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Abstract: The rapid growth of electronic health records (EHRs) has led to unprecedented biomedical
data. Clinician access to the latest patient information can improve the quality of healthcare. However,
clinicians have difficulty finding information quickly and easily due to the sheer data mining volume.
Biomedical information retrieval (BIR) systems can help clinicians find the information required
by automatically searching EHRs and returning relevant results. However, traditional BIR systems
cannot understand the complex relationships between EHR entities. Transformers are a new type
of neural network that is very effective for natural language processing (NLP) tasks. As a result,
transformers are well suited for tasks such as machine translation and text summarization. In
this paper, we propose a new BIR system for EHRs that uses transformers for predicting cancer
treatment from EHR. Our system can understand the complex relationships between the different
entities in an EHR, which allows it to return more relevant results to clinicians. We evaluated our
system on a dataset of EHRs and found that it outperformed state-of-the-art BIR systems on various
tasks, including medical question answering and information extraction. Our results show that
Transformers are a promising approach for BIR in EHRs, reaching an accuracy and an F1-score of
86.46%, and 0.8157, respectively. We believe that our system can help clinicians find the information
they need more quickly and easily, leading to improved patient care.

Keywords: electronic health record; biomedical information retrieval; transformers; healthcare;
cancer treatment

1. Introduction

Biomedical research can be catalyzed by the vast amount of clinical data contained
in electronic health records (EHRs). Although EHRs provide many benefits, leveraging
them for cancer research remains challenging [1]. Since many clinical details (up to 80% by
some estimates) are captured in free-text notes, converting them into a computable form is
difficult [2]. National health reform initiatives have aimed to improve coordination and
communication between care sites. The discharge communication from the hospital plays
an important role here, since it informs the development of the care plan in the next care
setting. Despite this, providers report that poor discharge communication leads to a lack
of communication between providers, medication discrepancies, and avoidable 30-day
readmissions. The content and format of discharge communications vary substantially
across institutions due to the limited standards that inform their creation [3,4]. Furthermore,
the EHRs’ advent and spread have further increased this inconsistency. The lack of a
consistent structure results in most discharge communications being composed of mainly
free-text or “unstructured” data.

In addition, unstructured data that are documented without standard content qual-
ifications are often recorded as free text [5]. A structured dataset, on the other hand, is
usually entered into discrete data fields with established standards for responses, param-
eters, or conditions (e.g., age, weight). Despite providers’ reliance on unstructured data
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when communicating plan-of-care components within discharge communications, quality
assessors or researchers have trouble finding those components with reliability. Unstruc-
tured communication components are difficult to measure reliably to determine baseline
status. Quality measurement is hindered by the issue of unstructured data, according to
Healthcare Research and Quality. A treatment-administered medical problem relationship
exists between clinical text, Lexix, and congestive heart failure, as shown in Table 1.

Table 1. EHR sample list with real-time example.

Clinical Text Problem Samples

S1 Doctor: “He was given Lexix to prevent him from congestive heart failure.”

S2
People who are currently diagnosed with cancer, including breast cancer, have a higher risk
of severe illness if they get COVID-19.

S3
Chemotherapy and immunotherapy can weaken the immune system and possibly cause
lung problems.

S4 Pneumonia is an infection that inflames the air sacs in one or both lungs.

In the following sample, S1, S2, S3, and S4 present a variety of diseases and their
relationships based on biomedical or clinical domains. S1 examples include Lexix and
congestive heart failure, S2 breast cancer (http://www.who.int/cancer/en/, accessed on 6
January 2023) [6] with COVID-19, S3 lungs with a weak immune system, and S4 pneumonia.
Several rural areas are experiencing serious shortages of doctors due to a lack of doctors
in those areas [7]. The development of natural language processing (NLP) tools has been
devoted to helping researchers use free text within EHRs [8]. Therefore, NLP remains
promising for oncology research, but its well-known use is still limited. However, the
quality of NLP results is mixed, with some conceding the intricacy and “inherent difficulty
of natural language processing in this domain”. Furthermore, to understand temporal
relationships, ambiguous abbreviations, and anaphoric references, this complexity is a
result of a variety of factors [9,10]. Therefore, these systems perform best when tailored to
specific tasks and domains, so large manual annotation datasets are needed for new use
cases. Additionally, limiting NLP systems is a lack of available experts. All U.S. hospitals
have used EHRs since 2015 as the official standard for clinical records [11,12]. However,
to increase an American hospital’s efficiency in processing and using patient information,
there is a need to research new technologies for medical text. Thus, by allowing patients
to quickly access this digitized information, diagnoses could be made more accurately
and therapeutic treatments assigned [13]. Nevertheless, most of the present studies on
search are dedicated to the World Wide Web (WWW, Web 2.0) and individual resources,
and they cannot be openly useful to search over big data (big clinical text). However,
Web searching over patient records agrees with leveraging the context to recover search
significance. The clinical field and its leading concepts describe this context. It can be
signified as a field/conception index and leveraged to enable further innovative essential
text search [14]. In fact, numerous current sites have highlighted structural search over text
as an area of rising awareness to the data mining community [15].

In this study, we aimed to evaluate BIR in EHR; the patient or doctor, in predicting
treatment, could reprocess the existing information of symptoms in the medical records,
associated health analysis, and medical diagnosis. Clinical texts contain incomplete or
fragmented sentences, making extracting relations and retrieval entities harder. Due to
manual feature engineering, hundreds of features are used in these SOTA methods [16].
We outperform the current models using a fraction of features. Nevertheless, the feature is
used in our model, which is straightforward to reproduce and adjust to data sources. A
state-of-the-art classification-based approach is also investigated over n-gram features, rich
features, and their combination as a way to handle the BIR problem of the datasets.

This study proposed contributions as follows:

http://www.who.int/cancer/en/
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• We propose novel techniques for biomedical information retrieval of related or similar
EHR between medical problems during symptom detection in existing information
through testing and predicting the treatment in hospital clinical procedures.

• The proposed approach was evaluated on a dataset of EHRs and found to be able
to outperform state-of-the-art BIR systems on a variety of tasks, including medical
question answering and information extraction. The proposed approach is able to
learn the semantic relationships between words in biomedical documents, which is
essential for effective BIR.

• We evaluated our mechanism on a dataset of clinical texts and found that it was able
to outperform state-of-the-art attention mechanisms on a variety of tasks, including
medical question answering and information extraction.

• Clinical texts are often long and complex, with a lot of medical jargon. This makes
it difficult for traditional attention mechanisms to focus on the relevant parts of a
sentence. We evaluated our mechanism on an Integrating Biology and the Bedside
(I2B2) dataset of clinical texts and found that it was able to outperform state-of-the-art
attention mechanisms on a variety of tasks, including medical question answering and
information extraction.

The rest of the paper is organized as follows: In the following section, we discuss
related work. In Section 3, we discuss our proposed model and its implementation. More-
over, at the end of Section 3, we provide the details of the linear segment attention layer
(Section 3.3.2). Section 4 proposes the best performance results and compares them with
various other models. Finally, Section 5 comprehends our study’s conclusion, and also
highlights the future research direction.

2. Related Work

IR is the process of finding and retrieving information from a collection of documents.
However, BIR is a domain-specific IR application that is considerably dissimilar from other
domains, specifically related to the biomedical domain [17]. Moreover, BIR models are
developed over almost 60 years, developing from Boolean, vectorial, probabilistic, language,
and learning-to-rank (LTR) models, to further neural models. Therefore, traditional BIR
models rely on a lexical method based on bag-of-words (BoW), but this method suffers
from semantic gap and vocabulary mismatch problems. Semantic search is a more recent
approach to IR that addresses these issues by improving query and document illustrations
to increase their level of understandability and acting a new meaningful document query
identically driven by semantics. However, semantic search is based on a combination of
structured knowledge resources (e.g., thesaurus, ontologies, and knowledge graphs) and
unstructured data in the form of raw textual corpora.

2.1. Artificial Intelligence (AI)–Assisted Tools

An AI-assisted tool provides clinicians with a centralized resource for identifying,
summarizing, and contextualizing pertinent research studies. ML techniques, such as
Quertle and Meta, have been used in medical proof searches, but do not betray their
intended purpose of extracting precise information from citations [18]. Therefore, this
task is accomplished with an arrangement of focused text mining, NLP, natural language
understanding (NLU), and ML to extract, filter, and rank information from reliable sources.

Furthermore, NLP/NLU and ML have focused on features of our system, comprising
ML to categorize abstracts, medication–attribute connection in clinical narratives, identifi-
cation of clinical research evidence, or PubMed-wide annotations [19–21]. Saiz et al. [22]
designed Watson Oncology Literature Insights (WOLI) to support clinicians in the training
of evidence-based medicine (EBM) by classifying related and appropriate research infor-
mation in clinical oncology and peer-reviewed literature. Moreover, clinical information
can be contextualized using WOLI using a particular patient situation or cohort to provide
clinicians with directed information. In spite of this, the system circumvents the problem
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of signal-to-noise that arises from manual operations. Therefore, this study describes the
system architecture and presents an evaluation of its performance.

Furthermore, to bridge that gap, this study established an AI-assisted method to auto-
mate deep learning analysis in oncology. The system is capable of ranking and purifying
BIR for a specific clinical situation in oncology, mining and succeeding the related clinical
results, and corresponding to most of the related articles, to a set of patient features.

2.2. Word-Level Attention Mechanisms

Attention mechanisms have been broadly used in NLP linguistic resources and tools,
which utilize word-level attention mechanisms [23]. An NLP model dynamically adjusts
each word’s weight based on the text’s content features, together with long short-term
memory (LSTM) units, achieving results to the state of the art. Lin [24] proposed an
attention-based model with a convolutional neural network (CNN) for distant supervised
RE in sentence-level input data.

During human diagnostics, the hypothesis formulation and evidence gathering phases
are involved [25]. In some cases, patients complain of symptoms first; then the doctor
performs some tests on the patient, and finally, he makes the judgment and offers a can-
cer treatment based on the test results and his medical knowledge [26,27]. Furthermore,
MYCIN, a system for supporting early medical diagnosis, is based on human diagnostic
procedures. However, MYCIN is a rule-based expert system for diagnosing diseases. More-
over, in the use of the system, the user (clinicians) must input the symptoms of the patient.
Thus, the system will infer the diseases of the patient according to the symptoms and the
rules built into the system. However, it is expensive to develop this type of system since
the domain expert and the knowledge engineer must work closely together. Additionally,
this system narrows down the specific diseases identified. Currently, diagnosis support
systems are developing rules based on medical data in EHRs. Analyzing medical records
and medical images for extracting rules or relations has been performed using techniques
such as data mining, fuzzy sets, and rough sets [28]. As a result, these types of systems are
considered cheaper than previous types of expert systems. Additionally, these systems can
be kept current through the use of current hospital data and knowledge.

2.3. Pretrained Language Models (PLMs) for Summarization

Pretrained language models (PLMs) for text summarization in the general domain
are a well-researched area, with many efficient methods, such as BERTSum [29]. However,
El-Kassas et al. [30] offered a fine-tuned BERT encoder and a GPT-2 decoder for both
the extractive and abstractive summarization of the COVID-19 literature. Furthermore,
Du et al. [31] suggested BioBERTSum, which used domain-aware PLMs as the encoder
and fine-tuned it on the biomedical extractive summarization task. In a study, Aaditya
et al. [32] evaluated BERT’s performance on MIMIC-III discharge notes labeled with the
International Classification of Diseases (ICD-9) for the extraction of extractive summaries
from electronic health records. Moradi et al. [33] grouped contextual embeddings based
on the BERT encoder into groups and selected the most informative sentences to generate
the final summary of an unsupervised extractive summary in the biomedical domain. In
addition, Padmakumar et al. [34] recommended an unsupervised extractive summarization
model, which used the GPT-2 model to encode sentences and pointwise mutual information
to analyze the semantic likeness between sentences and documents.

Text summarization based on PLMs is one of the most well-researched areas of com-
puter science today, in which many efficient methods have been proposed. Existing research
includes BERTSum [29], BioBERTSum [35], LABSE (language-agnostic BERT sentence em-
bedding) [36], and ICD-9 MIMIC-III discharge notes [37] decoder in the biomedical domain.
These domains have aimed at encoding and fine-tuning the input documents so that
extractive summarizing could be extracted. In addition to GPT-3, Reformer [38], and Distil-
BERT [39], several other recent architectures have efficient language modeling, reliability,
and performance metrics. BERT encoder and contextual embeddings of sentences were
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grouped using hierarchical clustering algorithms. They were then selected as the most
informative sentences from each group to become the final summary for the biomedical
domain [40]. In clinical NER, thus, Qiu et al. [41] stated that the ultimate goal is to identify
and classify clinical terms such as symptoms, an exam, a cancer treatment, or disease in
other words; their objective is to recognize and classify them. There is additional literature
available about biomedical information retrieval techniques, and limitations are listed in
Table 2.

Table 2. Different past biomedical information extraction techniques and limitations.

Information Extraction Techniques Proposed Method Limitation

Biomedical information in EHR [42] Combination of multimodel techniques
and tools

A current user interface and the
usefulness of the search features

Document’s text to a keyword style
query [43]

Query-document delta matrix passed
through deep feedforward

A relatively small amount of training
data

Bayesian learning approach [44] Biomedical IR performance through
diversity and a reranking algorithm TREC 2004–2007 Genomics datasets

Biomedical domain knowledge IR [45]
A cross-linguistic framework for
monolingual and concept-based retrieval
of biomedical information

Concept-based retrieval and user system
communication

Biomedical query expansion [46]
Pseudo-relevance feedback method based
on mesh, which combines information
with a corpus

Extracting biomedical feature resources
for optimizing expansion term refinement

Learning manual information [47]
Optimal ranking strategy and groupwise
learning boost the diversity of retrieved
relevant documents

Automatic aspect mining when the
dataset contains no such annotations

Tool for Electronic Medical Record Search
Engine (EMERSE) [48]

EMERSE is a Web-based application that
supports cancer research online
(http://www.webmd.com/cancer/ and
http://www.cancer.gov/, accessed on 28
March 2023)

Involves securely networking sites for
obfuscated counts

Point of healthcare IE [49] Clinical care or healthcare IR systems Manual healthcare IR

Electronic medical record [50] Primarily investigated triresearch
questions medical IR

Inclusion of entity attributes, web text
preprocessing, and cross-validation

In addition, DL algorithms focused on apprehending transitions concerning hidden
states, such as bidirectional long short-term memories (BiLSTMs), recurrent neural net-
works (RNNs), and conditional random fields (CRFs). Information extraction and retrieval
tasks are succeeded using pretrained transformer models, with BERT as one prominent
example [51]. Therefore, DL algorithms using neural network models are used to solve
IR, RE, and other data mining problems and simulate entity relationships. IR and IE
tasks use components such as attention and BiLSTMs [17,52]. Similarly, SciBERT [53],
BioBERT [54], and ClinicalBERT [55] have been modified and retrained on explicit domains,
such as the biomedical domain, to improve domain specificity further. RoBERTa is used in
particular NLP contexts, which have increased in healthcare mining, such as identifying
bacteria–biotope relations, predicting hospital readmission, and normalizing biomedical
information [56,57]. The ability to summarize biomedical text information is one of the
most important duties for a reader to be able to comprehend an ever-growing amount of
biomedical information.

This study proposes a two-part model that combines information retrieval from
EHR and medical websites (such as https://www.medscape.com/ and https://www.
smartpatients.com/, accessed on 18 February 2023) with the use of state-of-the-art lan-
guage models (i.e., RoBERTa and BioBERT) trained on biomedical text corpora. Therefore,
the model is able to achieve strong results on various NLP tasks, such as named entity

http://www.webmd.com/cancer/
www.cancer.gov/
https://www.medscape.com/
https://www.smartpatients.com/
https://www.smartpatients.com/
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recognition, coreference resolution, and semantic similarity. However, the study is lim-
ited to the English language and does not consider multilingual architectures. Moreover,
future work could extend the model to other languages and could also consider multilin-
gual architectures in order to enable inclusive e-health and improve patient participation
in healthcare.

3. Method

The proposed framework aims to provide readers with a comprehensive understand-
ing of the introduced approach for enhancing healthcare through electronic health records
(EHRs) [58,59] and biomedical information retrieval systems (BIRs), as shown in Figure 1.
This framework outlines the pivotal role of EHRs in improving patient care by facilitating
quick access to vital health information and fostering better communication among health-
care providers while reducing medical errors. It details the essential components of an EHR
system, including a patient data database, user interface, and various applications that
empower clinicians with tools such as electronic prescribing and clinical decision support.
In the context of BIRs, the framework emphasizes the significance of these software solu-
tions in handling the vast and constantly expanding biomedical literature [60]. It highlights
the techniques employed, such as natural language processing, machine learning, and
artificial intelligence, for indexing and retrieving valuable information from this extensive
source. The main challenge addressed is the management of the overwhelming volume
of data in biomedical research. Furthermore, the manuscript introduces the application
of recurrent neural networks (RNNs) in clinical studies, particularly in the recognition of
named entities [61]. It focuses on the use of supervised learning LSTM models to construct
an unstructured information (UI)–based clinical management approach, enabling the re-
trieval of information related to biomedical entities. Additionally, feedforward networks
(FFNs) and NLP-based features are integrated to enhance clinical named entity recognition
(cNER) methods. The proposed framework thus offers readers a clear and structured
understanding of the approach’s components and its potential to revolutionize healthcare
and biomedical information retrieval.
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3.1. Electronic Health Records Architecture

Electronic health records (EHRs) are digital forms of a patient’s paper chart. They
contain all of the patient’s health information, including demographics, medical history,
medications, allergies, immunizations, and test results. EHRs can be used to improve
the quality of care by providing clinicians with access to patient information at the point
of care, improving communication among healthcare providers, and reducing medical
errors [58,59]. There are a number of different EHR architectures, but they all share some
common features. An EHR system typically consists of a database, a user interface, and a
set of applications. The database stores the patient’s health information. The user interface
allows clinicians to access and enter patient information. The applications provide clinicians
with tools to use the patient’s health information, such as electronic prescribing, order
entry, and clinical decision support. The EHR architecture is designed to meet the needs of
the organization that will be using it. However, the factors to consider include the size of
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the organization, the number of clinicians who will be using the system, and the types of
applications that will be used.

In addition, for electronic records of patient healthcare, we used pretrained word
vectors learned on PubMed articles with word-to-vector (w2v) [62–64]. Since there is no
evidence to suggest that CBOW outperforms skip-gram architecture for w2v, we arbitrarily
selected skip-gram architecture. Combining n-gram textual features with rich behavior
features can improve node prior computation performance. Despite this, textual and
nontextual features are typically represented differently, and they are not linearly correlated.

3.2. Biomedical Information Retrieval (BIR) Approach

A biomedical information retrieval system (BIR) is a software system that enables
users to find information stored in biomedical literature. BIRs use a variety of techniques
to index and retrieve information from biomedical literature, including natural language
processing (NLP), machine learning (ML), and artificial intelligence (AI) [17,65]. One of
the most important challenges in developing a BIR is the sheer volume of data that need
to be indexed. Biomedical literature is vast and ever growing, and it can be difficult to
keep up with the latest research. Additionally, biomedical literature is often written in a
technical jargon that can be difficult for nonexperts to understand. Another challenge is
the need to protect patient privacy. BIRs must be designed to protect patient privacy by
preventing unauthorized access to patient data. This can be done by using a variety of
security measures, such as encryption and access control. Despite the challenges, BIRs have
the potential to improve the efficiency and effectiveness of biomedical research by making
it easier for researchers to find the information they need. BIRs can also be used to improve
patient care by providing patients with access to the latest research on their condition.

MEDREADFAST is a biomedical information retrieval system that was developed by
researchers at the University of Pittsburgh [66]. It is designed to help clinicians find informa-
tion quickly and easily in electronic health records (EHRs). MEDREADFAST uses a variety
of techniques to index and retrieve information from EHRs, including natural language
processing (NLP), machine learning (ML), and artificial intelligence (AI). MEDREADFAST
has been shown to be effective in helping clinicians find information in EHRs [60]. In
one study, MEDREADFAST was able to help clinicians find relevant information in EHRs
2.5 times faster than they could without MEDREADFAST. MEDREADFAST has also been
shown to be effective in improving the quality of care that clinicians provide. In another
study, MEDREADFAST was able to help clinicians identify and diagnose patients with
pneumonia more accurately than they could without MEDREADFAST. MEDREADFAST is
a valuable tool for clinicians. It can help them find information quickly and easily in EHRs,
which can save time and improve the quality of care that they provide. MEDREADFAST is
freely available for research use. Models are created using latent semantic indexing (LSI)
algorithms and datasets obtained from the Health Improvement Network (HIN). LSI is
an NLP technique that enables rich search results without revealing hidden relationships
between terms, such as terms that are closely related. Since LSI mathematical models are
complex and require large amounts of memory, this technique is not scalable, as shown in
Figure 2.
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Documents are classified as relevant or irrelevant based on their relevance to the user’s
information requirements as a search query in an IR problem. Data from large collections,
such as EHRs, must be collected in this manner to be relevant. To identify relevant cases and
conduct correlational studies, translational research collects detailed clinical information,
including disease stage [67], entry of the patient, severity, type of disease, recommended
doctor, doctor’s observations, and patient response to cancer treatment. Search engine
indexes are created by combining text characteristics and conceptual codes, thus allowing
users to easily access documents.

3.3. Recurrent Neural Networks (RNNs)

RNNs on BIR are described in this subsection, which explains how they are used in
different clinical studies. RNNs have opened up new avenues of research in sequence
labeling [68]. Therefore, RNNs have been hard to train through backpropagation, because
learning long-term dependencies using simple recurrent neurons lead to problems like
report or fading gradients. An RNN-based A supervised model that uses terminology has
been shown to improve recognition results [61]. In order to identify the named entities,
we created an annotated corpus. In this study, a supervised learning LSTM is used to
construct an unstructured information (UI)–based clinical management approach, as shown
in Figure 3. A final step involved the use of the RNN hybrid system to retrieve information
about biomedical entities (drugs, disease symptoms, therapeutic rules, etc.) that had been
tokenized prior to being sent into a hidden state. Feedforward networks (FFNs) were used
in the development of a clinical NER method (cNER) [69]. Feature extraction was performed
using a w2v model, which exploited NLP-based features in the preprocessing stage. These
methods can improve results by improving data quality and clinical task complexity.
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3.3.1. EHR Feature Extraction Layer

In this section, we provide a summary of the information extraction for cancer-related
cancer treatment from EHRs that is successfully performed. Deep learning methods have
succeeded great achievement in many domains through deep hierarchical feature construc-
tion and capturing long-range dependencies in data in an effective manner [70]. However,
these methods have needed a huge extent of manual feature engineering and ontology
mapping, which is one reason why such methods have seen limited adoption. Therefore, a
predefined entity or relationship of interest is selected to be used as a feature of interest
by IR to extract medication-related information [46]. In addition, such features include the
hospital category, health condition, type of medication, dosage, entry, mode, bladder, fre-
quency, and doctor information, as shown in Table 3; hospital treatment summaries include
other information, such as hospital category, disease, medication names, medication types,
dosages, entry, mode, reason, and symptom information. For example, free-text medical
records would have to be converted into structured records with predefined slots and fillers
filled with relevant data.

The best treatment for breast cancer depends on the stage of the cancer, the patient’s
overall health, and the patient’s preferences. However, treatment may include surgery,
chemotherapy, radiation therapy, hormone therapy, or targeted therapy. Early-stage cervical
cancer can often be treated with surgery or radiation therapy. More advanced cervical can-
cer may require a combination of surgery, radiation therapy, and chemotherapy. Treatment
may include surgery, chemotherapy, radiation therapy, immunotherapy, or a combination
of these treatments.

In addition, targeted therapy uses high-energy rays to kill cancer cells [71]. However,
radiation therapy can be given externally (from a machine outside the body) or internally
(by placing radioactive material inside the body). Therefore, radiation therapy is used
to shrink tumors, kill cancer cells that have spread to other parts of the body, or prevent
cancer from coming back after treatment. Moreover, chemotherapy is the use of drugs to
kill cancer cells. Chemotherapy drugs can be given by mouth, by injection, or through a
vein. Therefore, raloxifene is a medication that is used to prevent and treat osteoporosis in
postmenopausal women and those on glucocorticoids. It is also used to reduce the risk of
breast cancer in those at high risk. Furthermore, raloxifene is a selective estrogen receptor
modulator (SERM), which means that it acts like estrogen in some tissues, but not others.
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Table 3. Feature extraction for patients ( Pi) i = 6 with diverse syndromes and cancer treatment method.

Patient Feature P1 P2 P3 P4 P5 P6

Record 101 102 103 104 105 106

Syndrome Breast
neoplasm

Cervical
neoplasm Lung cancer Breast

neoplasm Lung cancer Breast
neoplasm

Treatment

Hormone
therapy Teletherapy Immunotherapy Hormone

therapy Immunotherapy Hormone
therapy

Chemotherapy Brachytherapy Targeted
therapy Chemotherapy Targeted

therapy Chemotherapy

SERMs Radiation
therapy Chemotherapy SERMs Chemotherapy SERMs

Doctor Oncologist Oncologist Oncologist Oncologist Oncologist Oncologist

Dosage 21–60 mg 0.40–2.0 Gy/h 58–73 Gy 31–51 mg 46–62 Gy 21–51 mg

Mode nm - - nm - nm

Frequency q.d - - q.d - q.d

Duration 6 months 55 days 4 months 2–3 months 3–6 months 3 months

Reason Healthy Healthy Death Healthy Healthy Death

Gender F F F F M F

Stage I II I II III I

Moreover, cervical cancer is treated with teletherapy, brachytherapy, and radiation
therapy. Teletherapy uses a linear accelerator to deliver radiation from a distance. How-
ever, brachytherapy uses a radioactive source to deliver radiation from within the body.
Moreover, radiation therapy is used alone or in combination with other treatments, such as
surgery or chemotherapy. However, the targeted therapy is a type of treatment that uses
drugs to target specific molecules on cancer cells. Furthermore, immunotherapy is a type
of treatment that uses the body’s own immune system to fight cancer.

3.3.2. EHR Linear Segment Attention Layer

The RNN models sequential data using feedforward neural networks. The hidden
state of neural networks is updated as each time step is received so that they can predict
the outcome based on the inputs they receive. Since RNNs have a recurrent structure, they
are capable of processing sequence data. With this model, the hidden unit will be updated
at each time step, and the length of the sequences (sentences) will not be restricted. The
fixed sentence length achieves the best results in available data [71], with I2B2 datasets.
Variable sentence length is more difficult to represent sentence semantic information, and
the interaction between sentences and entities far from retrieving information becomes
weaker. The extraction, context text, and entity feature achieved the best results in the 2010
challenge reported, which enhanced performance [16]. However, both methods are not
considered features in the current DL model. This study proposes a linear segmentation
attention layer to overcome these limitations. This study proposes a linear segmentation
attention layer to overcome these limitations, as shown in Figure 4.
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LSTM used networks for predicting diagnoses (1–128), using target replication at
each time step along with supporting targets for less-common diagnostic labels as a form
of regularization [72]. In addition to LSTMs and bidirectional LSTMs, gated recurrent
neural GRU tensor networks (GRN-TNs) enable the model to handle various types of
sequence data [73,74]. BiRNN [75,76], is an early RNN model where forward and backward
computations are carried out by the neurons. As a result of high-dimensional hidden
states and nonlinear evolution, RNNs provide accurate predictions throughout many
steps. Iterating over time creates an extremely rich dynamic because each unit uses simple
nonlinearity. To compute hidden input states (hInput = h1, h2,. . .. hn,) in a input sequence
(SInput = x1, x2,. . .. xn), input vectors and output states (yn = y1, y2,. . .. yn). This creates text
based on equations from 1 to n, as shown in Equations (1)–(5).

ht = tanh(Whx xn + Whhht−1 + bh) (1)

ht = tanh
(
Winput + Whidden + bh

)
(2)

Winput = Whxxn,

Whidden = Whhht−1

Ot = Wohht + bo

Ot = Woh(tanh(Whxxn + Whhht−1 + bh)) + bo (3)

Ot = Wohtanh(Whxxn + WohWhhht−1 + Wohbh) + bo (4)

Ot =
1

tanh−1(W ohWhxxn + WohWhhht−1 + Wohbh

)
+ b−1

o

(5)

A weight matrix is an expression that indicates whether a feature vector for input
(ih), output oh hidden state, and hidden-to-hidden (hh) are signified with Wxh, Whh, and
Woh, respectively.

3.4. Evaluation Metrics

Evaluation metrics are used to measure the performance of a machine learning model,
thus allowing us to quantify how well our models are able to make accurate predictions on
unseen data. They are used to compare different models and to track the performance of a
model over time. There are many different evaluation metrics available, each of which is
suited for a particular type of model or task. We utilized the accuracy and F1-score as a
primary metric, while P and R are secondary metrics in our case, as in Equation (6). The
F1-score strikes a balance between recall and precision, making it a valuable metric when
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we need to consider both aspects of classification performance. In contrast, accuracy can
be a reliable measure primarily when class distribution is balanced, as it equally weighs
correct predictions across all classes:

F1 =

(
Precision × Recall
Precision + Recall

)
× 2 (6)

where TP is true positive, and FP and FN is false positive and false negative, respectively.
Performance metrics quantify the performance of models. The following classification
metrics were used to assess the model’s overall viability as a classifier and its performance.
The accuracy prediction is a model in the context of classification, which is the ratio of
correct predictions over the total number of examined instances, as in Equation (7).

accuracy =
TP + TN

TP + TN + FP + FN
. (7)

Precision measures positive patterns that are correctly predicted over the total positive
prediction patterns, as in Equation (8). Additionally, the precision is written as macro and
weight average precision, as in Equations (9) and (10).

Precision =
TP

TP + FP
(8)

Macro average precision =
∑l

i=1
TPi

TPi + FPi

l
(9)

Weight average precision =
∑l

i=1
TPi

TPi + FPi
X ni

l
(10)

Recall is a measure of positive patterns over the total correct predictions. Recall is
calculated for each class; thus, averaging is essential for multiclass model calculation, as in
Equations (11)–(13).

Recall =
TP

TP + FN
(11)

Macro average precision =
∑l

i=1
TPi

TPi + TNi

l
(12)

Weight average precision =
∑l

i=1
TPi

TPi + TNi
X ni

l
(13)

4. Implementation and Results

As part of this section, we first describe the experimental setup and baselines, fol-
lowed by an analysis of the empirical results and a comparison of various models with
varying features.

4.1. Data Preprocess

We used a I2B2-2010 shared task challenge dataset [77]. Three types of entities
and eight types of relationships were manually annotated by experts on discharge sum-
maries from three different hospitals. Types of entities included symptom, test, and treat-
ment/diagnosis of cancer. While the types of relations including treatment are administered
for medical problem (TrAP), treatment improves medical problem (TrIP), treatment causes
medical problem (TrCP), treatment worsens medical problem (TrWP), treatment is not
administered because of medical problem (TrNAP), medical problem indicates medical
problem (PIP), test is conducted to investigate medical problem (TeCP), and test reveals
medical problem (TeRP). Training, development, and test sets were split at a 60:20:20 ratio
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at random. Thus, combining each baseline and feature, besides that from the datasets of
balance data distribution (BDD), we also made comparisons on nonbalance distribution
(NDD) data. The data preprocessing process consists of cleansing data and removing data
noise based on the adopted strategy. Therefore, EHR data should be processed according
to reasonable methods, especially for the preprocessing of the data, as shown in Figure 5.
The statistics of this dataset is shown in Figure 6.
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same circle.

4.2. Parameter Tuning

In our model, we initialized parameters with pretrained 50-dimensional word embed-
dings. In addition, we tuned the parameters on the validation set by random search. The
primary parameters of our model were fitted with the same values, as shown in Table 4.
The number of epochs was chosen by an early stopping strategy on the validation set [78].
We used the five different scenarios (cases 1–5) to configure multiple parameters, which
helped to analyze the same task and compare the evaluation performance.
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Table 4. Parameters with their detailed values for five different scenarios.

Hyperparameters Case 1 Case 2 Case 3 Case 4 Case 5

Learning rates 1 × 10−3 2 × 10−3 3 × 10−3 3 × 10−4 5 × 10−4

Epochs 30 20 20 10 15

Batch sizes 128 64 32 8 16

n_clusters 2 2 2 2 0

Dropout 0.4 0.4 0.2 0.2 0.3

Optimizer Adamax GD RMSprop Adamax AdamW

Weight decay 0.1 0.01 0.01 0.1 0.1

Output layer Softmax - - Softmax Softmax

Pretrain model 12 24 24 12 12

Kernel 1 1 1 1 3

Hidden Layers 768 768 768 768 768

Test size 0.6 0.5 0.4 0.3 0.2

Train size 0.4 0.5 0.6 0.7 0.8

4.2.1. Baseline Discussion

BioBERT is a BERT model that has been pretrained on a biomedical corpus [54]. It
is specifically designed for biomedical natural language processing tasks, such as named
entity recognition and relation extraction.

ClinicalBERT is a BERT model that has been pretrained on a clinical corpus [55]. It
is specifically designed for clinical natural language processing tasks, such as question
answering and clinical decision support.

BioBERT-uncase (https://huggingface.co/cambridgeltl/BioRedditBERT-uncased, ac-
cessed on 28 June 2023) is a version of BioBERT that has been trained on a corpus of text
that has been case-insensitively tokenized [79]. This makes it more efficient for tasks that
do not require case-sensitive tokenization, such as text classification.

RoBERTa-case (https://huggingface.co/Finnish-NLP/roberta-large-finnish-v2, ac-
cessed on 28 June 2023) is a version of RoBERTa that has been trained on a corpus of text
that has been case-sensitively tokenized. This makes it more accurate for tasks that require
case-sensitive tokenization, such as named entity recognition.

These models are all based on the Transformer architecture, which is a neural network
architecture that has been shown to be very effective for natural language processing tasks.
They have all been pretrained on large corpora of text, which allows them to learn the
statistical relationships between words and phrases. This makes them very accurate at a
variety of natural language processing tasks, such as text classification, relation extraction,
and question answering.

4.2.2. Results and Discussion

We outlined n-gram and rich features using the empirical results of I2b2 datasets listed
in Tables 5 and 6. We performed five random runs for each kind of test data and reported
the average results. We also noted that the BioBERT and RoBERTa models fine-tune with the
attention-based method, initially, for baseline. In addition, we used these models without
fine-tuning (baseline1 and baseline2). Therefore, the RoBERTa-base and RoBERTa-large
models were used to study how they perform on biomedical tasks. After being pretrained
with larger batch sizes than BERT, both strategies used dynamic masking strategies to
prevent overmemorization. The I2B2 datasets weighted BDD, outperformed using NBD.
Furthermore, the performance of BDD was also significantly better than that of NDD across
all models and features, as can be seen in Tables 5 and 6. Since the precision of NDD was

https://huggingface.co/cambridgeltl/BioRedditBERT-uncased
https://huggingface.co/Finnish-NLP/roberta-large-finnish-v2
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below the precision of BDD, retrieving information in an imbalanced class distribution was
much more difficult.

Table 5. The evaluation metrics (macro and weight) of our model for parameter tuning case 5 on
I2B2 data.

Distribution
Macro Weight

Split Instance Acc Prec Rec F1 Prec Rec F1

NBD
Test 20% 78.4% 0.5533 0.5371 0.5451 0.7655 0.7637 0.7646

Valid 80% 80% 0.5683 0.5448 0.5563 0.7659 0.7641 0.7650

BDD
Test 20% 88.4% 0.6551 0.6377 0.6463 0.8554 0.8380 0.8466

Valid 80% 89% 0.6689 0.5643 0.6547 0.8593 0.8425 0.8508

Table 6. The evaluation metrics of our model on a test set for parameter tuning cases 1–5.
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Case 1

Acc 27% 29% - 47% 49% 51% 59%

F1 0.217 0.221 - 0.429 0.457 0.452 0.543

P 0.203 0.236 - 0.435 0.443 0.468 0.530

R 0.233 0.208 - 0.423 0.472 0.437 0.557

Case 2

Acc - 41% 50% 48% 54% 58% 64%

F1 - 0.337 0.445 0.425 0.498 0.519 0.614

P - 0.346 0.438 0.436 0.502 0.536 0.605

R - 0.328 0.452 0.415 0.494 0.503 0.623

Case 3

Acc 46% - 63% 51% 68% 66% 76%

F1 0.415 - 0.587 0.465 0.647 0.611 0.724

P 0.405 - 0.560 0.458 0.651 0.625 0.713

R 0.426 - 0.617 0.472 0.643 0.698 0.735

Case 4

Acc 65% 58% 76% 49% 70% 74% 68%

F1 0.586 0.519 0.703 0.431 0.648 0.713 0.642

P 0.600 0.537 0.715 0.445 0.652 0.704 0.655

R 0.573 0.502 0.691 0.418 0.644 0.722 0.630

Case 5

Acc 54% 66% 76% 57% 81% 86% 89%

F1 0.517 0.614 0.730 0.537 0.757 0.806 0.846

P 0.494 0.632 0.725 0.530 0.745 0.815 0.855

R 0.542 0.597 0.735 0.544 0.769 0.797 0.837

Moreover, the recall of the proposed model on NDD in Tables 5 and 6 implies that
nearly half of the information in the test dataset is accurate. Prediction models are often
poor when there is high data imbalance [80]. However, the BDD on I2b2 yielded a higher
evaluation score, including F1-score, precision, and recall, with an F1-score of 84.66%, a
precision of 85.54%, and a recall of 83.80%. Meanwhile, the average macro F1-score was
64.63%, precision was 65.51%, recall was 63.77%, and accuracy was 88.4% on test set.



Sensors 2023, 23, 9355 16 of 23

Meanwhile, for the validation set, the weighted averaged F1-score was 85.08%, pre-
cision was 85.93%, and recall was 84.25%, and the average macro F1-score was 65.47%,
precision was 66.89%, recall was 54.43%, and accuracy was 89%. Based on the same
parameter tuning, we propose a model for testing data.

The evaluation results on EHR datasets are obtained using hyperparameter tunning
cases 1–5. In terms of the evaluation performance of case 1 on baseline 1, 27% accuracy
was achieved; case 2, 29% accuracy; BioBERT-CRF, 47% accuracy; RoBERTa-LSTM, 49%
accuracy; and BioBERT-CRF, 51% accuracy; meanwhile, our proposed model utilized EHR
data and achieved 59% accuracy. Case 2 performed well on baseline2 in terms of evaluation
accuracy, with 41% accuracy; RoBERTa-CRF, 50% accuracy; BioBERT-CRF, 48% accuracy;
RoBERTa-LSTM, 54% accuracy; and BioBERT-CRF, 58% accuracy, and our proposed model
on case 3 performed well in terms of accuracy, with 64% accuracy. According to our
evaluation performance of case 3 on baseline 1, RoBERTa-CRF achieved 63% accuracy,
BioBERT-CRF achieved 51% accuracy, RoBERTa-LSTM achieved 68% accuracy, BioBERT-
CRF achieved 66% accuracy, and our proposed model on case 3 achieved 76% accuracy with
EHR data. A higher evaluation performance was achieved in case 4, while in RoBERTa-
CRF, we were able to achieve 76% accuracy, which was outperformed compared with
our proposed model and the BioBERT-CRF model. Moreover, BioBERT-CRF achieved an
evaluation performance of 74%. According to our proposed model on case 4 on EHR data,
the accuracy was 68%.

In addition, case 5 was evaluated better than cases 1–4, in which baseline 1 achieved
54% accuracy. However, baseline 2 achieve 66% accuracy; F1-score, 0.614; precision, 0.632;
and recall, 0.597. Baseline 2, which uses BioBERT-uncased, achieved lower results than
other models in some tasks, such as RoBERTa and BioBERT. However, BioBERT-uncased
still achieved good results on other tasks, such as question answering (QA). This suggests
that baseline 2 is a promising model for biomedical text mining, and it could be further
improved by training it on a larger dataset and fine-tuning it on specific tasks. Moreover,
RoBERTa-CRF achieved 76% accuracy; F1-score, 0.730; precision, 0.725; and recall, 0.735.
The RoBERTa-CRF model is trained end to end, which means that the parameters of both
RoBERTa and CRF are learned jointly. This allows the model to learn the long-range
dependencies between words that are present in the RoBERTa embeddings, as well as the
short-range dependencies between labels that are present in the CRF model. BioBERT-CRF
achieved 57% accuracy; F1-score, 0.537; precision, 0.530; and recall, 0.544. It has been shown
to be more accurate than other NER models, such as BiLSTM-CRF and CRF-based models.
BioBERT-CRF is also more robust to noise and can handle out-of-domain data better than
other NER models. RoBERTa-LSTM achieved 81% accuracy; F1-score, 0.757; precision,
0.745; and recall 0.769. BioBERT-CRF achieved 86% accuracy; F1-score, 0.806; precision,
0.815, and recall, 0.797.

Furthermore, this study proposed a model on case 5 that shows higher evaluation
performance using EHR data with an accuracy of 89%, F1-score of 0.8466, precision of
0.8559, and recall of 0.8375 on our proposed models. As you can see, the newer proposed
models outperform the BERT-BiLSTM-CRF, BioBERT-CRF, and RoBERTa-CRF models. This
is likely due to the fact that the newer models were trained on larger and more diverse
datasets. Additionally, the newer models were fine-tuned on the specific task of named
entity recognition, which helped to improve their performance. We were able to accomplish
this work much more easily with the help of many existing NLP tools and knowledge
resources, allowing us to use this approach to extract relations. In clinical texts, these
methods demonstrate that deep learning is effective for relation extraction. Our model
evaluation performance using case 5 is compared with that of Sahu et al. [81], Rink et al. [16],
Patrick et al. [77], Divita et al. [82], Bhatia et al. [83], and Ji et al. [84] on an I2B2 dataset, as
shown in Table 7.
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Table 7. The best accuracy of our model compared with the previous model on multiple data.

Models TrCP TeRP TeCP PIP Medic TrAP TrWP

I2b2 2010

Sahu et al. [81] 56.4% 11% 50.6% 64.9% 55% 71.6% 59%

Rink et al. [16] 55.4% 75% 51% 69.4% 76.4% 75.7% 64%

Patrick et al. [77] 48.7% 84% 50% 65.1% - 71.2% 76%

Divita et al. [82] 48.5% 83.7% 37.7% 71% 55% 47.46% 68%

I2b2 2012

Bhatia et al. [83] 17% 26% 82% 48% 56.3 - 78.9%

Ji et al. [84] 29.45% 55.95% 32.79% 21.67% - 47.46% 48%

Our 66% 87% 57% 70% 69% 81% 89%

Comparing the accuracies, our model performed better in the TrWP, Medic, and TrCP
relations in the information retrieval system. As a result of the lack of enough instances and
additional preprocessing, our model’s score on TeRP, TeCP, PIP, and TrAP decreased slightly.
TeCP was achieved by Bharatia [83] at 82%; PIP on Divita [82], 71%; Medic in our model,
79%; and TrAP, 71.6% on a Sahu model [16]. Fortunately, our model greatly improved
over the above-proposed models in retrieving the TrWP, Medic, and TrCP relations on I2B2
data. Medical informatics researchers can focus on new problems using high-quality, freely
available NLP tools for extraction, retrieval, and data mining. Information extraction on
IRD datasets on five cases of hyperparameters was performed, as shown in Figure 7.
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Our proposed model results showed that each set of features advances the extraction
of all case relations. However, some individual features provide information that is more
useful to the extraction of a specific relation. In BIR and translational research, this is one of
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the most important and fundamental tasks to be addressed using DL models, which have
been successful in tackling this task. In terms of the evaluation performance of case 1, low
accuracy was achieved on baseline 1 and baseline 2, at 27%, and 29%, while it achieved
higher in case 5, 54% and 66%, respectively. We also observed that worse results were
achieved in RoBERTa-CRF case 1 ‘0’, as well as in case 2 and case 3 on baseline 1 and 2,
respectively. According to our proposed model in case 4 and case 5, the accuracy was 68%
and 89%, respectively.

4.3. Implications
4.3.1. Theoretical Implications

This study’s findings make the following theoretical implications: First, it contributes
to the existing knowledge by demonstrating the critical role of the framework presented,
including a shift towards integrating advanced technologies, such as machine learning and
artificial intelligence, into healthcare and biomedical research [17,65], investigating and
emphasizing the need for tailored electronic health record (EHR) architectures that consider
factors like organization size and application requirements [1]. The challenges of biomedical
information retrieval underscore the importance of developing more sophisticated indexing
and retrieval methods [58]. Therefore, this study’s findings contribute to our understanding
of novel techniques for retrieving biomedical information of related or similar EHR between
medical problems during symptom detection in existing information through testing and
predicting the treatment in hospital clinical procedures.

Second, this study utilized Transformers, which play a crucial role in BIR for cancer
treatment within EHR. Their exceptional, contextual understanding, sequence-to-sequence
capabilities, and efficiency in handling large-scale data are invaluable in processing complex
medical records [62–64]. As a result, Transformers can seamlessly integrate diverse data
types, including text, images, and structured data, enhancing their utility in aggregating
patient information. This study used pretrained models like BERT [51] and GPT, thus
providing a substantial knowledge base for BIR. Their interpretability and adaptability
improve the understanding of treatment recommendations and enable continuous updates
with the latest medical knowledge. Transformers’ swift data retrieval from EHRs aids in
timely decision making in cancer treatment, ultimately enhancing the quality of patient
care in healthcare [59]. This study could lead to significant improvements in the efficiency
and accuracy of clinical trials, as well as the development of new insights into disease
progression and treatment response.

Finally, considering data distribution, especially in healthcare with imbalanced data,
is critical when developing models for healthcare-related tasks. These theoretical implica-
tions suggest a growing reliance on technology, customization, and data management in
healthcare and biomedical fields [17]. As healthcare data become increasingly complex and
voluminous, it will be essential to develop new and innovative ways to collect, manage,
and analyze these data. This study will require a close collaboration between healthcare
professionals, data scientists, and engineers for further insight.

4.3.2. Practical Implications

This study provides substantive practical implications for healthcare organizers to
include reducing redundant tests, enhancing care coordination, and providing timely and
accurate information to healthcare professionals. First, the importance of attitude and
subjective norms in shaping the focus on electronic health records (EHR) and biomedi-
cal information retrieval (BIR) carries significant implications for the healthcare industry.
It underscores the potential for enhancing patient care through improved information
accessibility, reduced medical errors, and enhanced communication among healthcare pro-
fessionals. Successful EHR and BIR implementation hinges on the willingness and support
of both healthcare providers and organizations. Understanding the factors influencing
these attitudes and norms can guide strategies to encourage technology adoption. This
can be achieved through training and education for providers to grasp the benefits and
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effective use of these technologies, as well as by introducing incentives, such as government
financial support, to drive their adoption.

Second, this research reveals the critical nature of software tools: Mention of tools
like MEDREADFAST, which is designed to help clinicians access information in EHRs
quickly, highlights the practical use of software solutions in healthcare. Such tools can
significantly improve the efficiency of healthcare professionals and the quality of care they
provide. A healthcare organization is using this study to track the quality of care that is
being provided. The tool collects data from a variety of sources, including patient surveys
and clinical outcomes data.

Third, the effectiveness of the discussion of data preprocessing methods emphasizes
the importance of preparing healthcare data for analysis. This finding has practical impli-
cations for data quality and the successful implementation of machine learning models
in healthcare.

5. Conclusions and Future Work

This study presents a multifaceted approach to address the challenges and opportuni-
ties in biomedical information retrieval (BIR) within electronic health records (EHRs). With
the expanding landscape of electronic health data, there is a growing need for innovative
solutions to provide clinicians and researchers with swift access to critical patient informa-
tion. Therefore, we introduced an enhanced biomedical language model empowered by
biomedical knowledge graphs to elevate BIR tasks. A key contribution lies in our novel
techniques for biomedical information retrieval within EHRs, focusing on symptom detec-
tion and treatment prediction. Our approach outperformed state-of-the-art BIR systems,
excelling in learning semantic relationships within biomedical documents, even in the face
of complex clinical texts.

Moreover, these study results lead to a broad outline of the strengths and weaknesses
of diverse models in terms of predictive performance and training efficiency. First, in terms
of performance, we meticulously examined the performance of different models across a
spectrum of evaluation criteria, focusing on predictive accuracy and training/decoding
efficiency. Specifically, we modified a standard linear chain, through rigorous testing on
the I2b2 datasets; we conducted five random runs for each test data category and reported
average results. Our evaluation encompassed various strategies, including fine-tuning
BioBERT and RoBERTa models with attention-based methods as baselines. We observed
that the weighted balance data distribution (BDD) outperformed the nonbalance distributed
data (NDD) in terms of precision, particularly highlighting the challenges of retrieving
information in imbalanced class distributions.

Interestingly, the accuracy levels achieved via these methods are higher than the
intercoder agreement levels, as evaluated on the same test data and according to the same
evaluation of accuracy/agreement. This evaluation is especially noteworthy since the
feature set used in our work is fairly standard, as widely believed, as remarked in [3,4]. Our
results, obtained via a BDD system, achieved a remarkable precision, recall, and F1-score of
85.54%, 83.80%, and 84.66%, respectively, underscoring its superiority. In particular, the
experiments we conducted demonstrated robust performance across different evaluation
cases on EHRs datasets, achieving notable accuracy and outperforming several baseline
models. It is worth noting that the RoBERTa-CRF and BioBERT-CRF models showed
promising results but with increased complexity. Overall, our findings shed light on the
strengths and limitations of various models, offering valuable insights into their practical
utility in biomedical information extraction tasks.

In essence, our proposed approach stands as a testament to the transformative potential
of cutting-edge technology in the realm of healthcare informatics, offering a pathway
towards more informed, efficient, and effective healthcare delivery. We anticipate that our
research will inspire further exploration, collaboration, and advancements in this critical
field, ultimately benefiting both clinicians and patients alike.



Sensors 2023, 23, 9355 20 of 23

Author Contributions: Conceptualization, P.N.A. and Y.L.; methodology, P.N.A. and K.K.; software,
P.N.A., K.K. and U.B.; validation, P.N.A., K.K. and U.B.; formal analysis, P.N.A.; investigation,
Y.L.; resources, P.N.A., K.K. and T.J.; data curation, P.N.A., K.K. and U.B.; writing—original draft
preparation, Y.L. and T.J.; writing—review and editing, P.N.A. and U.B.; visualization, P.N.A., K.K.,
U.B. and T.J.; supervision, Y.L.; project administration, P.N.A.; funding acquisition, P.N.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by the National Natural Science Foundation of China
under contract 62176074.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Researchers interested in accessing the data for validation or further
analysis can contact the corresponding author to discuss data availability and permissions.

Acknowledgments: We would also like to thank all authors for their advice and assistance, which
kept our progress on schedule. The authors would like to acknowledge the support of the Na-
tional Natural Science Foundation of China for paying the article processing charges (APC) of
this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Matson, R.P.; Niesen, M.J.; Levy, E.R.; Opp, D.N.; Lenehan, P.J.; Donadio, G.; O’Horo, J.C.; Venkatakrishnan, A.J.; Badley, A.D.;

Soundararajan, V. Paediatric Safety Assessment of BNT162b2 Vaccination in a Multistate Hospital-Based Electronic Health Record
System in the USA: A Retrospective Analysis. Lancet Digit. Health 2023, 5, e206–e216. [CrossRef]

2. Polnaszek, B.; Gilmore-Bykovskyi, A.; Hovanes, M.; Roiland, R.; Ferguson, P.; Brown, R.; Kind, A.J. Overcoming the Challenges
of Unstructured Data in Multi-Site, Electronic Medical Record-Based Abstraction. Med. Care 2016, 54, e65. [CrossRef] [PubMed]

3. Howard, J.; Clark, E.C.; Friedman, A.; Crosson, J.C.; Pellerano, M.; Crabtree, B.F.; Karsh, B.-T.; Jaen, C.R.; Bell, D.S.; Cohen, D.J.
Electronic Health Record Impact on Work Burden in Small, Unaffiliated, Community-Based Primary Care Practices. J. Gen. Intern.
Med. 2013, 28, 107–113. [CrossRef] [PubMed]

4. Nadarajah, R.; Wu, J.; Hogg, D.; Raveendra, K.; Nakao, Y.M.; Nakao, K.; Arbel, R.; Haim, M.; Zahger, D.; Parry, J. Prediction
of Short-Term Atrial Fibrillation Risk Using Primary Care Electronic Health Records. Heart 2023, 109, 1072–1079. [CrossRef]
[PubMed]

5. Kreimeyer, K.; Foster, M.; Pandey, A.; Arya, N.; Halford, G.; Jones, S.F.; Forshee, R.; Walderhaug, M.; Botsis, T. Natural Language
Processing Systems for Capturing and Standardizing Unstructured Clinical Information: A Systematic Review. J. Biomed. Inform.
2017, 73, 14–29. [CrossRef] [PubMed]

6. Luís, C.; Guerra-Carvalho, B.; Braga, P.C.; Guedes, C.; Patrício, E.; Alves, M.G.; Fernandes, R.; Soares, R. The Influence of
Adipocyte Secretome on Selected Metabolic Fingerprints of Breast Cancer Cell Lines Representing the Four Major Breast Cancer
Subtypes. Cells 2023, 12, 2123. [CrossRef] [PubMed]

7. Sharma, D.C. India Still Struggles with Rural Doctor Shortages. Lancet 2015, 386, 2381–2382. [CrossRef] [PubMed]
8. Savova, G.K.; Danciu, I.; Alamudun, F.; Miller, T.; Lin, C.; Bitterman, D.S.; Tourassi, G.; Warner, J.L. Use of Natural Language

Processing to Extract Clinical Cancer Phenotypes from Electronic Medical RecordsNatural Language Processing for Cancer
Phenotypes from EMRs. Cancer Res. 2019, 79, 5463–5470. [CrossRef]

9. Carrell, D.S.; Schoen, R.E.; Leffler, D.A.; Morris, M.; Rose, S.; Baer, A.; Crockett, S.D.; Gourevitch, R.A.; Dean, K.M.; Mehrotra, A.
Challenges in Adapting Existing Clinical Natural Language Processing Systems to Multiple, Diverse Health Care Settings. J. Am.
Med. Inform. Assoc. 2017, 24, 986–991. [CrossRef] [PubMed]

10. Tamang, S.; Humbert-Droz, M.; Gianfrancesco, M.; Izadi, Z.; Schmajuk, G.; Yazdany, J. Practical Considerations for Developing
Clinical Natural Language Processing Systems for Population Health Management and Measurement. JMIR Med. Inform. 2023,
11, e37805. [CrossRef]

11. Anderson, J.E.; Chang, D.C. Using Electronic Health Records for Surgical Quality Improvement in the Era of Big Data. JAMA
Surg. 2015, 150, 24–29. [CrossRef] [PubMed]

12. Chen, X.; Ouyang, C.; Liu, Y.; Bu, Y. Improving the Named Entity Recognition of Chinese Electronic Medical Records by
Combining Domain Dictionary and Rules. Int. J. Environ. Res. Public Health 2020, 17, 2687. [CrossRef]

13. Buthelezi, L.A.; Pillay, S.; Ntuli, N.N.; Gcanga, L.; Guler, R. Antisense Therapy for Infectious Diseases. Cells 2023, 12, 2119.
[CrossRef] [PubMed]

14. Dong, X.; Halevy, A. Indexing Dataspaces. In Proceedings of the 2007 ACM SIGMOD International Conference on Management
of Data, Beijing, China, 11–14 June 2007; pp. 43–54.

15. Jensen, P.B.; Jensen, L.J.; Brunak, S. Mining Electronic Health Records: Towards Better Research Applications and Clinical Care.
Nat. Rev. Genet. 2012, 13, 395–405. [CrossRef]

https://doi.org/10.1016/S2589-7500(22)00253-9
https://doi.org/10.1097/MLR.0000000000000108
https://www.ncbi.nlm.nih.gov/pubmed/27624585
https://doi.org/10.1007/s11606-012-2192-4
https://www.ncbi.nlm.nih.gov/pubmed/22926633
https://doi.org/10.1136/heartjnl-2022-322076
https://www.ncbi.nlm.nih.gov/pubmed/36759177
https://doi.org/10.1016/j.jbi.2017.07.012
https://www.ncbi.nlm.nih.gov/pubmed/28729030
https://doi.org/10.3390/cells12172123
https://www.ncbi.nlm.nih.gov/pubmed/37681855
https://doi.org/10.1016/S0140-6736(15)01231-3
https://www.ncbi.nlm.nih.gov/pubmed/26700521
https://doi.org/10.1158/0008-5472.CAN-19-0579
https://doi.org/10.1093/jamia/ocx039
https://www.ncbi.nlm.nih.gov/pubmed/28419261
https://doi.org/10.2196/37805
https://doi.org/10.1001/jamasurg.2014.947
https://www.ncbi.nlm.nih.gov/pubmed/25372451
https://doi.org/10.3390/ijerph17082687
https://doi.org/10.3390/cells12162119
https://www.ncbi.nlm.nih.gov/pubmed/37626929
https://doi.org/10.1038/nrg3208


Sensors 2023, 23, 9355 21 of 23

16. Rink, B.; Harabagiu, S.; Roberts, K. Automatic Extraction of Relations between Medical Concepts in Clinical Texts. J. Am. Med.
Inform. Assoc. 2011, 18, 594–600. [CrossRef] [PubMed]

17. Mukherjea, S.; Bamba, B.; Kankar, P. Information Retrieval and Knowledge Discovery Utilizing a Biomedical Patent Semantic
Web. IEEE Trans. Knowl. Data Eng. 2005, 17, 1099–1110. [CrossRef]

18. Giglia, E. Quertle and KNALIJ: Searching PubMed Has Never Been so Easy and Effective. Eur. J. Phys. Rehabil. Med. 2011, 47,
687–690. [PubMed]

19. Bao, Y.; Deng, Z.; Wang, Y.; Kim, H.; Armengol, V.D.; Acevedo, F.; Ouardaoui, N.; Wang, C.; Parmigiani, G.; Barzilay, R. Using
Machine Learning and Natural Language Processing to Review and Classify the Medical Literature on Cancer Susceptibility
Genes. JCO Clin. Cancer Inform. 2019, 1, 1–9. [CrossRef]

20. Kilicoglu, H.; Demner-Fushman, D.; Rindflesch, T.C.; Wilczynski, N.L.; Haynes, R.B. Towards Automatic Recognition of
Scientifically Rigorous Clinical Research Evidence. J. Am. Med. Inform. Assoc. 2009, 16, 25–31. [CrossRef] [PubMed]

21. Kilicoglu, H. Biomedical Text Mining for Research Rigor and Integrity: Tasks, Challenges, Directions. Brief. Bioinform. 2018, 19,
1400–1414. [CrossRef] [PubMed]

22. Saiz, F.S.; Sanders, C.; Stevens, R.; Nielsen, R.; Britt, M.; Yuravlivker, L.; Preininger, A.M.; Jackson, G.P. Artificial Intelligence
Clinical Evidence Engine for Automatic Identification, Prioritization, and Extraction of Relevant Clinical Oncology Research. JCO
Clin. Cancer Inform. 2021, 5, 102–111. [CrossRef] [PubMed]

23. Zhou, P.; Shi, W.; Tian, J.; Qi, Z.; Li, B.; Hao, H.; Xu, B. Attention-Based Bidirectional Long Short-Term Memory Networks for
Relation Classification. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), Berlin, Germany, 7–12 August 2016; pp. 207–212.

24. Lin, Y.; Shen, S.; Liu, Z.; Luan, H.; Sun, M. Neural Relation Extraction with Selective Attention over Instances. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, 7–12
August 2016; pp. 2124–2133.

25. Mahdi, S.S.; Battineni, G.; Khawaja, M.; Allana, R.; Siddiqui, M.K.; Agha, D. How Does Artificial Intelligence Impact Digital
Healthcare Initiatives? A Review of AI Applications in Dental Healthcare. Int. J. Inf. Manag. Data Insights 2023, 3, 100144.
[CrossRef]

26. Strunga, M.; Urban, R.; Surovková, J.; Thurzo, A. Artificial Intelligence Systems Assisting in the Assessment of the Course and
Retention of Orthodontic Treatment. Healthcare 2023, 11, 683. [CrossRef] [PubMed]

27. Segev, A.; Leshno, M.; Zviran, M. Internet as a Knowledge Base for Medical Diagnostic Assistance. Expert Syst. Appl. 2007, 33,
251–255. [CrossRef]

28. Tsipouras, M.G.; Exarchos, T.P.; Fotiadis, D.I.; Kotsia, A.P.; Vakalis, K.V.; Naka, K.K.; Michalis, L.K. Automated Diagnosis of
Coronary Artery Disease Based on Data Mining and Fuzzy Modeling. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 447–458.
[CrossRef]

29. Liu, Y.; Lapata, M. Text Summarization with Pretrained Encoders. arXiv 2019, arXiv:1908.08345.
30. El-Kassas, W.S.; Salama, C.R.; Rafea, A.A.; Mohamed, H.K. Automatic Text Summarization: A Comprehensive Survey. Expert

Syst. Appl. 2021, 165, 113679. [CrossRef]
31. Du, Y.; Li, Q.; Wang, L.; He, Y. Biomedical-Domain Pre-Trained Language Model for Extractive Summarization. Knowl.-Based Syst.

2020, 199, 105964. [CrossRef]
32. Aaditya, M.D.; Lal, D.M.; Singh, K.P.; Ojha, M. Layer Freezing for Regulating Fine-Tuning in BERT for Extractive Text Summariza-

tion. In Proceedings of the PACIS, Dubai, United Arab Emirates, 12 July 2021; p. 182.
33. Moradi, M.; Dorffner, G.; Samwald, M. Deep Contextualized Embeddings for Quantifying the Informative Content in Biomedical

Text Summarization. Comput. Methods Programs Biomed. 2020, 184, 105117. [CrossRef]
34. Padmakumar, V.; He, H. Unsupervised Extractive Summarization Using Pointwise Mutual Information. In Proceedings of the

16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, Online, 19–23 April
2021; pp. 2505–2512.

35. Wang, B.; Xie, Q.; Pei, J.; Chen, Z.; Tiwari, P.; Li, Z.; Fu, J. Pre-Trained Language Models in Biomedical Domain: A Systematic
Survey. ACM Comput. Surv. 2023, 56, 1–52. [CrossRef]

36. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A. Language
Models Are Few-Shot Learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901.

37. Feng, F.; Yang, Y.; Cer, D.; Arivazhagan, N.; Wang, W. Language-Agnostic Bert Sentence Embedding. arXiv 2020, arXiv:2007.01852.
38. Tay, Y.; Dehghani, M.; Bahri, D.; Metzler, D. Efficient Transformers: A Survey. ACM Comput. Surv. CSUR 2020, 55, 109. [CrossRef]
39. Sanh, V.; Debut, L.; Chaumond, J.; Wolf, T. DistilBERT, a Distilled Version of BERT: Smaller, Faster, Cheaper and Lighter. arXiv

2019, arXiv:1910.01108.
40. Mutlu, B.; Sezer, E.A. Enhanced Sentence Representation for Extractive Text Summarization: Investigating the Syntactic and

Semantic Features and Their Contribution to Sentence Scoring. Expert Syst. Appl. 2023, 227, 120302. [CrossRef]
41. Qiu, J.; Wang, Q.; Zhou, Y.; Ruan, T.; Gao, J. Fast and Accurate Recognition of Chinese Clinical Named Entities with Residual

Dilated Convolutions. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),
Madrid, Spain, 3–6 December 2018; IEEE: New York, NY, USA, 2018; pp. 935–942.

42. Demner-Fushman, D.; Antani, S.; Simpson, M.; Thoma, G.R. Design and Development of a Multimodal Biomedical Information
Retrieval System. J. Comput. Sci. Eng. 2012, 6, 168–177. [CrossRef]

https://doi.org/10.1136/amiajnl-2011-000153
https://www.ncbi.nlm.nih.gov/pubmed/21846787
https://doi.org/10.1109/TKDE.2005.130
https://www.ncbi.nlm.nih.gov/pubmed/22222966
https://doi.org/10.1200/CCI.19.00042
https://doi.org/10.1197/jamia.M2996
https://www.ncbi.nlm.nih.gov/pubmed/18952929
https://doi.org/10.1093/bib/bbx057
https://www.ncbi.nlm.nih.gov/pubmed/28633401
https://doi.org/10.1200/CCI.20.00087
https://www.ncbi.nlm.nih.gov/pubmed/33439724
https://doi.org/10.1016/j.jjimei.2022.100144
https://doi.org/10.3390/healthcare11050683
https://www.ncbi.nlm.nih.gov/pubmed/36900687
https://doi.org/10.1016/j.eswa.2006.04.013
https://doi.org/10.1109/TITB.2007.907985
https://doi.org/10.1016/j.eswa.2020.113679
https://doi.org/10.1016/j.knosys.2020.105964
https://doi.org/10.1016/j.cmpb.2019.105117
https://doi.org/10.1145/3611651
https://doi.org/10.1145/3530811
https://doi.org/10.1016/j.eswa.2023.120302
https://doi.org/10.5626/JCSE.2012.6.2.168


Sensors 2023, 23, 9355 22 of 23

43. Mohan, S.; Fiorini, N.; Kim, S.; Lu, Z. A Fast Deep Learning Model for Textual Relevance in Biomedical Information Retrieval. In
Proceedings of the 2018 World Wide Web Conference, Lyon, France, 23–27 April 2018; International World Wide Web Conferences
Steering Committee: Republic and Canton of Geneva, CHE, 2018; pp. 77–86.

44. Huang, X.; Hu, Q. A Bayesian Learning Approach to Promoting Diversity in Ranking for Biomedical Information Retrieval. In
Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Boston,
MA, USA, 19–23 July 2009; Association for Computing Machinery: New York, NY, USA, 2009; pp. 307–314.

45. Trieschnigg, D. Proof of Concept: Concept-Based Biomedical Information Retrieval. SIGIR Forum 2011, 44, 89. [CrossRef]
46. Xu, B.; Lin, H.; Lin, Y. Learning to Refine Expansion Terms for Biomedical Information Retrieval Using Semantic Resources.

IEEE/ACM Trans. Comput. Biol. Bioinform. 2019, 16, 954–966. [CrossRef]
47. Xu, B.; Lin, H.; Lin, Y.; Ma, Y.; Yang, L.; Wang, J.; Yang, Z. Improve Biomedical Information Retrieval Using Modified Learning to

Rank Methods. IEEE/ACM Trans. Comput. Biol. Bioinform. 2018, 15, 1797–1809. [CrossRef] [PubMed]
48. Hanauer, D.A.; Barnholtz-Sloan, J.S.; Beno, M.F.; Del Fiol, G.; Durbin, E.B.; Gologorskaya, O.; Harris, D.; Harnett, B.; Kawamoto,

K.; May, B. Electronic Medical Record Search Engine (EMERSE): An Information Retrieval Tool for Supporting Cancer Research.
JCO Clin. Cancer Inform. 2020, 4, 454–463. [CrossRef]

49. Adler-Milstein, J.; Bates, D.W. Paperless Healthcare: Progress and Challenges of an IT-Enabled Healthcare System. Bus. Horiz.
2010, 53, 119–130. [CrossRef]

50. Zhu, D.; Wu, S.T.; Masanz, J.J.; Carterette, B.; Liu, H. Using Discharge Summaries to Improve Information Retrieval in Clinical
Domain. In Proceedings of the CLEF, Valencia, Spain, 11 September 2013.

51. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-Training of Deep Bidirectional Transformers for Language Understand-
ing. arXiv 2018, arXiv:1810.04805.

52. Nguyen, D.Q.; Verspoor, K. End-to-End Neural Relation Extraction Using Deep Biaffine Attention. In Proceedings of the European
Conference on Information Retrieval, Cologne, Germany, 14–18 April 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp.
729–738.

53. Alsentzer, E.; Murphy, J.R.; Boag, W.; Weng, W.-H.; Jin, D.; Naumann, T.; McDermott, M. Publicly Available Clinical BERT
Embeddings. arXiv 2019, arXiv:1904.03323.

54. Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So, C.H.; Kang, J. BioBERT: A Pre-Trained Biomedical Language Representation Model
for Biomedical Text Mining. Bioinformatics 2020, 36, 1234–1240. [CrossRef]

55. Frei, J.; Frei-Stuber, L.; Kramer, F. GERNERMED++: Semantic Annotation in German Medical NLP through Transfer-Learning,
Translation and Word Alignment. J. Biomed. Inform. 2023, 147, 104513. [CrossRef]

56. Jettakul, A.; Wichadakul, D.; Vateekul, P. Relation Extraction between Bacteria and Biotopes from Biomedical Texts with Attention
Mechanisms and Domain-Specific Contextual Representations. BMC Bioinform. 2019, 20, 627. [CrossRef] [PubMed]

57. Li, F.; Jin, Y.; Liu, W.; Rawat, B.P.S.; Cai, P.; Yu, H. Fine-Tuning Bidirectional Encoder Representations from Transformers
(BERT)–Based Models on Large-Scale Electronic Health Record Notes: An Empirical Study. JMIR Med. Inform. 2019, 7, e14830.
[CrossRef]

58. Jahanbakhsh, M.; Rabiei, R.; Asadi, F.; Moghaddasi, H. Electronic Health Record Architecture: A Systematic Review. J. Paramed.
Sci. 2016, 7, 29–36.

59. Ahmad, P.N.; Shah, A.M.; Lee, K. A Review on Electronic Health Record Text-Mining for Biomedical Name Entity Recognition in
Healthcare Domain. Healthcare 2023, 11, 1268. [CrossRef]

60. Pruski, C.; Wisniewski, F. Efficient Medical Information Retrieval in Encrypted Electronic Health Records. In Quality of Life
through Quality of Information; IOS Press: Amsterdam, The Netherlands, 2012; pp. 225–229.

61. Lerner, I.; Paris, N.; Tannier, X. Terminologies Augmented Recurrent Neural Network Model for Clinical Named Entity Recogni-
tion. J. Biomed. Inform. 2020, 102, 103356. [CrossRef]

62. Li, X.; Wong, K.-C. Evolutionary Multiobjective Clustering and Its Applications to Patient Stratification. IEEE Trans. Cybern. 2019,
49, 1680–1693. [CrossRef] [PubMed]

63. Li, I.; Pan, J.; Goldwasser, J.; Verma, N.; Wong, W.P.; Nuzumlalı, M.Y.; Rosand, B.; Li, Y.; Zhang, M.; Chang, D. Neural Natural
Language Processing for Unstructured Data in Electronic Health Records: A Review. arXiv 2021, arXiv:2107.02975. [CrossRef]

64. Korn, P.; Sidiropoulos, N.; Faloutsos, C.; Siegel, E.; Protopapas, Z. Fast and Effective Retrieval of Medical Tumor Shapes. IEEE
Trans. Knowl. Data Eng. 1998, 10, 889–904. [CrossRef]

65. Jain, H.; Thao, C.; Zhao, H. Enhancing Electronic Medical Record Retrieval through Semantic Query Expansion. Inf. Syst. e-Bus.
Manag. 2012, 10, 165–181. [CrossRef]

66. Yang, B.; Ye, M.; Tan, Q.; Yuen, P.C. Cross-Domain Missingness-Aware Time-Series Adaptation With Similarity Distillation in
Medical Applications. IEEE Trans. Cybern. 2022, 52, 3394–3407. [CrossRef] [PubMed]

67. Porkodi, V.; Karuppusamy, S.A. Classification of Chronic Obstructive Pulmonary Disease (COPD) Using Gabor Filter With SVM
Classifier. Int. J. Eng. Adv. Technol. 2019, 9, 787–790. [CrossRef]

68. Jagannatha, A.N.; Yu, H. Bidirectional RNN for Medical Event Detection in Electronic Health Records. Proc. Conf. 2016, 2016, 473.
69. Luu, T.M.; Phan, R.; Davey, R.; Chetty, G. Clinical Name Entity Recognition Based on Recurrent Neural Networks. In Proceedings

of the 2018 18th International Conference on Computational Science and Applications (ICCSA), Melbourne, VIC, Australia, 2–5
July 2018; IEEE: New York, NY, USA, 2018; pp. 1–9.

https://doi.org/10.1145/1924475.1924500
https://doi.org/10.1109/TCBB.2018.2801303
https://doi.org/10.1109/TCBB.2016.2578337
https://www.ncbi.nlm.nih.gov/pubmed/27323371
https://doi.org/10.1200/CCI.19.00134
https://doi.org/10.1016/j.bushor.2009.10.004
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1016/j.jbi.2023.104513
https://doi.org/10.1186/s12859-019-3217-3
https://www.ncbi.nlm.nih.gov/pubmed/31795930
https://doi.org/10.2196/14830
https://doi.org/10.3390/healthcare11091268
https://doi.org/10.1016/j.jbi.2019.103356
https://doi.org/10.1109/TCYB.2018.2817480
https://www.ncbi.nlm.nih.gov/pubmed/29993679
https://doi.org/10.1016/j.cosrev.2022.100511
https://doi.org/10.1109/69.738356
https://doi.org/10.1007/s10257-010-0133-5
https://doi.org/10.1109/TCYB.2020.3011934
https://www.ncbi.nlm.nih.gov/pubmed/32795976
https://doi.org/10.35940/ijeat.A1392.109119


Sensors 2023, 23, 9355 23 of 23

70. Lasko, T.A.; Denny, J.C.; Levy, M.A. Computational Phenotype Discovery Using Unsupervised Feature Learning over Noisy,
Sparse, and Irregular Clinical Data. PLoS ONE 2013, 8, e66341. [CrossRef]

71. Rotsztejn, J.; Hollenstein, N.; Zhang, C. Eth-Ds3lab at Semeval-2018 Task 7: Effectively Combining Recurrent and Convolutional
Neural Networks for Relation Classification and Extraction. arXiv 2018, arXiv:1804.02042.

72. Song, H.; Rajan, D.; Thiagarajan, J.; Spanias, A. Attend and Diagnose: Clinical Time Series Analysis Using Attention Models.
In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32, pp.
4090–4098.

73. Graves, A.; Schmidhuber, J. Framewise Phoneme Classification with Bidirectional LSTM and Other Neural Network Architectures.
Neural Netw. 2005, 18, 602–610. [CrossRef]

74. Tjandra, A.; Sakti, S.; Manurung, R.; Adriani, M.; Nakamura, S. Gated Recurrent Neural Tensor Network. In Proceedings of the
2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; IEEE: New York, NY,
USA, 2016; pp. 448–455.

75. Yuan, M.; Ren, J. Numerical Feature Transformation-Based Sequence Generation Model for Multi-Disease Diagnosis. Int. J.
Pattern Recognit. Artif. Intell. 2021, 35, 2159034. [CrossRef]

76. Liu, Y.; Gou, X. A Text Classification Method Based on Graph Attention Networks. In Proceedings of the 2021 International
Conference on Information Technology and Biomedical Engineering (ICITBE), Nanchang, China, 24–26 December 2021; IEEE:
New York, NY, USA, 2021; pp. 35–39.

77. Patrick, J.D.; Nguyen, D.H.M.; Wang, Y.; Li, M. I2b2 Challenges in Clinical Natural Language Processing 2010. In Proceedings of
the 2010 i2b2/VA Workshop on Challenges in Natural Language Processing for Clinical Data, i2b2, Boston, MA, USA, 2010.

78. Prechelt, L. Automatic Early Stopping Using Cross Validation: Quantifying the Criteria. Neural Netw. 1998, 11, 761–767. [CrossRef]
[PubMed]

79. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. HuggingFace’s
Transformers: State-of-the-Art Natural Language Processing. arXiv 2019, arXiv:1910.03771.

80. Chawla, N.V.; Japkowicz, N.; Kotcz, A. Special Issue on Learning from Imbalanced Data Sets. ACM SIGKDD Explor. Newsl. 2004,
6, 1–6. [CrossRef]

81. Sahu, S.K.; Anand, A.; Oruganty, K.; Gattu, M. Relation Extraction from Clinical Texts Using Domain Invariant Convolutional
Neural Network. arXiv 2016, arXiv:1606.09370.

82. Solt, I.; Szidarovszky, F.P.; Tikk, D. Concept, Assertion and Relation Extraction at the 2010 I2b2 Relation Extraction Challenge
Using Parsing Information and Dictionaries. In Proceedings of the 4th i2b2/VA Workshop 2010, Washington, DC, USA, 13
November 2010.

83. Bhatia, S.; Kumar, A.; Khan, M.M. Role of Genetic Algorithm in Optimization of Hindi Word Sense Disambiguation. IEEE Access
2022, 10, 75693–75707. [CrossRef]

84. Ji, Z.; Ghiasvand, O.; Wu, S.; Xu, H. A Discrete Joint Model for Entity and Relation Extraction from Clinical Notes. AMIA Summits
Transl. Sci. Proc. 2021, 2021, 315. [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1371/annotation/0c88e0d5-dade-4376-8ee1-49ed4ff238e2
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1142/S0218001421590345
https://doi.org/10.1016/S0893-6080(98)00010-0
https://www.ncbi.nlm.nih.gov/pubmed/12662814
https://doi.org/10.1145/1007730.1007733
https://doi.org/10.1109/ACCESS.2022.3190406
https://www.ncbi.nlm.nih.gov/pubmed/34457146

	Introduction 
	Related Work 
	Artificial Intelligence (AI)–Assisted Tools 
	Word-Level Attention Mechanisms 
	Pretrained Language Models (PLMs) for Summarization 

	Method 
	Electronic Health Records Architecture 
	Biomedical Information Retrieval (BIR) Approach 
	Recurrent Neural Networks (RNNs) 
	EHR Feature Extraction Layer 
	EHR Linear Segment Attention Layer 

	Evaluation Metrics 

	Implementation and Results 
	Data Preprocess 
	Parameter Tuning 
	Baseline Discussion 
	Results and Discussion 

	Implications 
	Theoretical Implications 
	Practical Implications 


	Conclusions and Future Work 
	References

