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Abstract: Carrier phase measurements currently play a crucial role in achieving rapid and highly
accurate positioning of global navigation satellite systems (GNSS). Resolving the integer ambiguity
correctly is one of the key steps in this process. To address the inefficiency and slow search problem
during ambiguity solving, we propose a single-frequency GNSS integer ambiguity solving based
on an adaptive genetic particle swarm optimization (AGPSO) algorithm. Initially, we solve for
the floating-point solution and its corresponding covariance matrix using the carrier-phase double
difference equation. Subsequently, we decorrelate it using the inverse integer Cholesky algorithm.
Furthermore, we introduce an improved fitness function to enhance convergence and search per-
formance. Finally, we combine a particle swarm optimization algorithm with adaptive weights to
conduct an integer ambiguity search, where each generation selectively undergoes half-random
crossover and mutation operations to facilitate escaping local optima. Comparative studies against
traditional algorithms and other intelligent algorithms demonstrate that the AGPSO algorithm ex-
hibits faster convergence rates, improved stability in integer ambiguity search results, and in practical
experiments the baseline accuracy of the solution is within 0.02 m, which has some application value
in the practical situation of short baselines.

Keywords: carrier phase measurement; global navigation satellite system (GNSS); integer ambiguity;
adaptive genetic particle swarm optimization (AGPSO)

1. Introduction

In the Global Navigation Satellite System (GNSS), achieving highly accurate position-
ing results heavily relies on utilizing carrier phase observations to calculate the receiver-
to-satellite distance. However, during carrier phase observation, the receiver can only
measure the non-integer portion of the carrier phase, and each measurement introduces an
unknown constant referred to as the integer ambiguity [1]. Consequently, resolving this
ambiguity is crucial for attaining fast and precise localization. Ambiguity resolution in-
volves converting floating-point resolution into integer values; when correctly determining
the integer ambiguity of the carrier phase, localization accuracy at the centimeter or even
millimeter level can be achieved. Conversely, an incorrect determination of this ambiguity
will lead to jumps in localization results due to deviations in ambiguity. For GNSS-RTK
positioning, the accuracy and stability of fixing this integer ambiguity determine both
positioning accuracy and reliability. Therefore, resolving the integer ambiguity has become
a prominent research focus within GNSS positioning and navigation.

Over the decades, a variety of algorithms have emerged for solving integer ambiguity
problems, including the Least Squares Ambiguity Search Method (LSAST) [2], Fast Ambigu-
ity Solving Algorithm (FARA) [3], Least Squares Ambiguity Decorrelation Leveling Method
(LAMBDA) [4,5], Fast Ambiguity Search Filter (FASF) [6], Triple-Frequency Carrier Ambi-
guity Algorithms (TCAR) [7], and others. Among these methods, LAMBDA has gained
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widespread adoption and is considered the standard algorithm for ambiguity solving in
most research centers. This algorithm consists of two main steps: firstly, employing the
least squares method to obtain a floating solution for the ambiguity; secondly, transforming
the ambiguity parameters and their covariance matrices from their original space to a new
space using integer Gaussian transformation (also known as z-transformation), thereby
achieving reduced correlation of the ambiguity. Finally, by searching for an optimal solution
within this transformed space [4,5], fixation of the ambiguity is accomplished. Recently,
significant advancements have been made by researchers in the field of the LAMBDA
algorithm. Teunissen et al. [8] proposed a contraction method to reduce the search space.
The basic idea is that once a new ambiguities vector group is obtained during the search
process, its corresponding objective function value is calculated, and if the objective func-
tion value is less than χ2, the new χ2 value is equal to that objective function value. In this
way, the search space is gradually reduced and an optimal ambiguities group is finally
obtained. Chang et al. [9] proposed an enhanced method for integer least squares estima-
tion: MLAMBDA, which enhances computational efficiency during the search phase by
reducing the complexity of the LAMBDA method. PEI et al. [10] improved fixed integer
ambiguity efficiency by establishing initial search space and optimally updating the upper
and lower bounds of the LAMBDA algorithm. Wang et al. [11] introduced constraints
based on known conditions to obtain accurate attitude information when float solutions
and their variance–covariance matrices are insufficiently precise. The search ellipsoid
region is expanded to compensate for errors caused by inaccurate floating solutions. Hu
et al. [12] proposed an improved algorithm for determining the GPS/BDS dual-mode sys-
tem’s integer ambiguity, utilizing Bootstrapping estimation to meet specific discriminative
conditions, followed by an integer least-squares search after regularization limitation if
these conditions are not met; this approach not only improves searching efficiency but
also ensures accurate solution ambiguity. Ren et al. [13] proposed an enhanced LAMBDA
method that improves the efficiency of solving ambiguity by modifying the previous ap-
proach of searching all ambiguity for each calendar element. By effectively combining
search and direct normalization through reasonable conditions, this research enhances the
determination of ambiguity after Z-transformation. These studies improve the efficiency
of the LAMBDA algorithm by improving its search conditions and search space. The
LAMBDA algorithm is theoretically rigorous, and although the fixation success rate is high,
it is more time-consuming to compute and its search efficiency decreases as the dimension-
ality of the ambiguity increases. Teunissen et al. [14] investigated two simple alternatives
for integer least squares estimation—rounding and bootstrapping —and calculated the
probability of correct integer estimation. Although they are not optimal, they have the
advantage that they do not require search at all in practical calculations, and the calculation
is more efficient.

With the advancement of artificial intelligence, various algorithms such as the artificial
fish swarm algorithm [15], simulated annealing algorithm [16], genetic algorithm [17],
neural network algorithm [18–20], deep learning [21,22], and particle swarm optimization
algorithm [23] have gained increasing attention and been applied by scholars to address the
problem of integer ambiguity solving, significantly enhancing the efficiency of ambiguity
search. Xu et al. [24] proposed an adaptive genetic algorithm-based search approach to
resolve single-frequency GNSS carrier phase integer ambiguity, employing an adaptive ge-
netic algorithm in the ambiguity searching process to enhance search efficiency. Li et al. [25]
conducted an ambiguity search using an improved PSO (particle swarm optimization)
algorithm. Tatiyaworanun et al. [26] proposed an ambiguity solving method based on a
genetic algorithm with Grantham–Schmidt orthogonalization, effectively reducing both the
dimensional search space and the number of searches. Liu et al. [27] suggested employing
the Artificial Fish Swarm (AF) algorithm for efficient retrieval of integer ambiguity. Jazaeri
et al. [28] investigated the effectiveness of ACO in addressing ambiguity and nearest grid
point problems by rapidly resolving GNSS ambiguity through ant colony optimization.
Zheng et al. [29] applied an adaptive differential evolutionary algorithm to find the op-
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timal solution for integer ambiguity, subsequently constraining the region appropriately
to maintain true integer ambiguity. Zheng et al. [30] proposed using genetic algorithms
to solve weekly ambiguities by introducing two variance operators that ensure diversity
among individuals. Xing et al. [31] proposed a combination of uniform design and ge-
netic algorithm for searching the integer ambiguity. Wang et al. [32] solved the GPS short
baseline integer ambiguity using an improved particle swarm optimization algorithm that
encodes double difference ambiguity by real number encoding rounding and improves the
success rate of ambiguity solving by adaptively calculating inertia weights and particle
variances. Zhang et al. [33] proposed a DGPS integer ambiguity solving algorithm based on
an improved particle swarm optimization algorithm that uses the inertia weight decreasing
method of sin function to improve its particle swarm optimization weights. Li et al. [34]
proposed a simulated annealing genetic algorithm-based approach for solving the integer
ambiguity problem, which applies an improved genetic algorithm to search and solve
the entire week’s uncertainty, ultimately obtaining optimal solutions for it. Liu et al. [35]
introduced an improved ant colony algorithm for solving ambiguity throughout the entire
week, which introduced a self-feedback factor based on traditional ant colony algorithms
into their work; Liu et al. [27] presented a solution to this problem using artificial fish
swarm algorithms with rounding improvements in their searches. Wang et al.’s study [36]
used an enhanced artificial fish swarm technique with additional integer constraints to find
fast fixation solutions. Ou et al. [37] modified the chicken flock optimization algorithm
based on the ICSO algorithm to address the integer ambiguity and applied the enhanced
chicken flock optimization algorithm for the integer ambiguity search. Shang et al. [38]
proposed an improved PSO and ACO hybrid search algorithm for GNSS integer ambiguity,
which utilizes the enhanced particle swarm optimization algorithm in the initial stage of
coarse search to obtain a suboptimal solution, serving as an initialization for the pheromone
distribution of the improved ant colony algorithm, ultimately achieving fine search for
integer ambiguity. Deng et al. [39] introduced a week-long ambiguity-solving algorithm
based on an adaptive differential evolution approach by incorporating an adaptive muta-
tion operator, crossover operator, and population size into standard differential evolution
to enhance the success rate of week-long ambiguity solving.

The application of the optimization algorithm to solving integer ambiguity enhances
search efficiency compared to classical algorithms. However, these optimization algorithms
possess inherent issues such as slow convergence speed, susceptibility to local optima, and
other instabilities that result in unreliable ambiguity-solving outcomes. To address these
concerns, this paper proposes a single-frequency GNSS integer ambiguity solving based
on an adaptive genetic particle swarm optimization (AGPSO) algorithm. By leveraging
the strengths of various optimization algorithms, this approach improves the stability
of ambiguity solving and facilitates escape from local optima. Firstly, the carrier-phase
double difference equation is employed to solve for floating-point solutions and their
corresponding covariance matrix for integer ambiguity. Subsequently, an inverse integer
Cholesky algorithm is utilized to reduce correlation while an improved fitness function is
proposed to improve the convergence and search performance of the algorithm. Finally,
the particle swarm optimization algorithm with adaptive weights is combined to perform
the integer ambiguity search. Additionally, a selection mechanism is devised wherein
the best-performing half of each generation is chosen based on fitness function values to
proceed to the next generation. Furthermore, a random crossover operation is applied to
the underperforming group by introducing a randomly determined crossover location.
Moreover, a mutation factor is introduced to provide a certain probability of mutation
for the underperforming group, thereby enhancing the algorithm’s ability to escape local
optima. Comparative studies with traditional algorithms and other intelligent algorithms
show that the AGPSO algorithm has a faster convergence speed, improves the stability of
the integer ambiguity search results, and in practical experiments the baseline accuracy of
the solution is within 0.02 m, which has some application value in the practical situation of
short baselines.
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2. GNSS Differential Positioning Model Analysis
2.1. Mathematical Model of Carrier Phase Double Difference

In high-precision positioning of GNSS, the term “single difference” refers to the dispar-
ity between carrier phase observations acquired from different stations while synchronously
observing the same satellite. By employing a single difference, it becomes possible to elimi-
nate satellite clock discrepancies, and, simultaneously, if the user and reference station are
near equal altitudes, approximate zero values can be achieved for the ionospheric delay
and tropospheric delay [40]. Consequently, this enables us to formulate the observation
equation for carrier phase single difference [41]

φ
j
ur = λ−1 pj

ur + f δur + N j
ur + ε

j
φ,ur (1)

where φ
j
ur denotes the carrier phase single difference observation between the two receivers

u, r and the satellite j at the moment t; λ denotes the carrier wavelength; pj
ur denotes the

geometric distance difference between the two receivers u, r and the satellite j at the moment
t; f denotes the frequency; δur denotes the clock difference between the two receivers u, r at
the moment t; N j

ur denotes the differential integer at the moment t; and ε
j
φ,ur denotes the

other observation noise at the moment t.
The single-difference observation model can only partially mitigate the error parameter.

Therefore, based on this model, an additional reference satellite is selected to calculate
the observation difference between satellites, thereby obtaining the double difference
observation equation. The double difference further eliminates the receiver clock difference
in observations [42]. Consequently, for high-precision localization purposes, the carrier
phase double difference model is commonly employed. The carrier phase double difference
observation equation [43] can be expressed as follows:

φ
jk
ur = λ−1 pjk

ur + N jk
ur + ε

jk
φ,ur (2)

where φ
jk
ur denotes the carrier phase double difference observation between the two receivers

u, r and the satellites j, k at moment t; λ denotes the carrier wavelength; pjk
ur denotes the

geometric distance difference between the two receivers u, r and the satellites j, k at moment
t; N jk

ur denotes the double difference integer at moment t; and ε
jk
φ,ur denotes the other

observation noise at moment t. In estimating the ambiguity floating-point solution, pjk
ur is

computed from the satellite position and receiver position, which can be obtained from
the navigation message computation, and the receiver position can be obtained from the
observation file computation.

2.2. Least Squares Estimation of Ambiguity Float Solutions

It is known from the double difference observation model that a double difference
carrier phase observation equation has three unknowns and each additional co-viewing
satellite will have one more double difference integer ambiguity, whereas the least-squares
estimation can be easily extended to the case of multi-parameter estimation by solving
an optimization problem to estimate all the parameters. For carrier phase-based GNSS
positioning models, the mathematical models can all be reduced to the following linearized
model [44]:

y = Aa + Bb + e (3)

where y is the carrier phase observation; A and B are both design matrices; a and b are the
integer ambiguity vector and the baseline vector between the two base stations, respectively;
and e denotes the observation error vector. The determination of the unknown parameters
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a and b in Equation (3) can be solved by least squares parameter estimation [45], therefore,
Equation (3) is essentially a least squares solution problem, which can be expressed as:

min
{
‖ y− Aa− Bb ‖2

Qyy

}
(4)

where Qyy denotes the carrier phase variance covariance matrix. The float solution and
baseline vectors and their corresponding covariance matrices are obtained by weighted
least squares solving of Equation (4):

[
â
b̂

]
=

[
ATQ−1

yy A ATQ−1
yy B

BTQ−1
yy A BTQ−1

yy B

]−1[
ATQ−1

yy y
BTQ−1

yy y

]
(5)

[
Qââ Qâb̂
Qb̂â Qb̂b̂

]
=

[
ATQ−1

yy A ATQ−1
yy B

BTQ−1
yy A BTQ−1

yy B

]−1

(6)

where â is the float solution; b̂ is the baseline vector, Qââ is the covariance matrix corre-
sponding to â, and Qb̂b̂ is the covariance matrix corresponding to b̂. The floating-point
solution can be computed in a single calendar element, but within a single calendar element,
the floating-point solution may be subject to a variety of errors, and if a more accurate
floating-point solution is required, more calendar elements are needed. Due to the integer
nature of the ambiguity, the stationary solution of the integer ambiguity can be obtained by
solving the minimum of the quadratic function of the following equation, i.e.,

J(a) = min ‖ â− a ‖2
Qââ (7)

The ambiguity fixation process in Equation (7) is the process of searching for the
integer vector with the shortest distance â in the integer space with Qââ as the weight and â
as the center.

The first thing to be determined in the process of searching for integer ambiguity
is the search space. All correct solutions must be encompassed within this search space.
In practice, the baseline is usually the parameter vector that needs to be solved. For
real-time localization of short baselines, the use of baseline length as a constraint can
effectively reduce the scope of the search space and thus improve the efficiency of the
algorithm, when the exact value of the baseline vectors is obtained beforehand using
precision measurements. Assuming a given baseline length denoted as l, the scope of
search can be expressed as follows:

−l
λ
≤ ajk

ur ≤
l
λ

(8)

where λ is the GPS carrier wavelength and takes the value of 0.19 m.

2.3. Ambiguity Decorrelation

The ambiguous floating-point solution and its covariance matrix obtained by least
squares estimation have a high correlation, in which case the search space is a narrow
ellipsoid, which leads to inefficient search. Therefore, an ambiguity decorrelation operation
should be performed before the integer of ambiguity search.

Among the ambiguous decorrelation algorithms, the integer Gaussian transform [46],
LLL algorithm [47], and inverse integer Cholesky algorithm [48] are commonly used. Li
et al. [49] evaluated the above three ambiguity decorrelation algorithms and proposed
that for less than 20-dimensional low-dimensional covariance matrix inverse integer, the
Cholesky algorithm has a better decorrelation effect. Since the dimensions of the ambiguity
covariance matrix in GPS dynamic positioning are generally around 5–10 dimensions, this
paper adopts the inverse integer Cholesky algorithm for ambiguity decorrelation, and the
basic idea of this algorithm is to use the invertible integer transformation to transform the



Sensors 2023, 23, 9353 6 of 20

floating-point solutions and their covariance matrices, and the transformation process can
be expressed as follows:

ẑ = ZT â (9)

Qẑẑ = ZTQââZ (10)

where Z is the integer transformation matrix; ẑ is the floating-point solution after decorrela-
tion; and Qẑẑ is the covariance matrix after decorrelation. An integer least squares search
is expanded using the transformed ẑ and Qẑẑ to determine the optimal integer candidate
vector z̆, and then an integer inverse transformation is used to determine the optimal
integer candidate ă for the ambiguity float solution:

ă = Z−T z̆ (11)

Qăă = Z−TQz̆z̆Z−1 (12)

The ambiguity search is essentially defined as the minimum value of the equation
within the search space. To enhance both the efficiency and stability of this search method,
we propose in this paper to employ a genetic particle swarm optimization algorithm for
conducting ambiguity searches.

3. Genetic Particle Swarm Optimization Algorithm Ambiguity Search
3.1. Classical Particle Swarm Optimization Algorithm

The particle swarm optimization (PSO) algorithm was introduced by Kennedy and
Eberhart in 1995 AD, inspired by the study of birds’ flocking behavior. Its fundamental
concept is to achieve optimal solutions through collaboration and information sharing
among individuals within a group [50]. In the conventional particle swarm optimization
algorithm, particles’ rate and position change equations are utilized.

vk+1
id = ωvk

id + c1r1

(
pbest− xk

id

)
+ c2r2

(
gbest− xk

id

)
(13)

xk+1
id = xk

id + vk+1
id (14)

where 1 ≤ i ≤ n; 1 ≤ d ≤ n; k is the kth iteration; c1 and c2 are the self-perception factor
and the social-perception factor; r1 and r2 are random numbers on the interval [0, 1]; and ω
is the inertia weight; pbest is the individual best; gbest is the global best.

The inertia weights ω play a crucial role in optimizing the performance of the PSO
algorithm by effectively balancing the global exploration and local exploitation capabilities
of the swarm. To enhance the global exploration capability during the early evolutionary
stages, it is expected that larger values of particle velocities will be employed. Conversely,
as the PSO algorithm progresses towards its later stages, where a strong local detection
capability is required, smaller velocity values are anticipated. To address the issue of
falling into local optima commonly encountered in standard particle swarm optimiza-
tion algorithms, this study incorporates Hu’s [51] proposed method for decreasing inertia
weight, thereby improving its effectiveness. The proposed approach aims to strike an opti-
mal balance between global exploration and local exploitation through carefully selected
inertia weights.

ω(k) = ωmax − (ωmax −ωmin)(k/kmax) (15)

where k is the current number of generations; kmax is the maximum number of iterations.

3.2. Classical Genetic Algorithm

The genetic algorithm (GA), initially proposed by John Holland in the 1970s, is a
computational model that simulates the process of biological evolution, incorporating
natural selection and genetic mechanisms from Darwin’s theory. By employing mathe-
matical operations and computer simulations, it transforms the problem-solving process
into a series of chromosome gene crossovers, mutations, and other evolutionary processes.
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Essentially, GA is an efficient parallel global search method that autonomously acquires
and accumulates knowledge about the search space while adaptively controlling the search
process to identify optimal solutions.

The genetic algorithms encompass three fundamental operators: selection, crossover,
and mutation. Selection functions as a mechanism for “choosing the best from the worst”.
Crossover, in conjunction with selection rules, facilitates the preservation of valuable infor-
mation while discarding unfavorable information. Mutation can produce new varieties that
are indeed substantially different [52]. It is this distinctive search methodology that enables
genetic algorithms to naturally evade the common pitfall of local minima encountered by
other optimization algorithms.

3.3. Genetic Particle Swarm Optimization Algorithm
3.3.1. Genetic Selection Cross-Mutation Operation

Due to the direct utilization of the PSO algorithm for resolving the integer ambiguity,
it often suffers from premature convergence and gets trapped in local optimal solutions,
significantly compromising the accuracy of the integer ambiguity solution [53]. In contrast,
GA algorithms typically necessitate a substantial number of iterations and computations to
discover an optimal solution, with potentially slow convergence particularly when dealing
with large or complex problem spaces [54].

To address the aforementioned issues, this paper proposes an adaptive genetic particle
swarm optimization (AGPSO) algorithm for single-frequency GNSS integer ambiguity-
solving. The algorithm incorporates selection, crossover, and mutation operations from the
genetic algorithm into the PSO algorithm, with specific enhancements as follows:

(1) The selection operation is responsible for identifying the dominant individuals within
the current population. In this study, we adopt a meritocratic approach combined
with half selection to identify the superior individuals in the population. Firstly, we
calculate and rank their fitness levels, where higher fitness corresponds to higher
ranking and increased probability of selection;

(2) Crossover operations are responsible for generating novel individuals, achieved by
exchanging segments of their chromosomes to produce two offspring chromosomes.
The position of crossover is determined randomly, increasing the likelihood of escap-
ing local optima. In this study, the crossover was randomly performed on two selected
individuals at two specific crossover points to create new individuals by combining
information from the parent’s mating population;

(3) The mutation operation is responsible for facilitating the algorithm to escape from
local optima, and a smaller value is generally chosen as the mutation probability. A
higher mutation probability may lead to the destruction of optimal solutions. After
conducting numerous experiments, a mutation probability of 0.1 was adopted in
this paper.

3.3.2. AGPSO Adaptation Function Establishment

The fitness function of AGPSO utilizes the principle of least squares to fit a fixed
solution with an ambiguous floating-point solution after reduced correlation so that the
floating-point solution reaches the integer optimum under the least squares criterion. The
AGPSO population is optimized according to the size of the fitness. The objective function
of the integer least squares estimation of integer ambiguity can be obtained according to
Equation (7):

J(N) =
(

N̂ − N
)TQ−1

N̂

(
N̂ − N

)
(16)

where N̂ is the ambiguity float solution; N is the integer ambiguity vector. Q−1
N̂

is the inverse
matrix of the covariance matrix corresponding to N̂. Teunissen [55] gave a probabilistic
proof using integer least squares estimators. Introducing the admissible integer estimator
and generalizing the classical leveling theory proves that the integer LS estimator is the
best in the sense of maximizing the probability of correct integer estimation, but most of
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the value domains of the objective function (16) are relatively flat, with very little change
in the function values, and even if N undergoes a small change, the function values are
still relatively stable, which makes the search inefficient, so the objective function (16) is
improved by proposing the following fitness function:

F(N) = b− λ1log(J(N))− λ2 ||N̂ − N ||2 (17)

where b is a large constant; λ1, λ2 are the weights of the performance indicators. log
function is more sensitive to the change of J(N), while log function has the nature of
smoothing, which helps to reduce the problem of local extremes in the search space,
and it is easier to find the global optimal solution. When J(N) is smaller, the value of
F(N) is larger, i.e., the accuracy of the solution is higher. Therefore, by maximizing the
objective function, the estimation of the integer’s ambiguity can be made more accurate.
The ||N̂ − N ||2 emphasizes the size of the residual term, which penalizes the fitting error of
the integer ambiguity vector. When the residual term is large, the fitness function decreases,
thus encouraging the search algorithm to better fit the known integer ambiguity vector N.
In the simulation, Equation b is 100, and λ1 and λ2 are 0.7 and 0.3, respectively.

3.3.3. Basic Flow of AGPSO

The flowchart of the AGPSO algorithm is shown in Figure 1 and described as follows:

(1) Initialize the velocity and position of the particles, the maximum and minimum values
of the weights, the acceleration constant, the population size, the Mutation factor, the
maximum number of iterations, and the minimum error for the termination of the
algorithm;

(2) The initial adaptation value of each particle is calculated, the population is divided
into two groups with good and poor adaptation, and the group with good adaptation
is selected to enter the next generation;

(3) A random crossover position is generated, and a crossover operation is performed on
the poorly adapted set;

(4) Introducing a mutation factor that randomly mutates the poorly adapted group when
the random number is smaller than the mutation factor;

(5) After the group with poor fitness undergoes the cross-mutation operation, the particle
fitness is recalculated, combined with the group with good fitness initially, and
reclassified into two groups of good and poor fitness. The re-grouped group with
good fitness and the initial group with good fitness are taken to form a new particle
selection pool;

(6) Use the best-adapted value in the new particle pool as the global best optimum, and
use the position corresponding to this adapted value as the global optimum position
of the particle;

(7) Update the particle velocity by the previous formula and limit the flight speed so that
it cannot exceed the maximum flight speed;

(8) Update the particle position by the previous formula and compare whether the
adapted value of each particle is better than the historical optimal value; if yes, then
replace it;

(9) Calculate whether the adapted value of the particle’s global optimum is better than
the historical optimum, and if so, replace it;

(10) Repeat 2–9 until the set minimum error is met or the maximum number of iterations
is reached;

(11) Output the global optimal value of the optimal particle and its corresponding position
as well as the local optimal value and corresponding position of each particle.
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4. Numerical and Experimental Analysis
4.1. Numerical Analysis

To assess the feasibility and performance of the adaptive genetic particle swarm op-
timization (AGPSO) algorithm proposed in this study for solving ambiguity problems, a
comparative analysis was conducted between classical algorithms, particle swarm opti-
mization algorithms, and genetic particle swarm optimization algorithms.

In this study, three classical intelligent algorithms, namely Simulated Annealing
Algorithm (SA), Genetic Algorithm (GA), and Particle Swarm Optimization Algorithm
(PSO), were selected as comparison algorithms. The reference index used to evaluate their
performance is the ability to converge to the optimal solution quickly within a specified
number of iterations. To ensure consistent experimental conditions, we set the dimension
D of integer ambiguity to 3, overall size k to 20, iteration termination at 50, c1 and c2 at 2.05,
and adjusted inertia weights ω in the range of 0.4 to 0.9. Equation (17) represents the fitness
function used in this study. To simulate real-world scenarios, we adopted a well-known
arithmetic example proposed by Jonge [56]. Figure 2 presents the results of four algorithms
for solving three-dimensional integer ambiguity.

From the comparison results in Figure 2, it can be seen that SA has the slowest conver-
gence speed, and the SA algorithm converged to the optimal solution after 24 iterations;
the GA algorithm is slightly faster than the SA algorithm and converged to the optimal
solution after the 15th iteration, the PSO algorithm reached the optimal solution in the
11th iteration compared to the GA algorithm, and the AGPSO algorithm converged to
the optimal solution in the 3rd iteration, and it is the best performer among the four algo-
rithms. Therefore, the integer ambiguity solution, shows that the AGPSO algorithm has
better search effectiveness compared to other classical algorithms. Figure 3 exemplifies the
evolution of the best individual for the first ten iterations in a single solution for both PSO
and AGPSO algorithms.
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From Figure 3, it can be seen that the convergence speed of the PSO algorithm is much
lower than that of the AGPSO algorithm and it is easy to fall into the local optimum, which
shows that the AGPSO algorithm is more likely to jump out of the local optimum than
PSO. To further explore the performance of the PSO algorithm and AGPSO algorithm,
twelve-dimensional algorithms are used for simulation. The parameters of the algorithms
are shown in Table 1, and the twelve-dimensional integer ambiguity-solving results of the
two algorithms are shown in Figure 4.
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Table 1. Parameter settings of the two algorithms.

Parameters Value

Learning factor c1 2.05
Learning factor c2 2.05

Inertia coefficient ω 0.4–0.9
Population size m 100

Particle dimension D 12
Number of iterations k 200
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As can be seen from the curves in Figure 4, both algorithms converge to the global
optimum, the PSO algorithm is trapped in the local optimum until it reaches the optimal
solution in the 93rd iteration, while the AGPSO algorithm converges to the optimal solution
in the 28th iteration. It shows that the AGPSO algorithm still has better search effectiveness
in the high-dimensional case. To eliminate the eventuality of the test and prove the
AGPSO algorithm’s search reliability, 100 consecutive searches for three-dimensional and
12-dimensional integer ambiguity were performed using the PSO algorithm and the AGPSO
algorithm. The number of iterations required for both algorithms to converge to the optimal
solution is recorded in Figure 5.
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It can be seen from Figure 5 that the number of iterations required for the PSO
algorithm to converge to the optimal solution in three-dimensional integer ambiguity
solving is about 10 iterations, while the average number of iterations required by the
AGPSO algorithm is about 5 iterations. In twelve-dimensional integer ambiguity, solving a
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PSO algorithm requires about 50 iterations to reach the optimal solution, while the average
number of iterations required by the AGPSO algorithm is about 25. In terms of convergence
speed, the AGPSO algorithm is about twice as fast as the PSO algorithm, which verifies the
reliability of the AGPSO algorithm. The AGPSO algorithm solves the problem that the PSO
algorithm is easy to fall into local optimization.

From the principle of the algorithm, the adaptive weights of AGPSO gradually de-
crease during the iteration process, which reduces the search range of the algorithm when
the individual population tends to mature. In addition, the optimal half-taking strategy, the
stochastic crossover strategy, and the stochastic mutation strategy all enable the algorithm
to jump out of the local optimum quickly.

4.2. Test Analysis

To verify the applicability and effectiveness of the algorithm in practical situations. In
the new playground of Nanjing Forestry University, two satellite receivers are used to form
a short baseline of 1.42 m. The test scene is shown in Figure 6a, with a sampling interval of
5 s for the receivers, a satellite cutoff altitude angle of 30◦, and a continuous observation of
about 20 min, obtaining 187 valid calendar elements. Firstly, a single-point localization is
performed for the two antennas, which is processed by double difference; the floating-point
solution and its covariance matrix are obtained with the help of weighted least squares
estimation, and finally the AGPSO algorithm is used to search for the integer ambiguity
after double difference. The whole process of double difference integer ambiguity solving
is usually carried out in calendar element by calendar element. Each calendar element is
processed independently to find the appropriate integer ambiguity solution, and then the
process is continued in subsequent calendar elements, gradually converging to the exact
value over multiple iterations of calendar elements. For GPS L1 single-frequency signals,
the satellite zenith distribution map during the acquisition period is shown in Figure 6b,
with five effective observation satellites, and the reference satellite is selected to be the
No. 10 satellite with the highest altitude angle during the observation period, which is
composed of double difference ambiguity with the satellites of No. 12, No. 23, No. 25, and
No. 32, and the result of the integer ambiguity solving is shown in Figure 7.
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As shown in Figure 7, the double difference integer ambiguities are composed of
satellite 12, 23, 25, and 32 and satellite 10 are −7, 14, −11, and −1, respectively, and all of
them have completed the ambiguity fix. Since the length of the baseline is known and the
wavelength of the GPS L1 carrier is also known to be about 0.1903 m, the baseline solution
is used to verify the results of the double difference perimeter ambiguity solution. The
baseline solution results are shown in Figure 8.

As can be seen in Figure 8, the relative positions in the three directions are largely
stable. However, the position components in the U and E directions are not smooth and are
split into many parts by hops. It is possible that the antenna’s close proximity to the ground
caused a large multipath effect, resulting in the generation of multiple hops. Figure 9
shows the baseline solving error, from which it can be seen that the baseline solving error is
within 0.02 m. Therefore, it can be recognized that the double difference integer ambiguity
search is correct, indicating that the AGPSO algorithm also has applicability and validity in
practical situations, but there were still more jumps.

In response to these problems, the test scenario was reconstructed, while the baseline
length was increased to 263.52 m. The test scenario is shown in Figure 10a, and for the
GPS L1 single-frequency signal, the satellite zenith distribution map during the acquisition
is shown in Figure 10b. The observation time lasts 40 min, the data sampling rate is 5 s,
the satellite cutoff altitude angle is 15◦, and 382 effective calendar elements are acquired.
For the GPS L1 single-frequency signal, there are six effective observation satellites, and
the reference satellite is selected to be the No. 1 satellite with the highest altitude angle
during the observation period, which is composed of double difference ambiguity with the
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satellites of No. 7, No. 8, No. 17, No. 30, and No. 21, and the results of ambiguities solving
for the integer are shown in Figure 11.
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As shown in Figure 11, the double difference integer ambiguities composed of satellite
7, 8, 17, 30, and 21 and satellite 1 are −289, −255, −186, −283, and −124, respectively,
and all of them have completed the ambiguity fixation. Since the length of the baseline is
known and the wavelength of the GPS L1 carrier is also known to be about 0.1903 m, the
baseline solution is used to verify the results of the double difference integer ambiguity
solution. The baseline solution results are shown in Figure 12.

As can be seen from Figure 12, the relative positions in all three directions are more
stable, and the number of jumps has been significantly reduced. For the phenomenon of
individual jumps that still exists, subsequent attempts can be made to reduce the jumps by
improving the quality of receivers, increasing the number of satellites, and reducing the
obstacle blockage. Figure 13 shows the baseline solving error, from which it can be seen
that the baseline solving error is within 0.01 m. Therefore, it can be concluded that the
double difference integer ambiguity search is correct, indicating that the AGPSO algorithm
has applicability and validity in practical situations as well.

If the fixed integer ambiguity vector is inaccurate, not only will it not improve the
localization accuracy, but also reduce the localization accuracy. Therefore, when the fixed
integer ambiguities vector is fixed, it also needs to be examined, i.e., the ambiguities
are confirmed. On the basis of systematic study of the theory of ambiguities solution,
Verhagen et al. [5] proposed a method based on the fixed failure rate that is often used in
conjunction with the traditional differentiation test method, but the threshold value of the
differentiation test method based on the fixed failure rate method also needs to be calculated
for a large number of samples statistically, which restricts the practical application of this
method. The Ratio value is one of the most commonly used methods to test the reliability
of integer ambiguities fixation, which is obtained by the ratio of the sum of squares of the
residuals of the suboptimal ambiguities vector to the sum of squares of the residuals of the
optimal ambiguities vector [57], and according to the experience, the ratio value is standing
for 3. When the ratio value is greater than 3, it is determined that the ambiguities fixation
solution is correct. Then, the success rate = number of fixed correct calendar elements/total
number of calendar elements. To further validate the reliability of the algorithms, the
success rates of solving the double difference ambiguity using the LAMBDA algorithm
and AGPSO algorithm were counted separately. Since the results of the test with a baseline
length of 1.42 m produced multiple jumps and the baseline length is too short, it cannot
reflect the function of the algorithm, and its success rate cannot be used as a reference. Only
the success rate of ambiguity resolution for the measured data with a baseline length of
263.52 m was counted, and the resolution results are shown in Table 2.
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Table 2. Success rates of the two algorithms solvers.

Base Line (m) Method Epochs Success Epochs Success Rate
(%)

263.52
LAMBDA 364 350 96.15

AGPSO 364 349 95.88
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The results in Table 2 show that the success rate of solving using the LAMBDA
algorithm is 96.15%, the success rate of solving using the proposed AGPSO algorithm is
95.88%, and there is not much difference between the success rates of the two algorithms.
Therefore, the AGPSO algorithm also has high reliability and practicability under short
baseline practical applications.

5. Conclusions

In this paper, the important problem of integer ambiguity solving is investigated.
Aiming at the existing ambiguity solving algorithms, which still have shortcomings such
as low convergence speed and instability, the AGPSO algorithm is proposed to find the
optimal solution of the integer ambiguity, which introduces the optimal half-taking, random
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crossover, and mutation operations to make the algorithm jump out of the local optimal
solution more easily, and the improved fitness function to improve the convergence and
search performance of the algorithm, and to improve the stability of the ambiguity solving
results. Finally, experiments have been carried out using simulation data and measured
data, as can be seen from the experimental results:

(1) In the integer ambiguity search, the particle swarm optimization algorithm (PSO)
converges faster than the SA and GA algorithms, and the AGPSO algorithm can
reach the optimal solution faster compared with the PSO algorithm. Through high-
dimensional data simulation, it is verified that the proposed AGPSO algorithm can
effectively solve the problem that the PSO algorithm is easy to fall into the local
optimum and improves the efficiency of the integer ambiguity search;

(2) To eliminate the chance of the test, the PSO algorithm and the AGPSO algorithm
were used to search the three-dimensional and twelve-dimensional integer ambiguity
100 times consecutively. The results show that the AGPSO algorithm approximately
doubles the convergence speed of the PSO algorithm, and the AGPSO algorithm jumps
out of the local optimum more easily than the PSO algorithm, which significantly
improves the stability of the results of the integer ambiguity solution;

(3) For GPS L1 single-frequency signal, the AGPSO algorithm is used to search the integer
ambiguity after double difference and carry out the baseline solving, the solving result
shows that the baseline error is within 0.02 m, which verifies the applicability and
validity of the AGPSO algorithm in the practical application. The AGPSO algorithm
can be a very good solution to the short baseline solving of the integer ambiguity of
searching the problem of inefficiency and instability.
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