumulation from deployed IoT
devices, supports connectivity protocols like MQTT, CoAP, and WebSockets, enabling
real-time or near-real-time data collection.

The adaptors play a crucial role in not only fetching data from their respective sources
but also in normalizing these data into a uniform format suitable for semantic processing.
These adaptors, while fetching data, also monitor sources for updates, ensuring access to
current data and decoupling the system from data source specifics, enhancing modularity
and easing maintenance and expansion tasks.

3.2.2. Semantic Acquisition Layer

Building upon the foundation laid by the data access layer, the semantic acquisition
layer is where raw data begin their transformation into a semantically rich representation.
The smart city ontology introduces predefined concepts, relationships, and terms repre-
senting smart city domains. It establishes a shared vocabulary used for data annotation
and integration, articulating complex relationships within smart city data.

The semantic annotator translates raw data into enriched metadata, using natural
language processing techniques to identify and establish relationships between data entities,
aligning them with ontology concepts. The semantic validator ensures annotated data
integrity, consistency, and quality, rectifying errors or inconsistencies against ontology rules.
Triple storage, designed for storing data in triple format, supports the efficient querying
and retrieval of semantic data.

3.2.3. Context Extraction Layer

The inference rule outlines logic for context inference, identifying patterns and rela-
tionships within annotated data. The semantic reasoner applies logic and reasoning to
deduce new context, navigating through entity relationships within semantic data. The
context extractor identifies and extracts valuable context pieces, transforming them into
structured contexts accessible and useful for various applications.

The context extractor plays a significant role in transforming raw semantic data into
actionable insights and information that can power a range of smart city applications. Lastly,
the query processor is designed to facilitate efficient and flexible querying of the semantic
knowledge base. The processor supports various query languages and formats, providing
a versatile interface for accessing and retrieving context from the semantic knowledge base.
This layer is pivotal, transforming a network of semantic data into a repository of context
ready for application.

3.2.4. Inference Application Layer

At the pinnacle of SeCIS is the inference application layer, where the deduced context is
translated into actionable insights. The feedback mechanism improves system performance
and accuracy by collecting and incorporating user feedback into the system. Through this
mechanism, the system gains insights into its performance and areas where it might fall
short, facilitating an iterative improvement process. The collected feedback is analyzed
and incorporated into the system, refining the extraction algorithms, query processing, and
context representation to better align with users’ needs and expectations.
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The user interface, designed to be user-friendly and intuitive, enables smooth interac-
tion between users and the system, making semantic context accessible to a broad audience.
Lastly, the application interface, serving as a bridge between the extraction system and
external applications, provides APIs for seamless external application integration with
the knowledge base. Through these APIs, applications can query, retrieve, and utilize the
extracted context efficiently, enabling the development and deployment of various smart
city services and applications that are powered by the rich semantic context generated by
the system. Through this layered approach, SeCIS encapsulates the complexity of smart
city data, transforming them into a structured semantic context that serves as the backbone
for intelligent urban management and services.

4. System Procedure and Technologies of SeCIS

This section describes the implementation of SeCIS. Currently, SeCIS has completed
its prototype development. SeCIS undergoes a four-step construction process to provide
semantic context extraction services: ontology construction, semantic graph creation, rule-
based semantic reasoning, and inference service provision. Firstly, it constructs a smart city
common ontology defined by the data hub [13,22]. In the semantic graph creation step, the
semantic graph is generated based on ontology templates.

The rule-based semantic reasoning step infers initial knowledge of situations occurring
in the city in sentence form, based on geolocation and temporal information, following the
5H1W principles. In the semantic context extraction step, the system displays sentence-like
city situations through a user interface and implements a mechanism to derive city issues
based on received feedback. The second level of context extracted through user interaction
is eventually provided in the inference service.

The provision of inference services can be summarized in a process that includes
generating additional metadata from various sources in the smart city, extracting knowledge
from the constructed semantic data, and delivering inference services. However, since this
study was at the prototype development stage, the targets of inference services, as well as
the scope of ontology and metadata, were limited to domains like parking, weather, and air
quality. Below, implementation cases for the major functions are presented. Explanations
regarding the implemented meanings are also provided in the following sections.

4.1. Step 1: Ontology Construction

The development of ontology-based application services commences with the creation
of an ontology schema. As a sophisticated knowledge system, the schema stipulates shared
concepts within a domain by defining classes, attributes, and relationships, thus providing
a structured framework for information representation.

There are substantial advantages to utilizing external ontologies. Firstly, it provides
an opportunity to leverage pre-existing knowledge structures, which significantly reduces
the time and resources necessary for building ontologies from scratch. This approach also
ensures consistency in data representation, fostering effective communication and seamless
data exchange across different systems and domains. Furthermore, the adoption of widely
recognized external ontologies enhances the system’s interoperability, facilitating a more
adaptable and efficient integration process with various data sources and applications.

4.1.1. Justification for Ontology Selection

Selecting the right ontology for a smart city application is critical due to the need for a
standardized conceptual framework that allows for interoperability and accurate semantic
representation across various systems. The validation of the selected ontology is equally
important in order to ensure that it meets the specific requirements of the application.
SAREF4City, an extension of SAREF (Smart Appliances REFerence), and SEAS (Smart
Energy Aware Systems) ontology are prominent ontologies utilized within the smart city
domain [29,30]. However, these ontologies have inherent limitations, such as missing
crucial smart city concepts or presenting complexities in adaptability due to intricate re-
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lationships between their classes. For instance, certain concepts crucial in the smart city
environment, such as the saref:Service class, are not included in SAREF4City. Moreover,
when evaluated based on adaptability, complexities arise due to intricate relationships
between SEAS’s seas:Property and seas:FeatureOfInterest, which hinder the ontol-
ogy’s expansion. Due to these limitations, it is difficult to directly use these ontologies to
semantically represent various smart city data.

Therefore, we recognize the need to build an ontology that can precisely reflect the
characteristics of each subdomain while providing an integrated and consistent semantic
expression for the smart city domain. To this end, the ontology construction in our study
begins with adopting the common ontology and domain ontology defined by the data hub.
The decision to develop a hybrid ontology, combining the common ontology of the data
hub with domain-specific ontologies, was driven by the following considerations:

• Coverage: Our analysis indicated that existing ontologies like SAREF4City and SEAS
lack comprehensive coverage in critical smart city domains, such as specific services
or infrastructural elements.

• Interoperability: We aimed to enhance interoperability by aligning with widely
adopted standards, which is a strength of the common ontology structure.

• Modularity and expandability: A modular approach allows for greater flexibility and
scalability, accommodating the evolving nature of smart city technologies and applications.

The common ontology functions as a foundational framework, encapsulating stan-
dard concepts and relationships applicable across various subdomains within the smart
city realm. Upon this foundational structure, domain-specific ontologies are constructed,
defining specialized concepts, attributes, and relationships tailored to each domain. This
approach provides detailed and nuanced semantic descriptions while considering the
complexity and diversity of the smart city domain, thereby supporting modularity and
expandability. This deliberate selection process, guided by the necessity for comprehensive
coverage and interoperability, leads us to the construction of a hybrid ontology, which we
will now discuss in detail.

4.1.2. Competency Questions for Ontology

Competency questions (CQs) serve as a litmus test for validating the ontology’s
ability to meet its intended purposes. The CQs devised for our ontology address the
representational comprehensiveness, integration capability, and support for the evolution
of smart city subdomains. Answering these questions helps confirm the ontology’s practical
applicability beyond a theoretical construct. The CQs for our ontology are designed to
address the following:

1. Can the ontology represent all the necessary concepts and relationships found in the
smart city domain?

2. Does the ontology allow for data integration from heterogeneous sources while main-
taining semantic integrity?

3. Is the ontology capable of supporting the evolution and addition of new subdomains
within the smart city context?

The common ontology of the data hub is structured around six principal high-level
concept classes as illustrated in Figure 3. These high-level classes are further delineated
into various subclasses, each contributing to the definition of the scopes of these high-level
classes. Consequently, this structure results in six distinctive hierarchies, each characterized
by unique features, restrictions, and relationships among classes.
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Figure 3. Categorization of system hierarchy with common ontology based on domain scope.

Take the high-level class FeatureOfInterest as an example. Unlike the SEAS ontol-
ogy, the characteristics of the class named common:FeatureOfInterest remain constant
over time. This class encompasses entities that represent systems, connections, and
other related concepts, serving as a foundational framework within the common ontol-
ogy. Further, the hierarchy of the system can be categorized in various ways under the
common:FeatureOfInterest class. Figure 3 showcases two such categorizations as below:

• Geographical and infrastructural: This is represented by the subclass common:Zone. The
definition of common:Zone in the common ontology is broader compared to its coun-
terpart in the SEAS ontology. It encompasses areas characterized by specific features,
purposes, or restrictions, providing a more expansive and inclusive understanding of
geographical and infrastructural domains.

• Computing: This is represented by the subclass common:ProcedureExecutor. This
class is instrumental in representing devices such as sensors and actuators. Notably,
common:ProcedureExecutor occupies a higher position in the parent class within the
common ontology compared to the SEAS ontology.

Employing a hybrid ontology offers advantages like enhanced semantic precision
and domain-specific flexibility. By creating a common ontology that reflects shared con-
cepts across subdomains, our approach ensures that semantic precision is maintained.
Domain-specific ontologies allow for the representation of unique and complex relation-
ships, providing a nuanced understanding of each subdomain. Nonetheless, it presents
challenges in terms of increased complexity and the need for stringent alignment between
the common and domain-specific ontologies.

• Complexity: The hybrid structure may lead to greater complexity in ontology man-
agement and necessitates careful integration.

• Alignment challenges: Aligning the common ontology with domain-specific ontologies
requires ongoing governance to maintain semantic coherence and prevent discrepancies.

4.2. Step 2: Semantic Graph Creation

Data collected from IoT sensors installed in smart cities are usually stored in IoT
platforms in row data. For example, data collected from a sense that checks the availability
of a particular spot in a parking lot are stored as “1” (available) and “0” (occupied). In this
step, we describe the process of converting raw data into triple data by adding additional
information and meaning, such as the place, time, and type, and defining the relationship
with other data.

4.2.1. Target Data

Related to data sources, the SeCIS system collects data from an array of sources
including IoT devices, traffic sensors, and municipal databases. Especially, the target data
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for semantic data creation primarily pertain to smart city domains, focusing on parking,
weather, and air quality as the main areas in this prototype stage. Below is a JSON example
of target data representing a parking lot in the smart city data schema:

The JSON-LD serialization of the parking lot entity depicted in Listing 1 is vital as it
is modeled in alignment with NGSI-LD standards. NGSI-LD is a specification developed
by the ETSI (European Telecommunications Standards Institute) for managing context
information in smart city environments. This standard provides a consistent way to
describe real-world entities and their relationships, making the data easily understandable
and shareable across various applications and services within the smart city data hub. In
the data hub, smart city data are modeled via NGSI-LD, ensuring that the structured data
are represented semantically, facilitating interoperability and integration with various data
sources and applications.

Listing 1. Smart city data schema example.

1 {
2 "id": "urn:datahub:ParkingLot:yatap_01",
3 "type": "ParkingLot",
4 "name": {
5 "type": "Property",
6 "value": "yatap_01"
7 },
8 "availableSpotNumber": {
9 "type": "Property",

10 "value": 40,
11 "observedAt": "2021-11-15T20:10:00"
12 },
13 "location": {
14 "type": "GeoProperty",
15 "value": {
16 "type": "Point",
17 "coordinates": [
18 127.1293735,
19 37.4114424
20 ]
21 }
22 }
23 }

4.2.2. Annotation Template

The semantic data, also called semantic graph, are built by the combination of triple
components that can eventually be linked among multiple graphs. To create this semantic
graph, SeCIS uses mapping blueprints, i.e., annotation templates. The template includes
descriptors written in human/machine-readable language that describe the annotation
characteristics, including the list of required graph representations to be instantiated to
create the required semantic graph(s). As multiple domains have verticals with similar or
different requirements and characteristics can run on top of a smart city, the AT for each
domain is activated via the semantic annotator.

The annotation template as in Figure 4a is created by selecting only the minimum
required classes, properties, and relationships for each domain among the annotation rules
described in smart city ontologies for annotating the considered nonsemantic data in JSON
format. The annotation template structure can be dissected as follows:
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• domain: Specifies the subject class of the annotation, acting as the starting point of the
relationship or property in the triple. In the given example, it refers to an entity in the
parking domain, particularly a specific parking lot denoted as parking:ParkingLot_1.

• property: Indicates the predicate or property of the annotation, establishing a relation-
ship between the domain and range. This component defines what kind of attribute
or relationship the domain entity possesses. For example, common:hasProperty sig-
nifies that the specified parking lot has a certain property, while common:hasID and
common:hasName imply that the parking lot entity has an ID and a name, respectively.

• range: Represents the object class or datatype of the annotation, serving as the target
of the relationship or property initiated by the domain. Depending on the property,
the range can either be another entity or a datatype. In this case, it could be another
entity like parking:AvailableParkingSpots_1 or a datatype as defined in the XML
schema, such as a string or unsigned integer.

Figure 4. An example in which the smart city data schema is annotated into a semantic graph.

Each object in the array of the annotation template represents a triple, consisting
of a domain, property, and range. Together, these triples help to construct a semantic
graph by defining entities (domains), their attributes or relationships (properties), and the
characteristics or linked entities of those attributes (ranges).

4.2.3. Semantic Annotation

The central purpose of the annotation is to discern the relationship between ontology
and the smart city data schema. Historically, many annotations were manually crafted,
making them specific to particular environments and limiting scalability—especially in
settings where diverse datatypes, such as those in smart cities, coexist. Within SeCIS, the
semantic annotation process constructs a semantic graph utilizing annotation templates.
This section elucidates how the smart city data schema, illustrated in Listing 1, becomes
annotated into a new semantic graph (as shown in Figure 4c) based on the annotation
template presented in Figure 4a.

Examining the smart city data schema, we note that each entity has an ID to distinguish
its identity, with the entity type labeled ParkingLot. Now, consider the annotation template
in Figure 4a, which is tailored for the parking domain. It reveals a portion of the essential
structure required for constructing a semantic graph named parking:ParkingLot_1. For
the process of semantic annotation, the ID of an entity is defined as a string datatype
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through the common:hasID relationship attribute, as highlighted in (b). For a clearer graph
representation, (c) illustrates that the semantic graph ParkingLot_1 is connected to a string
type of data via the hasID attribute. In this manner, the annotated RDF graph encapsulates
the relationships and properties between parking lots and available parking spots, with
each entity distinctly defined with its respective attributes, all in accordance with the
semantic rules set forth in the annotation template.

The automated annotation process in SeCIS is designed with scalability in mind,
allowing the system to accommodate new domains simply by integrating corresponding
annotation templates. This modular approach eliminates the need for any changes to the
annotation engine itself when expanding to cover additional aspects of smart city data.
For instance, if a ”Smart Lighting” domain is to be added, a new template is created and
deployed, enabling SeCIS to interpret and annotate ”Smart Lighting” data seamlessly
alongside existing domains. This feature underscores the system’s capacity for growth and
adaptation, demonstrating its ability to evolve alongside the smart city it serves.

4.3. Step 3: Rule-Based Semantic Reasoning

In Step 3, the system derives context that could potentially be the cause of urban
issues through rule-based reasoning grounded on the 5W1H principles (who, what, when,
where, why, and how). This stage is crucial for generating insights from the data and for
further applications and analyses that rely on the context in which the data are used. We
considered crucial factors in this process such as time, location, and weather.

4.3.1. Definition of 5W1H Principles

The 5W1H approach is central to SeCIS’s methodology. Below is a detailed walk-
through of its application:

• Who: SeCIS identifies stakeholders or entities involved in any urban issue. This can
range from individuals, groups, or organizations. In a traffic context, the Who could
pertain to drivers, pedestrians, or traffic control entities.

• When: The system timestamps every situation or event, allowing us to understand
its occurrence in real time or its historical context. This aids in determining patterns
or anomalies.

• Where: Geospatial data are integrated to pinpoint the exact location of the event. This
assists city management in localizing resources or interventions.

• What: This step focuses on determining the nature of the situation or event. Using
the traffic scenario, the system might recognize What as a traffic jam, roadwork, or a
public event.

• How: This refers to the modality or manner in which the event is happening. In terms
of traffic, How could be described by the severity of congestion, the number of lanes
affected, or the duration of the disruption.

• Why: This might be the most complex step. The system will attempt to infer the cause
or reason behind the event. For the traffic jam scenario, reasons might include an
accident, a public event, or roadwork.

For each urban issue, SeCIS aggregates data that align with these categories. Subse-
quently, this information is integrated using sector-specific semantic reasoning. The merged
data, presented as a semantic graph, pave the way for a refined grasp and forecast of urban
scenarios. By systematically integrating the 5W1H principles as detailed above, SeCIS
provides an organized method to autonomously decipher and tackle urban dynamics.
This well-defined strategy guarantees a multifaceted analysis of potential urban issues,
amplifying the likelihood of timely detection and effective countermeasures.

4.3.2. Context Modeling Applying 5W1H

Context modeling refers to the systematic representation and structuring of the con-
text within which the data are collected and interpreted. Effective context modeling is
imperative for understanding the nuances and implications of the data, as it provides a
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framework that explicates the relationships, conditions, and parameters that influence the
data. In this paper, the 5W1H principles serve as a comprehensive framework guiding
the rule-based reasoning process. These principles help in identifying and organizing the
essential pieces of information within a context, thereby facilitating a deeper understanding
of the situations and issues unfolding within the urban environment. By systematically
addressing each principle, the reasoning process holistically considers all relevant facets of
the situation, ensuring a thorough and nuanced derivation of context.

Key factors like time, location, and weather play a significant role in the derivation
and accumulation of context. The system pays careful attention to these elements, acknowl-
edging their influence on urban dynamics and their contribution to the emergence and
resolution of urban issues. By considering these factors, the rule-based reasoning process is
grounded in the reality of urban life, ensuring that the derived context is not only relevant
but also reflective of the actual conditions and situations in the city.

As illustrated in Figure 5, each identified cause (Why) of a city problem is associated
with one or multiple elements of Who, When, Where, What, and How. This structure acknowl-
edges the multifaceted nature of urban problems, reflecting the intricate web of events
and factors contributing to the emergence of issues in the city landscape. Following is the
context formulation of urban events. Each urban event Ei can be defined using the 5W1H
principles as:

Ei = {Whoi, Whati, Wheni, Wherei, Howi}

where i is the index of the event. Also, the following is the derivation of Why contexts. Each
Why context is a function of the respective events, formulated as:

Why1 = f1(E1, E2, . . . , En)

Why2 = f2(E1, E2, . . . , En)

Why3 = f3(E1, E2, . . . , En)

Why4 = f4(E1, E2, . . . , En)

Functions f1, f2, f3, f4 represent the relationships between the events and their contribution
to each Why context.

Figure 5. 5W1H elements come together to form one Why, and multiple Whys come together to
extract one city problem.

For example, traffic congestion in a city scenario can be explored by understanding
how various events (each defined by Who, What, When, Where, and How) culminate to
form specific contextual events (Why), and how these, in turn, contribute to a larger urban
problem, in this case, traffic congestion as illustrated in Figure 6. Each Why is a significant
event context derived from various factors (Who, What, When, Where, How). Below are
examples of a few Why contexts in this case:

• Why1: construction-induced congestion.
• Why2: accident-induced congestion.
• Why3: rush-hour congestion.
• Why4: weather-induced congestion.
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Figure 6. Scenario of urban problem: traffic congestion.

Table 2 provides a detailed breakdown of factors leading to the identified Why contexts,
outlining who is involved, what is happening, when and where these events typically occur,
and how these factors contribute to traffic congestion. Understanding these underlying
factors is crucial for formulating effective solutions and interventions to address the urban
issue of traffic congestion.

Table 2. Factors contributing to different types of congestion.

Who What When Where What

Why1 Construction
workers, drivers Road construction Day hours Busy streets,

intersections Lane closures

Why2 Drivers, police Traffic accidents Random Highways,
intersections Lane blockages

Why3 Commuters,
students Heavy traffic Rush hours Busy roads High vehicle

volume

Why4 Drivers Adverse weather
driving Bad weather All roads Reduced visibility,

slippery roads

As a resulting urban problem, given the derived Why contexts, the urban problem of
traffic congestion can be defined as a function of these contexts:

Urban Problem (Traffic Congestion) = F(Why1, Why2, Why3, Why4)

The function F illustrates how the Why contexts collectively contribute to traffic congestion.
Understanding this relationship is crucial for developing effective strategies to mitigate
congestion and improve urban mobility.

4.3.3. Context Derivation through Rule-Based Reasoning

Semantic reasoning rules, meticulously framed based on the 5W1H principles, are
utilized on semantic graphs to extract and interlink essential contexts pivotal for discerning
the complex interplay of urban challenges. The formulated rules are crafted employing
Semantic Web Rule Language (SWRL)—a powerful language that augments the expressive
capacity of OWL ontologies, facilitating the specification of complex rules and relationships
between ontology classes and properties.

First, crafting SWRL rules based on the 5W1H principles. The SWRL rules are system-
atically crafted by translating the 5W1H model into actionable rule components. Each rule
embodies the essence of Who, What, When, Where, Why, and How, by associating ontology
classes and properties with corresponding 5W1H components. For instance, a rule pertain-
ing to construction-induced congestion would incorporate constructors, road construction
events, working hours, specific locations, and the method of construction as constituent
elements, thereby creating a comprehensive representation of the contextual event.
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For the next step, the designed SWRL rules are subsequently applied to semantic
graphs, acting as filters and connectors that sift through and link relevant data points and
relationships within the graph. The application process is dynamic and considers various
vital elements, including time, location, and prevailing weather conditions, creating a
coherent narrative that mirrors the multifaceted and volatile nature of urban landscapes.

To illustrate the application of SWRL rules, let us consider a rule designed to capture
the relationship between adverse weather observations and traffic status for the derivation
of the “Why4: Weather-Induced Congestion” context. This rule might be formulated
as follows:

WeatherObservation(?w) ^ hasObservedValue(?w, "adverse:true") ^
TrafficStatus(?t) ^ hasLocation(?t, ?l) ^ hasLocation(?w, ?l) ^
hasTrafficCondition(?t, "normal") → hasTrafficCondition(?t, "congested")

In this rule:

• WeatherObservation(?w) identifies any weather observation entity ?w.
• hasObservedValue(?w, “adverse : true”) checks if the weather observation is adverse.
• TrafficStatus(?t) identifies any traffic status entity ?t.
• hasLocation(?t, ?l) and hasLocation(?w, ?l) ensure that the weather observation and

traffic status share the same location.
• hasTrafficCondition(?t, “normal”) checks if the current traffic condition is normal.
• The rule then infers hasTrafficCondition(?t, “congested”) if there is adverse weather

at the location of normal traffic status.

Thus, this rule helps in identifying traffic congestion due to adverse weather condi-
tions, contributing to the Why4 context of weather-induced congestion.

4.3.4. Contextual Analysis and Accumulation

The accumulated contexts, derived through rule-based reasoning, provide invaluable
insights into potential causes and contributing factors of urban problems, serving as a
solid foundation for further analysis and problem solving initiatives within smart cities.
As the system continuously receives and processes new data, it dynamically accumulates
context derived from the ongoing rule-based reasoning. The accumulation of context is
not a mere aggregation but a thoughtful process of connecting and integrating different
pieces of context to form a multifaceted understanding of urban issues. This cumulative
understanding evolves over time, adapting to changing circumstances and emerging
patterns within the city, thereby providing a continuously updated basis for analysis and
intervention regarding the urban problems under scrutiny.

4.4. Step 4: Inference Service Provision

In Step 4, the system focuses on providing inference services, which are essential for
executing various applications effectively within a smart city environment. This phase in-
volves delivering the inferred and reasoned context, obtained from previous steps to
applications. This delivery ensures these applications possess the necessary insights
and information for making informed decisions and functioning optimally within the
urban ecosystem.

5. Validation of SeCIS Implementation

Semantic technologies not only aid in the integration and annotation of data within
smart city frameworks but also play a crucial role in validating and reasoning over these
data. The validation of the SeCIS is conducted internally, focusing on the integrity and
accuracy of the annotated semantic graph and the inference results derived from it. This
section aims to validate the effectiveness of the SeCIS in a controlled setting, ensuring the
system’s readiness for future empirical validation in real-world scenarios. This internal
validation will provide insights into the system’s current capabilities and set the stage for
future empirical research.
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The validation process examines two core components of the SeCIS: the annotated
semantic graph and the inference mechanism. The following evaluation criteria are applied:

• Graph integrity: Evaluates the structure of the semantic graph, ensuring that it accu-
rately represents the domain knowledge with all necessary entities and relations.

• Annotation accuracy: Assesses the correctness and relevance of the annotations ap-
plied to the graph, ensuring that the data linked to each entity are precise.

• Inference validity: Examines the inferences drawn by the system to determine their
logical consistency and alignment with the intended knowledge representation.

Our validation emphasizes the syntax of the assertions and their logical reason-
ing, ensuring noncontradiction with the ontology’s axioms. This validation process in-
volves class assertion, object property assertion, and data property assertion as described
in Table 3.

Table 3. Summary of assertion validation types.

Validation Type Description

Class assertion validation Checking that each owl:NamedIndividual class assertion includes a class representation
available in the ontology.

Object property assertion validation Ensuring that object properties in assertions are declared in the ontology, along with
validating their domain and range involving named individuals.

Data property assertion validation Verifying that data properties used in assertions are declared in the ontology and that their
domain refers to valid named individuals with ranges including valid XSD data values.

The annotated semantic graph with proposed SeCIS is a fully adapted mapping by
Openlink Virtuoso Server ( https://virtuoso.openlinksw.com/, accessed on 24 Novemver
2023). Subjects, predicates, and objects in Virtuoso are stored as a set of graphs via linked
triples. For the validation methodology, the SHACL ( https://www.w3.org/TR/shacl/,
accessed on 24 Novemver 2023) provides a mechanism to define constraints to validate
RDF graphs against a set of conditions. These conditions ensure that the data adhere to
specified shapes, which can be seen as schema definitions for the data. For SeCIS, the
SHACL shapes are defined based on the ontology and the domain-specific requirements of
the smart city data model. The validation process particularly focuses on the validation
of the syntax of the assertions, as well as the logical rule, which makes sure that these
assertions do not contradict the underlying axioms in the ontology.

First, our ontology validation process examines the common ontology of SeCIS, which
comprises 48 classes and 49 object properties. We conducted a detailed validation of a subset
of these classes to ascertain their conformation to the domain-specific needs of smart cities.
The validation entailed an automated SHACL-based assessment, which identified syntax
assertions and logical rule compliance, ensuring noncontradiction with the ontology’s
axioms. This thorough verification process resulted in the detection and subsequent
rectification of a number of errors, reinforcing the semantic graph’s structural soundness.

Secondly, the inference mechanism within SeCIS leverages the validated semantic
graphs to conclude the smart city data. The soundness of these inferences is predicated
on the underlying logic defined by the ontology and the SHACL shapes. To validate the
inferences, the system uses a two-step approach:

1. Logical consistency: The system first ensures that all inferences maintain logical
consistency within the bounds of the semantic graph and the ontological rules. This is
achieved through automated reasoning tools that can identify logical discrepancies.

2. Contextual relevance: Each inference is then evaluated for its relevance to the specific
scenario within the smart city framework. This involves simulating scenarios and
verifying that the inferences contribute meaningfully to the resolution of the scenario.

The validity of the inferences is crucial for SeCIS to be an effective tool in smart city
management. Therefore, the inferences are not only checked against the semantic graphs

https://virtuoso.openlinksw.com/
https://www.w3.org/TR/shacl/
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but are also subjected to scenario-based validation, which tests their practical applicability.
For automated reasoning, SeCIS utilizes tools such as Apache Jena’s inference engine
https://jena.apache.org/, accessed on 24 Novemver 2023), which can process the RDF
data against the rules defined in the ontology. Scenario simulation is conducted through a
custom-built module within SeCIS that models various smart city situations, from traffic
management to emergency response, to assess the practicality of the inferences.

The SHACL validation and inference checks were executed across a set of data points
representing a typical smart city domain, transportation. The SHACL validation yielded a
conformity rate of over 95% for the semantic graph structure and annotations. The inference
mechanism maintained a logical consistency rate of 98%, with all tested inferences aligning
with the scenarios’ expected outcomes.

The internal validation of SeCIS has demonstrated that the system is robust in its
current form, with a high degree of accuracy in its semantic graph annotations and a sound
inference mechanism. The validation process ensures that SeCIS is equipped to handle
the complexities of smart city data, making it a reliable tool for future empirical studies
and real-world applications. As SeCIS evolves, ongoing validation will continue to be an
integral part of its development lifecycle, ensuring that it remains effective in the dynamic
context of smart city operations.

6. Conclusions

This paper delineated a nuanced exploration into the realm of Semantic Context Infer-
ence Systems within smart cities, illuminating their theoretical underpinnings and practical
applications. In doing so, it underscored the indispensable role of semantic technologies in
bolstering the operational intelligence and functionality of urban environments. Focused
on smart city data, the study introduced a novel system—SeCIS—skillfully designed to
craft semantic graphs through the utilization of well-defined annotation templates. This
methodology facilitates a thorough understanding of urban data, revealing the intricacies of
city problems and elucidating the events causing them via rule-based reasoning grounded
in the 5W1H principles.

The insights garnered from this study are invaluable for practitioners, developers, and
policymakers engaged in smart city initiatives. SeCIS emerges as a pivotal reference for the
process of semantic data creation and annotation within the realm of smart cities, serving
as a dependable blueprint for professionals in the field. Moreover, the approach outlined
for rule-based reasoning and context derivation functions as a practical guide, aiding in
the extraction of critical insights from urban data. This, in turn, significantly contributes to
addressing and resolving pressing urban challenges effectively.

Future research should focus on further optimizing the SeCIS system, with the goal of
enhancing its efficiency and accuracy in the domains of semantic annotation and context
derivation. It is imperative to explore advanced reasoning algorithms and refine annotation
templates, as these are crucial steps toward improvement. Furthermore, there is a pressing
need to expand the application spectrum of the inferred semantic context, with future
studies investigating its potential impact and utility across a variety of urban domains and
services. In conclusion, this study makes a substantial contribution to both the academic
and practical dialogues surrounding smart cities. It not only deepens the comprehension of
semantic technologies in urban environments but also provides a clear, practical roadmap
for their implementation. This guidance is invaluable for both professionals and academics
dedicated to the development of smarter, more efficient urban spaces.
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