
Citation: Shi, S.; Liu, Z.; Deng, X.;

Chen, S.; Song, D. From Lidar

Measurement to Rotor Effective Wind

Speed Prediction: Empirical Mode

Decomposition and Gated Recurrent

Unit Solution. Sensors 2023, 23, 9379.

https://doi.org/10.3390/s23239379

Academic Editor: Nicolas Baghdadi

Received: 28 September 2023

Revised: 7 November 2023

Accepted: 20 November 2023

Published: 24 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

From Lidar Measurement to Rotor Effective Wind Speed
Prediction: Empirical Mode Decomposition and Gated
Recurrent Unit Solution
Shuqi Shi 1,2, Zongze Liu 1, Xiaofei Deng 3,* , Sifan Chen 4 and Dongran Song 2

1 Hunan Provincial Key Laboratory of Grids Operation and Control on Multi-Power Sources Area,
Shaoyang University, Shaoyang 422000, China

2 School of Automation, Central South University, Changsha 410083, China; humble_szy@163.com
3 School of Information Technology and Management, Hunan University of Finance and Economics,

Changsha 410205, China
4 Mingyang Smart Energy Group Co., Ltd., Zhongshan 528437, China
* Correspondence: xiaofei0228@163.com; Tel.: +86-13974341334

Abstract: Conventional wind speed sensors face difficulties in measuring wind speeds at multiple
points, and related research on predicting rotor effective wind speed (REWS) is lacking. The utilization
of a lidar device allows accurate REWS prediction, enabling advanced control technologies for wind
turbines. With the lidar measurements, a data-driven prediction framework based on empirical mode
decomposition (EMD) and gated recurrent unit (GRU) is proposed to predict the REWS. Thereby,
the time series of lidar measurements are separated by the EMD, and the intrinsic mode functions
(IMF) are obtained. The IMF sequences are categorized into high-, medium-, and low-frequency
and residual groups, pass through the delay processing, and are respectively used to train four
GRU networks. On this basis, the outputs of the four GRU networks are lumped via weighting
factors that are optimized by an equilibrium optimizer (EO), obtaining the predicted REWS. Taking
advantages of the measurement information and mechanism modeling knowledge, three EMD–GRU
prediction schemes with different input combinations are presented. Finally, the proposed prediction
schemes are verified and compared by detailed simulations on the BLADED model with four-beam
lidar. The experimental results indicate that compared to the mechanism model, the mean absolute
error corresponding to the EMD–GRU model is reduced by 49.18%, 53.43%, 52.10%, 65.95%, 48.18%,
and 60.33% under six datasets, respectively. The proposed method could provide accurate REWS
prediction in advanced prediction control for wind turbines.

Keywords: wind lidar; rotor effective wind speed prediction; empirical mode decomposition; gated
recurrent unit; equilibrium optimizer

1. Introduction

The rotor effective wind speed (REWS), defined as the average wind speed on the
rotor surface [1], is useful for designing advanced control strategies of wind turbines [2].
REWS can be estimated by the estimation methods that have been widely studied, such
as power balance estimator [3], extended-Kalman-filter-based estimator [4], Kalman-filter-
based estimator [5], disturbance-accommodating control [6], unknown input observer [7],
immersion and invariance estimator [8]. Through these estimation methods, an accurate
estimate of REWS has been achieved. However, the estimated REWS is only a reflection
of wind speed information at this moment, and the advanced control algorithms relying
on this estimated value fail to solve the contradiction between the slow response of rotor
rotation and the rapid change of wind speed.

For such contradiction, some researchers have proposed predictive control methods,
which can greatly promote the power production [9,10] and reduce the operational cost [11]
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of wind turbines. Facing the difficulty in obtaining accurate previewed wind speed informa-
tion with common measurements, the development of wind lidar measurement technology
has promised a solution. Lidar is capable of proactively measuring wind speed within a
certain range in front of the wind turbine, independent of the influence of aerodynamic
shape and wake [12], previewing wind information in advance [13]. Since lidar can provide
multi-point and multi-plane measurements with high accuracy, its measurement informa-
tion could be used by the intelligent predictive control, improving the control performance
of wind turbines. In this context, accurately predicting the REWS with lidar measurements
is vital, but the relevant research is lacking.

The existing approach, mechanism modeling, generally estimates the effective wind
speed on the virtual rotor surface first, and then deduces the REWS at the hub according to
the Taylor frozen turbulence hypothesis [14]. To be specific, the horizontal wind speed at
different heights in front of the wind turbine can be obtained through lidar measurement.
Then, the REWS on the virtual rotor surface can be calculated through the geometric
relationship of the horizontal wind speed of each height. This method requires a quantity
of multi-beam lasers to obtain an accurate REWS. Meanwhile, the influence of distance
weighting and wind evolution is hardly modeled by the mechanism-modeling method [15].
Thus, it is difficult to achieve a high-precision prediction of the REWS by the mechanism
modeling method.

According to the best knowledge of the authors, data-driven methods have not fully
been used in the prediction of REWS but have been well developed in wind speed predic-
tion in the general space [16,17]. The data-driven method can realize reliable prediction
through extracting mathematical relationships and nonlinear features hidden in historical
data or samples [18,19]. This type of method mainly includes two parts: data extraction
and prediction modeling. The former generally refers to data selection and information
acquisition [20], while the latter refers to algorithm selection and extrapolation predic-
tion [21]. Differently from general wind speed prediction, the prediction of REWS needs to
establish a complex spatiotemporal mapping between inputs and output. Therein, the input
information is the wind measurements at different heights in front of the wind turbine, and
the output information is the REWS. This will weaken the correlation between input and
output and increase the difficulty of prediction.

Motivated by the above discussions, this study attempts to build a data-driven model
to predict the REWS using lidar measurement information and proposes a REWS prediction
framework based on empirical mode decomposition (EMD) and gated recurrent unit (GRU)
neural networks. EMD overcomes the problem of no adaptive basis function and can
directly start decomposition without conducting advance analysis and research [22]. GRU
solves the problem of gradient disappearance by introducing a gating mechanism. With a
simple structure, GRU can process large-size datasets and is widely used in complex time
series prediction [23]. Consequently, the prediction framework combined with EMD–GRU
is expected to obtain high precision results of REWS.

Differently from wind speed prediction in the general space, the prediction of REWS
based on lidar measurement information can use the multi-beam measurement information
of lidar together with the mechanism-modeling knowledge of REWS. By combining the
measurement information with the modeling knowledge, different prediction schemes
could be designed. Thereby, three EMD–GRU schemes are proposed: one with mechanism
modeling as the input, one with lidar data as the input, one with the combined input. Con-
sidering the influence of independent decomposition frequency from EMD, classification
prediction based on GRU is carried out. To reduce the accumulation of prediction errors,
the weighted aggregation based on an intelligent equilibrium optimizer (EO) is carried out.
The innovations and contributions are as follows.

• The novel data-driven prediction framework based on lidar measurement informa-
tion is put forward to predict the REWS, enabling advanced predictive controls of
wind turbines.



Sensors 2023, 23, 9379 3 of 18

• Three prediction models based on the proposed EMD–GRU prediction framework are
designed and compared based on professional BLADED software V4.8.

• The frequency classification and intelligent aggregation are presented to optimize
the EMD–GRU models so as to reduce the prediction error and simplify the model-
ing complexity.

The remainder of this paper is constructed as bellow: the REWS calculation through
lidar measurement is introduced in Section 2; the EMD–GRU prediction schemes with
three different inputs are thoroughly described in Section 3; the results and discussions are
provided in Section 4. Finally, Section 5 concludes the paper.

2. Lidar Measuring and REWS Calculation

The lidar for the control utilization is usually installed on the nacelle of the wind
turbine. The lidar emits laser pulses into the atmosphere, receives the backscattering
signals of atmospheric particles, and calculates the wind speed in line of sight at measuring
point by analyzing the Doppler frequency shift of the emitted laser and the scattered laser.
The lidar has a speed range of 50 m.

The REWS calculation can adopt the mechanism modeling, mainly including two
aspects. For one thing, the horizontal wind speed at different heights in front of the wind
turbine should be obtained through lidar measurement. For the other, the REWS of the
virtual rotor surface should be calculated based on the horizontal wind speed of each height.

For the first aspect, the calculation of horizontal wind speed at different heights is
shown in Figure 1. In Figure 1a, V1, V2, V3, and V4 respectively represent the wind speed
measured by each laser beam, and the direction of wind speed is laser direction. Project
V1 and V2 to obtain the horizontal wind speed at that height first. Figure 1b takes V1 as an
example to introduce the geometric relationship of the projection.
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Figure 1. Diagram of measuring wind speed with laser beams: (a) the diagram with four wind
speeds; (b) the diagram with V1 only.

In Figure 1, the projection of V1 on Va can be described as:

Va = V1 cos(θ) (1)

where θ represents the angle between the laser beam and the horizontal plane.
Similarly, the projection of V2 on Vb can also be described.
Thus, at the height of V1 and V2, the horizontal wind speed perpendicular to the rotor

surface is described as:

u1 =
(V a + Vb)× cos(α)

2
(2)

where u1 represents horizontal wind speed at that height, and α indicates the angle between
Va and u1.



Sensors 2023, 23, 9379 4 of 18

The horizontal wind speed at the height of V3 and V4 can also be obtained. Due to
the scanning characteristics of lidar, this method can be extended to the calculation of
horizontal wind speed at various heights.

For the other aspect, to calculate the REWS at a virtual rotor surface, it can assume
that there is a virtual wind turbine at the wind speed measuring point. The area of the
virtual wind turbine is subdivided into multiple horizontal sections, taking 5 parts as an
example. See Figure 2 for details. Figure 2a shows the sector area, and Figure 2b shows the
REWS calculation.
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The calculation for the sector area of the shaded part in Figure 2 is as follow. Accord-
ing to Figure 2b, the top (A5) and bottom areas (A1) of the circular area can be directly
calculated by:

S = R2cos−1
(

R− h
R

)
− (R− h)

√
2Rh− h2 (3)

where S, R, and h represent the sector area, the radius of the rotor, and the height of the
sector area, respectively.

To calculate the area of A2, the areas A1 and A2 can be seen as a whole sector area,
and the area of A1 can be subtracted.

SA2 = SA1,A2 − SA1 (4)

where SAi represents the area of Ai.
The area A3 can be obtained using:

SA1 + SA2 +
1
2

SA3 =
1
2

πR2 (5)

ueq = 3

√√√√ nh

∑
i=1

Ai
A

u3
i (6)

where, ueq refers to the REWS; nh indicates the number of divided areas of the virtual rotor
surface; Ai and ui are the area and horizontal wind speed of the ith zone, respectively; A
refers to the gross area.

The above calculation of REWS only represents the effective wind speed faced by the
virtual rotor at the measuring spot. To improve the calculation accuracy, the number of lidar
measuring points should be increased. Otherwise, the prediction accuracy will be affected.
Moreover, the influence of wind evolution is hard to include in the mechanism modeling.

3. EMD–GRU Prediction Schemes

The proposed data-driven prediction framework based on EMD–GRU is shown in
Figure 3, including three parts: the data processing based on EMD, the classification
prediction based on GRU, and the weighted aggregation based on EO.
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In the data processing phase, the EMD decomposition and delay processing are
included. The input data are decomposed into intrinsic mode functions (IMF) and residual
by EMD, and then time delay is processed for each decomposition part.

In the GRU predicting phase, each IMF component is divided into high-, medium-,
or low-frequency groups according to its frequency characteristics. Together with the
residuals, the four groups are predicted through the same GRU neural network. The GRU
parameter is determined by EO.

In the aggregating phase, after optimizing the weight of each IMF and residual by EO
algorithm, all the predicted values are aggregated to obtain the predicted REWS.

3.1. Data Processing Based on EMD
3.1.1. Determination of Input Data

In order to ensure a strong correlation between the input information and output
REWS, three schemes with different inputs are proposed:

Scheme 1: there is only one input, that is, the wind speed measured by four laser
beams is first processed through mechanism modeling, and then the calculated REWS is
taken as the input of the EMD–GRU model.

Scheme 2: the input of the EMD–GRU model to predict the REWS is the wind speed
measured by four laser beams.

Scheme 3: the wind speed measured by four laser beams and the REWS calculated by
mechanism modeling are used as the input of the EMG-GRU model.
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3.1.2. Empirical Mode Decomposition

EMD, as a flexible method for non-stationary and nonlinear data decomposition,
shows better adaptability and usability compared to traditional decomposition methods
(like Wavelet analysis). Complex wind speed input sequences can be decomposed using
EMD to obtain components with different characteristic scales, which are more regular than
the original input sequence. Although there are still different degrees of non-stationarity
among these components, the difficulty of non-stationarity for prediction is reduced. Since
EMD decomposition has a high signal-to-noise ratio, it can improve the prediction accuracy
of REWS.

All the raw data sequences of the input are decomposed into sub-sequences by EMD.
For the original wind speed series X(t) measured by lidar, through EMD decomposition, it
can be described as the following equation:

X(t) = ∑n
i=1 Ci(t) + Rn(t) (7)

where Ci(t) (i = 1, 2, . . . , n) denotes the decomposed IMF, and Rn(t) is the residual of EMD.

3.1.3. Delay Processing

Since there is a certain distance between the measuring spot of lidar and the blade
rotor, the decomposed input data cannot be directly put into the GRU neural network for
prediction. Thus, it is necessary to consider time shift of the wind, and the Taylor frozen
turbulence hypothesis [24] is introduced to perform delay processing for each IMF. Time
delay T under different average wind speeds can be calculated using:

T =
x
u

(8)

where x represents the distance between the lidar measurement spot and the lidar, while u
represents the average wind speed.

3.2. Prediction Modeling Based on GRU Neural Network
3.2.1. Frequency Classification Preparation

Due to insufficient sampling rate and spline interpolation, there are some frequency
components in each IMF component spectrum that are independent of the target signals.
If each IMF component is modeled, it will not only reduce work efficiency but also cause
error accumulation and reduce prediction accuracy because of too many models.

Therefore, during frequency grouping, the sample entropy algorithm [25] is used
to calculate the entropy of each sequence of IMF to represent the complexity of each
sequence. Firstly, the entropy values of IMFs under different average wind speeds are
calculated. Then, at each average wind speed, the maximum entropy value is taken as the
reference value. Finally, according to 1/5 and 1/10 of the maximum entropy value, all IMF
subsequences are divided into three groups: high-, medium-, and low-frequency.

3.2.2. GRU Neural Network

GRU is a variant proposed by Greff et al. on the basis of long short-term Memory
(LSTM), with simple structure and easy calculation [23].

GRU contains two gating units, namely update gate zt and reset gate rt. The update
gate controls the degree to which the state information ht−1 of the previous moment is
introduced into the current state through activation function σ, while the reset gate controls
the degree to which the state information ht−1 of the previous moment is introduced into
the candidate set through activation function σ. The specific calculation formulas of GRU
are as follows:

rt = σ(Wxrxt + Whrxt−1 + br) (9)

zt = σ(Wxzxt + Whzht−1 + bz) (10)
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∼
ht = tan h

[
W

x
∼
h

xt + W
h
∼
h
(rt·ht−1)

]
(11)

ht = (1− zt)·ht−1 + zt·
∼
ht (12)

where xt and ht refer to input vector and output vector, respectively;
∼
ht refers to candidate

activation vector; W and b represent the parameter matrices and vectors, respectively.

3.2.3. EO Algorithm

EO is an optimization algorithm inspired by the physical phenomenon of dynamic
balance of mass in control volume [26]. Compared to other optimizers, EO has higher
optimization efficiency and fewer iterations.

The main steps of EO optimization are as follows:
Step 1: Initialization and function evaluation.

C0
i = Cmin + randi(Cmax − Cmin) i = 1, . . . , n (13)

where C0
i is initial concentration; Cmin and Cmax are the lower limit and upper limit of

variables to be optimized, respectively; randi is the random vector between 0 and 1; and n
is population number.

Step 2: Equilibrium pool and candidates (Ceq).

Ceq,pool =
{

Ceq,1, Ceq,2, Ceq,3, Ceq,4, Ceq,ave
}

(14)

where, Ceq,1, Ceq,2, Ceq,3, Ceq,4, respectively, are the optimal solutions found in the current
iteration and are mainly used to improve the global exploration ability; Ceq,ave is the average
value of the above four solutions and is mainly used to improve local development ability.

Step 3: Exponential term (F).

F = exp(−λ(t− t0)) (15)

where λ is a random number between 0 and 1; time, t0, stands for the initial time; time, t, is
defined as a function of iteration.

Step 4: Generation rate (G).

G = G0e−k(t−t0) (16)

where G0 is the initial value and k indicates a decay constant.
Step 5: Update the solution (C).

C = Geq +
(
C− Ceq

)
F + G(1− F)/λV (17)

where V is the control volume.

3.2.4. GRU Prediction Based on EO

It can be learned from Figure 3 that four GRU neural networks are adopted in total. If
the learning rate is set separately for each neural network, although the prediction effect
can be improved, the process of adjusting the parameters will become complicated and the
feasibility of the model could be reduced. Therefore, each GRU neural network sets the
same parameters and uses EO to find the optimal learning rate.

The learning rate of GRU determines whether the fitness function can converge to the
minimum, which is optimized by EO. The index RMSE taken as the fitness function of EO
optimization is shown as Equation (20), in which f̂i refers to the prediction value of REWS
obtained through the GRU neural network and fi refers to the actual REWS. In order to
obtain f̂i, the four component quantities (including high-, medium-, and low-frequency
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groups as well as the residual) under all average wind speeds are used as the input of the
GRU neural network, and the first 3/4 of the input is used for training.

The optimization process of GRU is shown in Figure 4. First, according to Equation (13),
particles are evaluated for their fitness function, and then Equation (14) is used to determine
the equilibrium candidates and construct the equilibrium pool. If the fitness function has
not yet converged or reached the number of iterations, loop Equations (14)–(17).

Sensors 2023, 23, x FOR PEER REVIEW 8 of 20 
 

 

frequency groups as well as the residual) under all average wind speeds are used as the 
input of the GRU neural network, and the first 3/4 of the input is used for training. 

The optimization process of GRU is shown in Figure 4. First, according to Equation 
(13), particles are evaluated for their fitness function, and then Equation (14) is used to 
determine the equilibrium candidates and construct the equilibrium pool. If the fitness 
function has not yet converged or reached the number of iterations, loop Equations (14)–
(17).  

HF、MF、LF、Res.
The first ¾ the dataset

End

Initial learning rate GRU prediction

Next population of
Learning rate (17)

Update EO
concentrations (15), (16)

EO fitness (20)

Construct equilibrium pool (14)

Fitness converged ?

Iteration finished ?
Yes

Yes
No

No

REWSModel
inputs

GRU
optimization

 
Figure 4. Optimization of GRU learning rate based on EO. 

3.3. Aggregation Computing Based on EO 
3.3.1. Aggregation Computing 

Aggregation computing is conducted by: 𝑓 = 𝑤 𝑓 + 𝑤 𝑓 + 𝑤 𝑓 + 𝑤 𝑓  (18)

where 𝑓𝑖 is REWS, and 𝑤 , 𝑤 , 𝑤 , 𝑤  are weights of 𝑓  (high-frequency group), 𝑓  (me-
dium-frequency group), 𝑓  (low-frequency group) and 𝑓  (residual), respectively. 

There are always some errors when GRU predicts the components obtained through 
EMD decomposition. The prediction accuracy could be improved by optimizing the 
weight of the predicted values, which is performed using EO. 

3.3.2. Aggregation Weight Optimization with EO 
EO is used to determine the weight coefficients of each frequency group and residual. 

The evaluation indicator RMSE Equation (20) is taken as the fitness, where 𝑓𝑖 and 𝑓𝑖 re-
fer to the aggregation computing value calculated from Equation (18) and the actual 
REWS, respectively. The minimum fitness function should be found in EO optimization. 

The procedure of aggregation weight optimization with EO is shown in Figure 5. 
First, after function initialization Equation (13), the result of aggregation computing Equa-
tion (18) is calculated. Both the aggregation result and the actual REWS are used to calcu-
late the EO fitness. Then, the current balance pool state is determined according to Equa-
tion (14). After updating the exponential term Equation (15) and generation rate Equation 
(16), recalculate the current solution Equation (17) to find the next population of the 
weight. In the process of optimization, if the EO fitness converges, it indicates that the 
optimization is effective, and vice versa. 

Figure 4. Optimization of GRU learning rate based on EO.

3.3. Aggregation Computing Based on EO
3.3.1. Aggregation Computing

Aggregation computing is conducted by:

f̂i = w1 fHF + w2 fMF + w3 fLF + w4 fRes (18)

where f̂i is REWS, and w1, w2, w3, w4 are weights of fHF (high-frequency group), fMF (medium-
frequency group), fLF (low-frequency group) and fRes (residual), respectively.

There are always some errors when GRU predicts the components obtained through
EMD decomposition. The prediction accuracy could be improved by optimizing the weight
of the predicted values, which is performed using EO.

3.3.2. Aggregation Weight Optimization with EO

EO is used to determine the weight coefficients of each frequency group and residual.
The evaluation indicator RMSE Equation (20) is taken as the fitness, where f̂i and fi refer
to the aggregation computing value calculated from Equation (18) and the actual REWS,
respectively. The minimum fitness function should be found in EO optimization.

The procedure of aggregation weight optimization with EO is shown in Figure 5. First,
after function initialization Equation (13), the result of aggregation computing Equation (18)
is calculated. Both the aggregation result and the actual REWS are used to calculate the EO
fitness. Then, the current balance pool state is determined according to Equation (14). After
updating the exponential term Equation (15) and generation rate Equation (16), recalculate
the current solution Equation (17) to find the next population of the weight. In the process
of optimization, if the EO fitness converges, it indicates that the optimization is effective,
and vice versa.
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4. Results and Discussions

The data in this study are simulated and obtained using BLADED software. For the
three EMD–GRU schemes, case studies are carried out. The structure of this section is as
follows. First, six wind speed datasets, parameter settings, and some evaluation criteria
are given. Then, several experimental results are discussed. Finally, the comparation with
other models is represented, and a conclusion is made.

4.1. Statistical Characteristics of Six Wind Speed Datasets

Six datasets of different average wind speeds with 12% turbulence are selected. The
actual REWS are calculated and obtained by BLADED with four-beam lidar. Each dataset
contains 29,500 observations, and the first 3/4 observations are used as the test set, while the
last 1/4 as the verification set. Table 1 shows the statistical characteristics of the six datasets.

Table 1. Statistical characteristics of six wind speed datasets.

Datasets Wind Speed Samples Mean Max Median Min Std.

H1 10
All 9.6115 12.9672 9.4057 7.8553 1.0714

Training Set 9.4598 11.0997 9.3919 7.8626 0.7962
Testing Set 10.0667 12.9672 9.5563 7.8553 1.5535

H2 12
All 12.0045 14.0607 11.9957 9.8206 0.8960

Training Set 11.9482 14.0607 11.9000 9.8206 0.9044
Testing Set 12.1734 13.6158 12.4482 10.3123 0.8483

H3 14
All 13.3294 17.3582 13.2469 9.9518 1.2814

Training Set 13.7240 17.3582 13.5764 11.4107 1.1030
Testing Set 12.1455 14.4256 12.1977 9.9518 1.0241

H4 16
All 15.8433 19.0663 15.8330 12.2807 1.5796

Training Set 15.9308 19.0299 16.1401 12.2807 1.6052
Testing Set 15.5808 19.0663 15.2350 13.1170 1.4693

H5 18
All 17.6392 23.5735 17.5249 13.9425 1.9126

Training Set 17.8968 23.5735 18.1743 13.9425 2.0529
Testing Set 16.8665 19.0372 16.7214 14.7905 1.0917

H6 20
All 19.5343 24.3731 19.4811 15.2719 1.7119

Training Set 19.9127 24.3731 19.8991 15.2719 1.7167
Testing Set 18.3988 20.6271 18.3912 16.1519 1.0780

4.2. Parameter Setting of the Model

All models are implemented in MATLAB R2020a. Table 2 shows the parameters of
GRU algorithm and EO algorithm.
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Table 2. Parameter setting of the proposed model.

Model Parameter Name Parameter Value

GRU
Hidden Units 230

Learning Rate Drop Period 4
Epoch 60

EO1

n 20
Cmin 0.001
Cmax 0.01

Max_iter 100

EO2

n 20
Cmin 0
Cmax 5

Max_iter 50

The learning rate of GRU neural network is determined by EO algorithm. The input
dimension is determined by three EMD–GRU schemes. EO1 sets the learning rate of neural
network, while EO2 sets the weight of weighted aggregation of prediction results of each
component.

4.3. Evaluation Criteria

In order to evaluate the prediction performance, three evaluated criteria are used [27],
including mean absolute error (MAE), root mean squared error (RMSE), and mean absolute
percentage error (MAPE):

MAE =
1
n

n

∑
i=1
| fi − f̂i| (19)

RSME =

√
1
n

n

∑
i=1

∣∣∣ fi − f̂i

∣∣∣2 (20)

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣∣
( f i − f̂i

)
fi

∣∣∣∣∣∣× 100% (21)

4.4. Results of GRU Prediction

REWS at different average wind speeds is automatically decomposed into several IMF
components and one residual component (the number of IMFs depends on the constraint
conditions of IMF [18]). The extracted IMFs from EMD at the average wind speed of
20 m/s are shown in Figure 6. In order to guarantee the feasibility of the experiment, the
same GRU neural network is used for prediction under different average wind speeds via
frequency grouping.

The learning rate of the GRU neural network optimized using EO and particle swarm
optimization (PSO) is shown in Figure 7. From Figure 7, the convergence rate of PSO is
faster than EO, but there is premature convergence in PSO. Moreover, compared with PSO,
EO has a better search capability, with about 0.02 smaller calculated fitness.

Figure 8 shows the GRU evaluation indicators of each group of the EMD–GRU scheme
with lidar measuring information and calculated REWS as the combined input. From
Figure 8, it is seen that the prediction result of GRU model is better under the low wind
speed such as H1 and H2 than the high wind speed such as H5 and H6. GRU model has
small prediction errors for the high-frequency group and residual but poor results for the
low-frequency group, especially at high wind speeds. The reason is that the amplitude of
the high-frequency component is much smaller than that of the low-frequency component,
and the high-frequency proportion of the input data is very low.
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4.4.1. Results of Aggregation Optimization

Weights of aggregation optimization are shown in Figure 9a,b, which refers to the
weights and the average weights of different groups under the six datasets, respectively.
According to Figure 9, in different frequency groups, the high-frequency group has the
largest average weight, and the low frequency group has the smallest average weight.
Combined with the results of GRU prediction, it can be learned that the result of EO
optimization is related to the effect of GRU prediction. In the optimization aggregation, the
smaller the prediction error is, the higher the corresponding weight will be.
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In order to demonstrate the advantages of employing EO, the EO algorithm and PSO
algorithm are compared. As a typical optimization algorithm, PSO has wide applicability
and reliability in various optimization problems, which is sufficient to verify the effective-
ness of EO algorithm in parameter optimization. Table 3 shows the evaluation indicators
before and after optimization. Under the same number of iterations, the optimization effect
of EO is better than that of PSO. Under high wind speed, the optimization effect of EO
is improved more significantly than that of PSO. For example, in the dataset H5, after
performing EO optimization, the RMSE is decreased by 0.0592, which is about 0.03 lower
than that of PSO optimization.

Table 3. Comparison results of EO and PSO.

DATA Not Optimized EO PSO

H1 0.2804 0.2803 0.2804
H2 0.3889 0.3058 0.3875
H3 0.3547 0.3443 0.3501
H4 0.3139 0.2866 0.3078
H5 0.4865 0.4273 0.4837
H6 0.4319 0.4032 0.4276

4.4.2. Prediction Results of EMD–GRU Schemes

Figure 10 shows the prediction results of different schemes under different average
wind speeds. From Figure 10a–f, the prediction effect of Scheme 3 is the best, while that of
Scheme 1 is the worst compared to the other two schemes. In Figure 10a, the variation of
wind speed is gentle, and the prediction accuracy of the three schemes is higher compared
to other different average wind speed. When the oscillation degree of wind speed curve
amplitude increases, such as in Figure 10b,c,e,f, Scheme 1 is not suitable to predict. Scheme
3 has better stability than Scheme 2 according to Figure 10d.

The evaluation indicators of the three EMD–GRU schemes with different inputs are
shown in Table 4. The prediction accuracy, stability, and effectiveness of Scheme 3 under
different average wind speeds are better than those of the other two schemes. The prediction
effect of Scheme 2 is close to Scheme 3 under low wind speed. The prediction effect of
Scheme 1 is not accurate, especially under high wind speed.

Based on Figure 10 and Table 4, conclusions can be obtained:

• From the aspect of modeling accuracy, the average MAE of Scheme 3 is 0.2781, which
represents the highest modeling accuracy, while that of Scheme 1 is 0.6629, representing
the lowest modeling accuracy among the three schemes. The MAEs of Scheme 2 under
H1–H6 are 0.2401, 0.3302, 0.3621, 0.4136, 0.3881, and 0.3271, respectively. Among these
six datasets, the prediction accuracy of Scheme 2 performs best at an average wind
speed of 10 m/s.
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• From the aspect of modeling stability, when the lidar information is combined with
the mechanism modeling, the prediction stability is obviously improved. The RMSE
of Scheme 1 is approximately from 0.72 to 0.95 at six different average wind speeds.
However, the RMSEs of Scheme 2 and Scheme 3 are both distributed within 0.51.
When the modeling stability is improved, the prediction result will be less sensible to
the change in wind speed.

• From the aspect of modeling effectiveness, Scheme 3 has a better fitting effect compared
to Scheme 2, and that of Scheme 1 is the worst. The average value of MAPE in Scheme
3 is 0.0198 in the six datasets, followed by 0.0242 in Scheme 2. The average value of
MAPE in Scheme 1 is about twice that in Scheme 3.
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4.4.3. Comparations with Other Models

The EMD–GRU prediction scheme with lidar information and the calculated REWS as
the input is the best, so this scheme is selected for the experiment comparation with other
models. In this comparation, the prediction performance of the EMD–GRU hybrid model,
the GRU model, and the mechanism model are compared under the six datasets so as to
illustrate the superiority of the proposed EMD–GRU hybrid model.
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Table 4. Comparison results of three EMD–GRU schemes for six datasets.

Data Model RMSE MAE MAPE

H1
Scheme 1 0.7356 0.6605 0.0586
Scheme 2 0.2855 0.2401 0.0233
Scheme 3 0.2803 0.2212 0.0208

H2
Scheme 1 0.7855 0.6720 0.0540
Scheme 2 0.3898 0.3302 0.0266
Scheme 3 0.3058 0.2525 0.0207

H3
Scheme 1 0.7371 0.6065 0.0513
Scheme 2 0.3981 0.3621 0.0272
Scheme 3 0.3443 0.2898 0.0241

H4
Scheme 1 0.7828 0.6555 0.0420
Scheme 2 0.5026 0.4136 0.0270
Scheme 3 0.2866 0.2236 0.0143

H5
Scheme 1 0.7258 0.5942 0.0354
Scheme 2 0.4726 0.3881 0.0229
Scheme 3 0.4273 0.3606 0.0214

H6
Scheme 1 0.9448 0.7887 0.0434
Scheme 2 0.4037 0.3271 0.0179
Scheme 3 0.4032 0.3211 0.0176

Figure 11 shows the actual curves and prediction curves of the three models under
three average wind speeds of 12 m/s, 16 m/s, and 20 m/s. It can be learned that the
prediction result of the mechanism model is the worst among all models. In Figure 11a,
although mechanism modeling can reflect the change of wind speed, its volatility is larger
than that of the other two models. In Figure 11b, the prediction effect of the three models is
better than that of (a) and (c). In Figure 11c, although the actual wind speed varies greatly,
the accurate prediction can still be achieved through a EMD–GRU hybrid model.
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Table 5 shows the comparison evaluations of REWS prediction using the three men-
tioned models under different average wind speeds. With an increase in average wind
speed, the prediction error of mechanism model also increases. The GRU model has
wonderful prediction performance under low wind speed. The EMD–GRU hybrid model
further improves the prediction accuracy of the GRU data-driven model.

Table 5. Comparison results of different prediction schemes for six datasets.

Data Model RMSE MAE MAPE

H1
Mechanism 0.5432 0.4353 0.0452

GRU 0.2934 0.2265 0.0224
EMD–GRU 0.2803 0.2212 0.0208

H2
Mechanism 0.6663 0.5423 0.0454

GRU 0.3891 0.3229 0.0257
EMD–GRU 0.3058 0.2525 0.0207

H3
Mechanism 0.7570 0.6051 0.0461

GRU 0.3686 0.3027 0.0255
EMD–GRU 0.3443 0.2898 0.0241

H4
Mechanism 0.8315 0.6567 0.0417

GRU 0.3317 0.2609 0.0169
EMD–GRU 0.2866 0.2236 0.0143

H5
Mechanism 0.8741 0.6959 0.0394

GRU 0.4871 0.3895 0.0216
EMD–GRU 0.4273 0.3606 0.0214

H6
Mechanism 0.9972 0.8095 0.0419

GRU 0.4393 0.3359 0.0193
EMD–GRU 0.4032 0.3211 0.0176

Specifically, three observations can be obtained:

• Compared to the traditional mechanism modeling, the proposed EMD–GRU model
has significantly improved the prediction performance. For example, when the average
wind speed is 12 m/s, the RMSE and MAE of the mechanism model are 0.6663 and
0.5432, respectively, while the RMSE and MAE of the EMD–GRU model are 0.3058
and 0.2525, respectively.

• Compared to the original GRU data-driven model, the predicted value of the EMD–
GRU model is more consistent with the actual value of the REWS. From the average
wind speed of 10 m/s to 20 m/s, the improvement rates of MAPE corresponding to the
EMD–GRU model are 7.14%, 19.46%, 5.49%, 15.38%, 0.93%, and 8.81%, respectively.

• The EMD–GRU model has higher predictive stability than the other two models.
For example, under the average wind speed of 10 m/s, compared to those of the
other two models, the RMSE of the EMD–GRU model is decreased by 0.2629 and
0.0131, respectively.

The possible reasons for the above observations are as follows. Since the limited
number of lidar measurement points and the limitation of the Taylor frozen turbulence hy-
pothesis, the prediction error of mechanism modeling is large. Since the input information
is quite nonlinear, the GRU data-driven method cannot avoid the influence of signal fluctu-
ation. Differently from the two counterparts, the EMD–GRU scheme can effectively reduce
signal volatility and predict error through frequency decomposition and classification,
group prediction, and optimization aggregation of prediction components.
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5. Conclusions

In this paper, a data-driven approach has been proposed to predict the REWS with
lidar measurements. Three EMD–GRU schemes are proposed to improve the reliability of
the REWS prediction. Accordingly, the main conclusions can be summarized as follows:

â Among three EMD–GRU schemes with different input, the prediction accuracy, stabil-
ity, and effectiveness of Scheme 3 exhibit obvious superiority compared to those of
the other two schemes.

â The EO and PSO algorithms could effectively optimize the prediction performance of
EMD–GRU model, and the optimization effect of EO algorithm is better than that of
PSO. The RMSE of the EMD–GRU model after EO optimization is reduced by 0.0592,
which is about 0.03 lower than that of PSO.

â Compared to the traditional mechanism model and the single GRU model, the pre-
diction performance of the proposed EMD–GRU model is significantly improved.
Relative to the mechanism model, the EMD–GRU model demonstrates MAE improve-
ments of 49.18%, 53.43%, 52.10%, 65.95%, 48.18%, and 60.33% across the six datasets.

Compared to some traditional models, the proposed EMD–GRU model, which in-
cludes data processing steps and neural network training processes, may require more
computational resources and time to complete the prediction task. In real-time control
applications, this method has some limitations and room for improvement. The future
work focuses on using REWS prediction with lidar measurement to further optimize the
control systems and achieve smarter and more sensitive control strategies to improve the
performance and efficiency of wind turbines.
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Nomenclature
Acronyms
REWS Rotor effective wind speed
EMD Empirical mode decomposition
GRU Gated recurrent unit
IMF Intrinsic mode function
EO Equilibrium optimizer
IMF Intrinsic mode function
LSTM Long short-term memory
MAE Mean absolute error
RMSE Root mean squared error
MAPE Mean absolute percentage error
PSO Particle swarm optimization
H1–H6 Dataset 1–Dataset 6
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Symbols
Vi Line-of-sight wind speed for each laser beam i (m/s)
Va Projection of V1 on horizontal plane (m/s)
Vb Projection of V2 on horizontal plane (m/s)
θ Angle between laser beam and horizontal plane (rad)
ui Horizontal wind speed at height of Vi (m/s)
α Angle between Va and u1 (rad)
S Sector area (m2)
R Radius of the rotor (m)
h Height of the sector area (m)
Ai Sector i of the rotor
SAi Area of Ai (m2)
ueq Value of REWS (m/s)
X(t) Original wind speed series
Ci(t) Decomposed IMF
Rn(t) Residual of EMD
T Time delay (s)
x Distance between lidar measurement spot and lidar (m)
u Average wind speed (m/s)
zt Update gate
rt Reset gate
ht−1 State information of the previous moment
xt Input vector
ht Output vector
∼
h t Candidate activation vector
W Parameter matrices
b Parameter vectors
C0

i Initial concentration
Cmin Lower limit of variables
Cmax Upper limit of variables
randi Random vector between [0,1]
n Population number
Ceq,pool Equilibrium pool
Ceq,i Optimal solutions in the current iteration
Ceq,ave Average value of optimal solutions
F Exponential term
λ Random number between 0 and 1
t0 Initial time
t Function of iteration
G Generation rate
G0 Initial value
k Decay constant
V Control volume
fHF High-frequency group
fMF Medium-frequency group
fLF Low-frequency group
fRes Residual
wi Weights of fHF, fMF, fLF and fRes, respectively
fi Real value at time i (m/s)
f̂i Predicted value at time i (m/s)
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