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Abstract: Online handwritten signature verification is a crucial direction of research in the field of
biometric recognition. Recently, many studies concerning online signature verification have attempted
to improve performance using multi-feature fusion. However, few studies have provided the rationale
for selecting a certain uni-feature to be fused, and few studies have investigated the contributions of
a certain uni-feature in the multi-feature fusion process. This lack of research makes it challenging for
future researchers in related fields to gain inspiration. Therefore, we use the uni-feature as the research
object. In this paper, the uni-feature is one of the X and Y coordinates of the signature trajectory point,
pen pressure, pen tilt, and pen azimuth feature. Aiming to solve the unequal length of feature vectors
and the low accuracy of signature verification when using uni-features, we innovatively introduced
the idea of correlation analysis and proposed a dynamic signature verification method based on the
correlation coefficient of uni-features. Firstly, an alignment method of two feature vector lengths was
proposed. Secondly, the correlation coefficient calculation formula was determined by analyzing
the distribution type of the feature data, and then the correlation coefficient of the same uni-feature
between the genuine signatures or between the genuine and forged signatures was calculated. Finally,
the signature was verified by introducing a Gaussian density function model and combining it with
the signature verification discrimination threshold. Experimental results showed that the proposed
method could improve the performance of dynamic signature verification based on uni-features. In
addition, the pen pressure feature had the best signature verification performance, with the highest
signature verification accuracy of 93.46% on the SVC 2004 dataset.

Keywords: online handwritten signature verification; uni-feature; correlation coefficient; multi-feature fusion

1. Introduction

Signature verification can be divided into offline and online signature verification [1].
Offline signature verification often determines whether a signature belongs to the same
writer by analyzing static features such as font structure or stroke order in the signature
image. In contrast, online signature verification generally verifies performance by extracting
dynamic features such as pen pressure, pen tilt, or speed in the signature process. Yang
et al. [2] discovered that replicating dynamic features is more challenging than replicating
static features. Furthermore, they also found that the performance of online signature
verification is generally better than that of offline signature verification [3]. In recent years,
researchers have proposed various methods to enhance the performance of online signature
verification. For example, Chandra et al. [4] proposed a local weighted classification method
based on dynamic features. The results showed that the false acceptance rate (FAR) and
false rejection rate (FRR) were 11.8% and 2%, respectively. Considering the potential
impact of limited training samples on signature verification, Vorugunti et al. [5] proposed
a dynamic signature verification framework using depth-separable convolution. This
approach facilitates dimensionality reduction in feature data, leading to enhanced accuracy
in signature verification. Shen et al. [6] developed a Siamese network framework integrated
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with a multi-scale attention mechanism to extract efficient features from a limited number of
signature samples. The findings demonstrated that the equal error rate (EER) for signature
verification in the MCYT-100 dataset was 6.57%. Ahrabian et al. [7] integrated an automatic
encoder with a Siamese neural network to establish a global feature framework. The
results showed that this method had better performance on large datasets. Xia et al. [8]
proposed a feature selection method that combined the full factorial design method and
the optimal orthogonal design method. The results showed that the equal error rate of
signature verification on the MCYT-100 dataset was 2.17%. Sharma et al. [9] combined the
cost matrix with the dynamic time warping algorithm and introduced a spacing parameter
for feature extraction to improve the accuracy of signature verification. Okawa et al. [10]
proposed a dynamic time warping algorithm based on local and global weighting. The
algorithm first acquires the average template set of reference samples using a dynamic time
warping algorithm based on the Euclidean center of gravity. Then, it computes the distances
between templates and test samples using local and global weighting, followed by signature
verification. He et al. [11] extracted the curvature and torsion features and calculated the
distance between the test signature and the template using Hausdorff distance. Bhowal
et al. [12] designed an integrated system that combined seven feature classifiers. The results
showed a signature verification accuracy of 98.43% and 97.87% when tested on the SVC2004
and MCYT-100 datasets, respectively.

Although there are many online handwritten signature verification methods, a further
review of the literature reveals that existing online handwritten signature verification meth-
ods generally rely on multi-feature fusion. For example, Jiang et al. [13] fused 12 dynamic
features, including pen pressure, pen tilt, and acceleration, and improved the traditional
dynamic time warping method to enhance signature verification performance. Anikin
et al. [14] fused five features, including the X and Y coordinates of the signature trajectory
point, pen pressure, pen tilt, and pen azimuth. Additionally, they also developed a user
authentication framework for online handwritten signature verification. Wu et al. [15]
also fused the above five dynamic features. However, they used the Siamese network
to improve the accuracy of signature verification. Saleem et al. [16] fused the X and Y
coordinates of the signature trajectory point and pen pressure feature and combined the
dynamic time warping algorithm with the KNN algorithm to achieve signature verification.
Foroozandeh et al. [17] also fused the above three features in their study and used the
KNN algorithm and the SVM algorithm for signature verification. Abualghanam et al. [18]
fused 134 features and fed them into a convolutional neural network. Parziale et al. [19]
investigated signature verification performance with 15 different feature fusion methods.
The results showed that the optimal performance for signature verification was achieved
by fusing velocity, acceleration, and pen pressure features. Okawa et al. [20] fused seven
features and proposed a local stability-weighted dynamic time warping algorithm for
signature verification.

Previous researchers have focused on fusing multi-features. However, they have not
examined the performance of signature verification with a certain uni-feature or explained
the rationale behind feature fusion. This lack of research makes it challenging for future
researchers in related fields to gain inspiration. Based on this, it is necessary to examine sig-
nature verification performance with a uni-feature. By investigating signature verification
performance with a certain uni-feature, we can determine the importance of each feature in
the signature verification process. If signature verification performs better with a certain
uni-feature, it can be considered to increase the weight of the feature during multi-feature
fusion. At present, few studies have investigated the performance of online signature
verification with a uni-feature. In the literature, Lei et al. [21] investigated the performance
of online signature verification using pen pressure and pen tilt features with a dynamic
time warping algorithm. The results showed that the equal error rate of each feature on the
SVC 2004 dataset was generally higher than 20%. Adamski et al. [22] conducted a study on
the accuracy of signature verification using pen pressure, pen tilt, and pen azimuth features,
respectively. The results showed the highest signature verification accuracy with the pen
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pressure feature. However, although a few studies have examined a certain uni-feature, the
variety of features investigated is limited and signature verification performance is also
poor. Therefore, to improve the performance of online signature verification with a certain
uni-feature as much as possible and provide a reference for research related to signature
verification with multi-feature fusion, we investigated five uni-features and introduced cor-
relation analysis methods. In this paper, the uni-features used are as follows: X coordinate
of the signature trajectory point, Y coordinate of the signature trajectory point, pen pres-
sure, pen tilt, and pen azimuth. We implemented signature verification by calculating the
correlation coefficient of the same uni-feature between the genuine signatures or between
the genuine and forged signatures, respectively.

Currently, correlation analysis methods are widely used across various fields. For
example, Garcia et al. [23] proposed a new automatic encoder classification method to
recognize and classify human activities. They comparatively analyzed the effect of various
features on human activity recognition performance, including the Pearson correlation
coefficient, standard deviation, and mean value. Sverko et al. [24] utilized EEG to evalu-
ate the inter-neuronal connectivity and measured the relationship between phase-locked
values and weighted phase lag indices using the Pearson correlation coefficient. To aid
biologists in expanding their understanding of the intricate processes behind cancer, Tan-
vir et al. [25] used the Pearson correlation coefficient to identify highly correlated gene
pairs and constructed a gene co-expression network. Liu et al. [26] performed human
posture correction by comparing the Pearson correlation coefficient between standard and
measured postures. Bommisetty et al. [27] proposed a keyframe extraction method that
combined the Pearson correlation coefficient and color moments. Mohapatra et al. [28] pro-
posed a modified Pearson correlation coefficient to improve the limitations of the Pearson
correlation coefficient in identifying two-dimensional fluorescent images of spherical cells.
Nasir et al. [29] used the Pearson correlation coefficient to optimize redundant features and
implemented document classification through deep neural networks. Friedman et al. [30]
used the intra-class correlation coefficient to determine more stable biometrics. They found
that the equal error rate after using the intra-class correlation coefficient was 2.1%. Luo
et al. [31] built a brain function network based on a Pearson correlation coefficient matrix
to improve the accuracy of feature classification with the brain–computer interface. Their
findings indicated that classification accuracy could reach 88.67%. Zhang et al. [32] used
the Pearson correlation coefficient and a random forest regression model to investigate
the correlation between coronavirus disease and weather factors. The results showed that
the Pearson correlation coefficient between daily confirmed cases and temperature was
weak. Liu et al. [33] proposed a feature selection method based on an improved genetic
algorithm that used the Pearson correlation coefficient to measure the contribution of each
feature and thus determine the optimal feature. Esmailoghli et al. [34] extracted effective
features by calculating Spearman’s correlation coefficient between nonlinear data. Sun
et al. [35] found that Spearman’s correlation analysis could not be used for gene content
prediction. Xue et al. [36] used Spearman’s correlation analysis to investigate the correlation
between lung ultrasonography score and disease severity in patients with coronavirus
pneumonia. Chamoun et al. [37] examined Spearman’s correlation coefficient between taste
sensitivity and preference. The results showed that a greater sensitivity to certain flavors
was associated with a reduced preference for those same flavors.

From the above literature, many studies have introduced Pearson correlation analysis
or Spearman’s correlation analysis to improve the performance of recognition or classifi-
cation. However, concerning online signature verification, few studies have introduced
correlation analysis, and few studies have used the correlation coefficient of uni-features
for signature verification. In the retrieved literature, Santos et al. [38] calculated the Pearson
correlation coefficient between the X and Y coordinates of the signature trajectory point.
Subsequently, they combined classification methods such as decision trees and support
vector machines to realize online signature verification. Li et al. [39] identified genuine and
forged signatures by calculating the Pearson correlation coefficient between the characteris-
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tics of pen pressure. However, they did not provide the false recognition rate, false rejection
rate, or other indicators that can be used to evaluate the algorithm’s performance. Liu
et al. [40] used the Pearson correlation coefficient for online signature verification. However,
it is noteworthy that this method exclusively analyzed the performance of multi-feature
fusion for signature verification and did not evaluate the efficiency of online signature
verification using uni-features. Although these researchers performed signature verification
using correlation analysis, they did not detail the exact process of using correlation analysis,
nor did they examine the difference using various uni-features.

In summary, to enhance the performance of online signature verification using uni-
features, investigate performance differences in signature verification with different uni-
features, provide a contribution for each feature in signature verification, and provide a
reference on multi-feature fusion, we innovatively introduce the idea of correlation analysis.
First, the alignment method of two feature vector lengths is proposed. Then, the correla-
tion analysis method is determined by judging the feature data distribution type, and the
correlation coefficient of the same uni-feature between the genuine signatures or between
the genuine and forged signatures is calculated. Finally, signature verification is carried out
using the Gaussian density function model and combining it with the discriminant threshold.

2. Online Signature Verification Method Based on Uni-Features

The technical road of the proposed method is shown in Figure 1. Firstly, the collected
original dynamic signature features are selected to determine the uni-feature that needs to
be subsequently processed. Then, the original feature vector length is aligned using the
proposed “filling the missing value of the original feature vector” method and “filtering
and fusion of the original feature vector” method. Subsequently, the correlation analysis
method is determined using the normal distribution test method. The correlation coefficient
of the same uni-feature between the genuine signatures or between the genuine and forged
signatures is calculated. Secondly, the calculated correlation coefficient is used as a new
dynamic feature. On this basis, the training set and the test set are divided, and then the
function value is calculated combined with the Gaussian density function model. Finally,
we set a threshold to distinguish between genuine and forged signatures.

2.1. Feature Selection

Taking into account signature content, writing conditions, data complementarity, and
other relevant factors, we selected the xLongSignDB and SVC 2004 datasets, which represent
the complexity of the real world as closely as possible. The xLongSignDB dataset [41,42]
comprises signatures written by 29 writers over 15 months, including every writer’s
46 genuine signatures and 10 skilled forged signatures. The SVC 2004 dataset [43] consists
of three subsets: Sample, Task1, and Task2. The Task1 subset was not chosen for use in this
paper because it only includes coordinate and time information. The Sample and Task2
subsets, containing 45 writers’ 20 genuine signatures and 20 skilled forged signatures, were
used in the paper.

The Sample subset and Task2 subset of the SVC 2004 dataset and the xLongSignDB
dataset provide the X and Y coordinates of the signature trajectory point, time, the current
state of the pen (down or up), pen pressure (pressure exerted by the writer on the pen tip),
pen tilt (angle between the pen body and the digitizing tablet), and pen azimuth (angle
between the vertical projection of the pen body on the digitizing tablets and the north
direction of the digitizing tablets) information for each sampling point of the signature. In
order to improve the performance of dynamic signature verification with a uni-feature,
we also referenced the feature selection strategy from some of the literature. Lei et al. [21]
believe that a feature’s stability might affect signature verification performance. Conse-
quently, they developed a feature stability model utilizing the feature distance’s mean and
standard deviation. They investigated the stability of various features, including the X and
Y coordinates of the signature trajectory point, pen pressure, pen tilt, and pen azimuth.
Their findings revealed that the stability of the X and Y coordinate features was superior.
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Therefore, they concluded that X and Y coordinate features are more suitable for dynamic
signature verification. In addition to the X and Y coordinate features, Lei et al. [21] also
found that pen pressure, pen tilt, and pen azimuth were relatively unstable. Taking the pen
pressure feature as an example, Lei et al. [21] believed that the pen pressure of a person
might change significantly, making it difficult to determine the signature’s authenticity.
However, they also found that when the changing trend of pen pressure of a signature was
very similar to that of a genuine signature, the signature was more likely to be genuine.
Moreover, Li et al. [39] also found that the distribution of pen pressure characteristics
of genuine and forged signatures was significantly different, which indicated that these
features might be used to distinguish between genuine and forged signatures.
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Considering the above factors, we mainly examined online signature verification
performance with the X coordinate (X), Y coordinate (Y), pen pressure (P), pen tilt (T),
and pen azimuth features (A). To facilitate the subsequent representation, taking the pen
pressure feature as an example, let P be the set of original pen pressure feature data of m
signatures, that is, P = {p1, p2, p3, . . . , pm}. pm is the original pen pressure feature vector
of the m-th signature, and each original pen pressure feature vector can be expressed as
pm = [pm1, pm2, pm3, . . . , pmn]

>, in which pmn is the n-th original pen pressure feature
data of the original pen pressure feature vector of the m-th signature.

2.2. Feature Vector Length Alignment Method

To realize dynamic signature verification according to a uni-feature, we propose
a correlation analysis method for signature verification by calculating the correlation
coefficients of a certain uni-feature between the genuine signatures or between the genuine
and forged signatures, respectively. To calculate the correlation coefficient, all feature
vectors must be processed to be of equal length. However, due to the significant level of
unpredictability and personal interpretation involved in the signature process, signatures
can be different each time, even when written by the same person. As a result, the length of
the sample point sequence used to represent a signature may also differ, leading to unequal
feature vector lengths. Thus, we propose two feature vector length alignment methods.

2.2.1. Feature Vector Length Alignment Method by Filling the Missing Value according to
Original Feature Vector Missing Situation

Taking the original pen pressure feature vectors p1 and p2 of the two genuine sig-
natures of USER1 in the SVC 2004 dataset as an example, if the lengths of p1 and p2 are
c and w, respectively, where c > w, then p1 = [p11, p12, . . . , p1w, p1w+1, . . . , p1c]

> and
p2 = [p21, p22, . . . , p2w]

>. Two strategies can be used to align the feature vector length
without destroying the continuity of the original feature data. The first strategy is to
delete the ([p1w+1, . . . , p1c]

>) part of p1 directly. However, if the length of p2 is less than
the length of p1 by more than 5%, the deletion may lead to a significant error result [44].
The second strategy is to fill the missing value ([p2w+1, p2w+2, . . . , p2c]

>) in p2 so that
p2 = [p21, p22, . . . , p2w, p2w+1, p2w+2, . . . , p2c]

>. There are multiple causes for missing
data. Deng et al. [45] believed that missing experimental data are usually related to missing
randomness in the user’s operation or systematic missing data during data collection. In
this paper, missing data mainly result from the randomness and uncertainty surrounding
the signature process. These factors resulted in data partially missing the original sampling
point used to represent the signature in the signature datasets. Deng et al. [45] demonstrated
that the filling method can be determined according to the type of missing data.

Generally, missing data types include missing completely at random, missing at random,
and missing not at random [46]. When judging the missing data type, Sun et al. [47] identified
that the assumption was gradually decreasing for missing completely at random, missing
at random, and missing not at random, so the type of missing data could be tested from
strong to weak. Sun et al. [47] also found that the type of missing data in the target
variable can be indirectly determined by constructing covariates and examining whether
the distributions of the components in the covariates are the same. If the distributions
of the components in the covariates are the same, the missing data in the target variable
are judged to be missing completely at random; if the distributions of the components in
the covariates are not the same, it is necessary to build a regression model further to
determine whether the missing data belongs to missing at random; and if the missing data is
neither missing completely at random nor missing at random, the missing data is considered
to be missing not at random. We will consider utilizing this method, taking p1 and p2
as examples, to first determine whether the missing data in the target variable p2 are
missing completely at random. Since p1 and p2 are feature vector pairs in the subsequent
calculation of correlation coefficients, p1 can be taken as a covariate and divided into two
parts, ([p11, p12, . . . , p1w]

>) and ([p1w+1, . . . , p1c]
>), and then, whether the distribution of



Sensors 2023, 23, 9341 7 of 18

([p11, p12, . . . , p1w, p1w+1, . . . , p1c]
>), ([p11, p12, . . . , p1w]

>), and ([p1w+1, . . . , p1c]
>) is the

same can be investigated.
Before analyzing the consistency of the aforementioned sample distribution, it is

crucial to assess whether the feature data conform to the normal distribution, as it is the
fundamental assumption for many statistical methods [48–50]. In addition, the normal
distribution test is different for different sample sizes. For sample sizes below 50, the
normal distribution test employs the Shapiro–Wilk test (S-W). In contrast, if the sample
size is 50 or more, the Kolmogorov–Smirnov test (K-S) is used for the same purpose [48,49].
Both methods mentioned above judge whether the current data distribution type meets
the normal distribution, depending on whether the normal test result is greater than
0.05 [48,49]. If the feature data conform to the normal distribution, the F-test [50] is used to
test the consistency of the feature vector distribution. Conversely, if the feature data do not
conform to the normal distribution, the Kruskal–Wallis sample distribution consistency
test (K-W) [50] is used to examine the consistency of the feature vector distribution.

In summary, to judge whether the missing data in the target variable p2 are miss-
ing completely at random, it is necessary to examine whether the data distribution of
the covariate p1 ([p11, p12, . . . , p1w, p1w+1, . . . , p1c]

>) of the target variable p2, the data
part ([p11, p12, . . . , p1w]

>) corresponding to p2 in the covariant p1, and the data part
([p1w+1, . . . , p1c]

> ) not corresponding to p2 in the covariant p1 are consistent. Suppose
the distribution consistency test result is less than 0.05. In that case, this indicates that the
three distributions are inconsistent [47]. The missing type of data in the target variable p2
does not belong to the missing completely at random, and it is necessary to establish further a
regression model to determine the type of the current missing data; otherwise, this indicates
that their distributions are consistent, and the missing type of data in the target variable p2
belongs to the missing completely at random type [47].

Based on the above testing steps, to determine the type of missing data for all original
feature vectors in the dataset, we first conducted a normal distribution test for all feature
data using the corresponding normal distribution test method according to the actual
sample size. The results showed that all the original feature data did not conform to a
normal distribution. Therefore, we conducted the K-W sample distribution consistency test
on a total of 373,520 pairs of original feature vectors (46 genuine signatures × 46 genuine
signatures × 5 features × 29 writers + 46 genuine signatures × 10 forged signatures
× 5 features × 29 writers) in the xLongSignDB dataset and a total of 180,000 pairs of
original feature vectors (20 genuine signatures × 20 genuine signatures × 5 features ×
45 writers + 20 genuine signatures × 20 forged signatures × 5 features × 45 writers) in
the SVC 2004 dataset. The K-W test results showed that the consistency test result of
the sample distribution of a total of 452,816 pairs of original feature vectors in the two
datasets was not less than 0.05. These results indicate that there was generally no significant
difference between the distributions of these feature vectors and that these feature vectors
of the missing data belonged to the missing completely at random type [47]. In addition,
the consistency test results of 100,704 samples of the original feature vectors were less
than 0.05, indicating significant differences between the distributions of a small number
of feature vectors; that is, the distribution of feature vectors was inconsistent. For these
feature vectors, the missing data type was determined by establishing a regression model
between missing variables and covariates [47], as in Equation (1):

log it(η) = log
η

1− η
= a + bx (1)

where η is the missing probability and x is a covariate. If coefficient b in the model is
not 0, the missing data type is missing at random. Otherwise, it is missing completely at
random [47]. Based on this, after building regression models for the above 100,704 pairs of
original feature vectors, the results showed that coefficient b in the model was not zero, so
its missing type was missing at random.
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When missing data are missing completely at random or missing at random, mean imputa-
tion (MEI) or multiple imputation (MI) can be selected to fill the data [45]. Among them,
mean imputation needs to calculate the mean of the observed data in the feature vector
containing missing values and use the mean as the imputation value to fill the missing part
of the feature vector. On the other hand, multiple imputation needs to use the imputation
model and the observed data to estimate multiple groups of values and then select the most
appropriate group of imputation values through comprehensive analysis. Considering the
efficiency issue, we chose the multiple imputation method based on chained equations that
can save imputation time [51]. In addition, considering that the number of imputations may
affect the performance of subsequent signature verification, pre-experiments were carried
out to investigate the signature verification performance of three, five, and six imputations
before the formal imputation in this paper. The results showed that when three imputations
were carried out, the imputation speed was faster, but the accuracy was too low; when
imputation was carried out five times, the accuracy was significantly improved. However,
when imputation was performed six times, the accuracy was slightly improved, but there
was no significant difference compared to that with five times, and the speed performance
was significantly reduced. Based on the above results, we selected five imputations. Then,
the average value of the five imputations was filled as the final content into the shorter
feature vector with missing values after comparing the lengths of two feature vectors,
so that its length was consistent with the length of another feature vector to realize the
length alignment of two feature vectors. Furthermore, in order to compare the impact of
different filling methods on the performance of signature verification, in addition to the
above methods, we also investigated the method of filling the missing parts of the feature
vector directly with zero.

Considering that the correlation analysis method varies with the distribution of the
data to be analyzed, the distribution of the feature data after length alignment was investi-
gated before calculating the correlation coefficient between the feature vectors. Pearson
correlation analysis can be used if the feature data meet both the normal distribution and
linear relationships; otherwise, Spearman’s correlation analysis is used [52,53]. We used the
Kolmogorov–Smirnov (K-S) normal test on the feature vectors after length alignment and
found that the normal test result was generally less than or equal to 0.05, indicating that the
feature data after length alignment generally did not conform to the normal distribution.
Therefore, we used Spearman’s correlation analysis to address this situation and conduct
the subsequent analysis. Unlike Pearson correlation analysis, Spearman’s correlation anal-
ysis is a non-parametric statistical method that does not require samples to conform to a
normal distribution and has a broader range of applications [52,53]. During the calculation
of Spearman’s correlation coefficient, it is necessary to sort the two groups of data to be
analyzed in ascending or descending order to obtain the sorting position of each datum
and then calculate the correlation coefficient between the sorting positions of the two data
groups. Spearman’s calculation formula is as follows:

ρ = 1−
6

n
∑

i=1
di

2

n(n2 − 1)
(2)

where di is the difference in the sorting positions of the two data groups and n is the number
of samples.

2.2.2. Feature Vector Length Alignment Method Based on Original Feature Vector Filtering
and Fusion

Before filtering the original feature vector, in order to eliminate the impact of different
signature sizes and positions on feature extraction, the signature was normalized using
the linear function normalization Formula (3), which normalizes the x coordinate and y
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coordinate of the original signature trajectory to [0, 100]. The normalized signature is
shown in Figure 2.

x′ =
x− xmin

xmax − xmin
× 100, y′ =

y− ymin

ymax − ymin
× 100 (3)

where x and y are the original coordinates of signature trajectory points; xmax and xmin are
the maximum and minimum values of all x in the signature trajectory point; ymax and ymin
are the maximum and minimum values of all y in the signature trajectory point; and x′ and
y′ are normalized coordinates.
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Based on signature normalization, we first divided the signature trajectory into five
parts according to the intervals of the x coordinates of the signature trajectory—[0, 20),
[20, 40), [40, 60), [60, 80), and [80, 100]—then filtered out the original feature data corre-
sponding to each part, and then summed the original feature data of this part as new
feature data.

Still taking the SVC 2004 dataset as an example, let the original pen pressure feature
vector of 20 feature vector signatures of user1 in the SVC 2004 dataset be p1, . . . , p20. Table 1
shows the new pen pressure feature vectors of 20 genuine signatures after length alignment.
Let N be the total number of samples in the current signature’s original pen pressure feature

vector. Then, p′11 =
N
∑

k=1
p1k, x ∈ [0, 20) is the sum of the original pen pressure feature

data in the first interval [0, 20) filtered from the original pen pressure feature data of the

first genuine signature; p′12 =
N
∑

k=1
p1k, x ∈ [20, 40) is the sum of the original pen pressure

feature data located in the second interval [20, 40) filtered from the original pen pressure
feature data of the first genuine signature, and so on, resulting in a new pen pressure feature
vector of the first genuine signature as p′1 =

[
p′11, p′12, p′13, p′14, p′15

]>. Correspondingly,
the new pen pressure feature vector for 20 genuine signatures can be derived as p′1, . . . , p′20.
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Table 1. New pressure feature vectors of 20 genuine signatures.

New Pen Pressure
Feature Vector [0, 20) [20, 40) [40, 60) [60, 80) [80, 100]

p′1
p′11 =

N
∑

k=1
p1k ,

x ∈ [0, 20)

p′12 =
N
∑

k=1
p1k ,

x ∈ [20, 40)

p′13 =
N
∑

k=1
p1k ,

x ∈ [40, 60)

p′14 =
N
∑

k=1
p1k ,

x ∈ [60, 80)

p′15 =
N
∑

k=1
p1k ,

x ∈ [80, 100]
...

...
...

...
...

...

p′m
p′m1 =

N
∑

k=1
pmk ,

x ∈ [0, 20)

p′m2 =
N
∑

k=1
pmk ,

x ∈ [20, 40)

p′m3 =
N
∑

k=1
pmk ,

x ∈ [40, 60)

p′m4 =
N
∑

k=1
pmk ,

x ∈ [60, 80)

p′m5 =
N
∑

k=1
pmk ,

x ∈ [80, 100]

p′n
p′n1 =

N
∑

k=1
pnk ,

x ∈ [0, 20)

p′n2 =
N
∑

k=1
pnk ,

x ∈ [20, 40)

p′n3 =
N
∑

k=1
pnk ,

x ∈ [40, 60)

p′n4 =
N
∑

k=1
pnk ,

x ∈ [60, 80)

p′n5 =
N
∑

k=1
pnk ,

x ∈ [80, 100]
...

...
...

...
...

...

p′20
p′20 1 =

N
∑

k=1
p20k ,

x ∈ [0, 20)

p′20 2 =
N
∑

k=1
p20k ,

x ∈ [20, 40)

p′20 3 =
N
∑

k=1
p20k ,

x ∈ [40, 60)

p′20 4 =
N
∑

k=1
p20k ,

x ∈ [60, 80)

p′20 5 =
N
∑

k=1
p20k ,

x ∈ [80, 100]

Bold represents the feature vectors.

After unifying the length of the feature vector, in order to calculate the correlation
coefficient between the two new feature vectors, we first conducted a normal test on the
new feature data. Considering that the length of the new feature vector in this paper was
five, we selected the Shapiro–Wilk normality test method suitable for a small sample size
normal test [48,49], and the results showed that the new feature vector data generally
conformed to the normal distribution. After confirming that the feature vectors satisfied a
normal distribution, it was necessary to determine further whether they satisfied a linear
relationship. In this paper, a total of 553,520 pairs of new feature vectors generated from
the xLongSignDB dataset and the SVC 2004 dataset were analyzed by regression analysis.
Taking the original pen pressure feature vectors p1, p2, and p3 of USER1′s genuine signature
1, genuine signature 2, and genuine signature 3 in the SVC 2004 dataset as an example, the
new pen pressure feature vectors p′1, p′2, and p′3 were analyzed by regression. Taking the
new pen pressure feature vectors p′1 and p′2 as an example, in order to achieve the regression,
it was necessary to use p′1 as the independent variable and p′2 as the dependent variable and
then use the least squares approximation method to construct the linear prediction function
by constantly adjusting the intercept and slope to obtain a higher goodness-of-fit R2. After
the analysis, it was found that the regression equation of (p′1, p′2) was y = 1.2304x− 3249.5,
and the goodness-of-fit R2 was 0.9096, which indicates that (p′1, p′2) met a linear relationship.
The linear relationship between each new pen pressure feature vector is shown in Figure 3.
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Figure 3. Linear relationship of (p′1, p′2), (p′1, p′3), and (p′2, p′3).
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After determining that each new characteristic data met the normal distribution and
linear relationship, the Pearson correlation analysis method could calculate the Pearson
correlation coefficient between the two feature vectors. The calculation formula is as follows:

r =
cov(xi, yj)

σxi σyj

=

n
∑

i=j=1
(xi − x)(yj − y)√

n
∑

i=1
(xi − x)2

√
n
∑

j=1
(yj − y)2

(4)

where xi and yj are two sets of feature vectors with length n, and x and y are the mean
values of samples in feature vectors xi and yj, respectively. As shown in Table 1, taking
the new pen pressure feature vectors p′m and p′n of the m-th and n-th genuine signatures of
user1 in the SVC 2004 dataset as an example, after length alignment, Equation (4) becomes
as follows:

rp′m p′n =

5
∑

i=j=1
(p′mi − p′m)(p′nj − p′n)√

5
∑

i=1
(p′mi − p′m)

2
√

5
∑

j=1
(p′nj − p′n)

2
(5)

where p′mi represents the sum of the original pen pressure feature data in the i-th interval
filtered from the original pen pressure feature data of the m-th genuine signature, and p′nj
represents the sum of the original pen pressure feature data in the j-th interval filtered
from the original pen pressure feature data of the n-th genuine signature. p′m and p′n are
the mean values of the new pen pressure feature data in the two new pen pressure feature
vectors p′m and p′n.

2.3. Online Signature Verification

Based on the above two feature vector length alignment methods, we combined
Formulas (2) and (5) to calculate the correlation coefficients between the new feature
vectors in the genuine signature and between the genuine and forged signatures in the
xLongSignDB dataset and SVC 2004 dataset, respectively. On this basis, we divided the
training and test samples. When dividing the training and test samples, we used the
correlation coefficients between the new feature vectors of each writer’s first 10 genuine
signatures in the SVC 2004 dataset as the training samples. For the test samples, we
used the correlation coefficients between the new feature vectors of the last 10 genuine
signatures and the new feature vectors of the first 10 genuine signatures, and the correlation
coefficients between the new feature vectors of the 20 forged signatures and the new feature
vectors of the first 10 genuine signatures. In the xLongSignDB dataset, the correlation
coefficients between the new feature vectors of each writer’s initial 23 authentic signatures
were employed as training samples. Additionally, the correlation coefficients between the
new feature vectors of the final 23 genuine signatures and the new feature vectors of the first
23 genuine signatures, as well as the correlation coefficients between the new feature vectors
of the 10 forged signatures and the new feature vectors of the first 23 genuine signatures,
were used as test samples. As an example, the correlation coefficients between the new
pen pressure feature vectors of the 40 signatures (20 genuine and 20 forged signatures) of
USER1 in the SVC 2004 dataset are shown in Table 2.

After obtaining the correlation coefficients between the new feature vectors, we intro-
duced the Gaussian density function to model these correlation coefficients, as shown in
Equation (6).

f (xi) =
1√
2πσ

e−
(xi−µ)2

2σ2 (6)

The xi in Equation (6) is the correlation coefficient between the i-th new feature vector,
and µ and σ are the mean and standard deviation of the training samples, respectively. For
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the final signature verification in this paper, all the calculated correlation coefficients were first
substituted into Equation (6) to obtain the function value corresponding to each correlation co-
efficient. Then, considering that the mean is a widely used statistic, it can serve as an intuitive
representation of either the central tendency or the general pattern of sample distribution [54].
Therefore, we used the mean value of all functions corresponding to the training sample as the
discrimination threshold for signature verification. Taking Table 2 as an example, the discrimi-
nation threshold is δ = average

(
f (rp′1 p′1

), . . . , f (rp′10 p′10
)
)

. After obtaining the discrimination
threshold, take the average value of the function value of the test sample by column, then{

tp′11
= average

(
f (rp′11 p′1

), . . . , f (rp′11 p′10
)
)

, . . . , tp′40
= average

(
f (rp′40 p′1

), . . . , f (rp′40 p′10
)
)}

,
and then compare (tp′11

, . . . , tp′40
) with the discrimination threshold δ. If it is greater than δ, it

is judged that this signature is genuine; otherwise, it is forged. In this paper, we examined the
signature verification performance of each feature using the false rejection rate (FRR), the false
acceptance rate (FAR), and accuracy (ACC), where FRR is the ratio of the number of genuine
signatures that are rejected incorrectly to the total number of genuine signatures; FAR is the
ratio of the number of forged signatures that are accepted incorrectly to the total number
of forged signatures; and ACC is the ratio of the number of signatures that are recognized
correctly to the total number of signatures.

Table 2. Correlation coefficient between new pressure feature vectors on SVC 2004 signature dataset.

New Pen Pressure
Feature Vector p’

1 . . . p’
10 p’

11 . . . p’
20 p’

21 . . . p’
40

p′1 rp′1 p′1
. . . rp′10 p′1

rp′11 p′1
. . . rp′20 p′1

rp′21 p′1
. . . rp′40 p′1

p′2 rp′1 p′2
. . . rp′10 p′2

rp′11 p′2
. . . rp′20 p′2

rp′21 p′2
. . . rp′40 p′2

...
...

. . .
...

...
. . .

...
...

. . .
...

p′10 rp′1 p′10
. . . rp′10 p′10

rp′11 p′10
. . . rp′20 p′10

rp′21 p′10
. . . rp′40 p′10

3. Experimental Results and Analysis

According to the above signature verification method, the signature verification perfor-
mance based on the X coordinate feature (X), Y coordinate feature (Y), pen pressure feature
(P), pen tilt feature (T), and pen azimuth feature (A) was investigated. The experimental
results are shown in Tables 3 and 4. Table 3 shows the signature verification performance
of each feature after filling in the missing value of the original feature vector.

Table 3. Signature verification performance of each feature based on original feature vectors filled
with missing values.

Filling Method Feature
xLongSignDB DataSet SVC 2004 DataSet

FRR FAR ACC FRR FAR ACC

MEI

X 0.297 0.183 73.78% 0.287 0.278 71.93%
Y 0.309 0.272 70.22% 0.317 0.292 69.93%
P 0.115 0.148 87.46% 0.200 0.134 84.07%
T 0.142 0.186 84.43% 0.207 0.219 78.52%
A 0.132 0.176 85.48% 0.238 0.201 78.67%

MI

X 0.287 0.176 74.71% 0.282 0.061 86.51%
Y 0.215 0.257 77.32% 0.269 0.103 84.15%
P 0.058 0.110 92.58% 0.082 0.057 93.46%
T 0.133 0.162 85.79% 0.240 0.073 87.11%
A 0.114 0.138 87.88% 0.207 0.053 89.56%

Zero

X 0.385 0.207 66.88% 0.322 0.356 65.56%
Y 0.376 0.310 64.37% 0.333 0.378 63.70%
P 0.147 0.307 80.46% 0.273 0.143 81.41%
T 0.166 0.342 78.58% 0.211 0.248 76.44%
A 0.179 0.328 77.53% 0.249 0.221 76.96%
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Table 4. Signature verification performance of each feature based on original feature vectors with
filtering and fusion.

Feature
xLongSignDB DataSet SVC 2004 DataSet

FRR FAR ACC FRR FAR ACC

X 0.279 0.221 73.87% 0.400 0.222 71.85%
Y 0.297 0.252 71.68% 0.415 0.260 68.81%
P 0.142 0.072 87.88% 0.298 0.170 78.74%
T 0.285 0.189 74.39% 0.302 0.247 73.48%
A 0.654 0.203 77.32% 0.278 0.267 72.96%

It can be seen from Table 3 that among the three missing value-filling methods, signa-
ture verification performance after multiple imputation (MI) was better, with an average
accuracy of 83.66% on the xLongSignDB dataset and 88.16% on the SVC 2004 dataset. On
the other hand, signature verification performance after filling with zero was poor, with
an average accuracy of 73.56% on the xLongSignDB dataset and 72.81% on the SVC 2004
dataset. In addition, among the five features, signature verification performance based on
the pen pressure feature was the best, followed by signature verification performance with
the pen tilt feature and the pen azimuth feature, while signature verification performance
based on the X coordinate feature and the Y coordinate feature was the worst. It can also
be seen from Table 3 that signature verification accuracy with the pen pressure feature after
multiple imputation (MI) reached 92.58% on the xLongSignDB dataset and 93.46% on the
SVC 2004 dataset. In addition, the pen pressure feature had the highest average accuracy
of 86.83% on the xLongSignDB dataset with the three missing value-filling methods (mean
values of 87.46%, 92.58%, and 80.46% in Table 3).

Table 4 shows the signature verification performance after filtering and fusion of
the original feature vectors. From Table 4 it can be seen that the signature verification
performance based on the pen pressure feature was superior on both datasets.

The combined data from Tables 3 and 4 revealed that both the X coordinate and Y
coordinate features performed poorly in signature verification when using the two feature
vector length alignment methods. Specifically, when filled with zero, the X coordinate
and Y coordinate had the lowest average accuracy on the xLongSignDB datasets and the
SVC 2004 datasets with rates of 66.22% (mean values of 66.88% and 65.56% in Table 3) and
64.04% (mean values of 64.37% and 63.70% in Table 3), respectively. In addition, signature
verification performance with pen tilt and pen azimuth features using two different feature
vector length alignment methods is at a medium level. After filtering and fusion, the
average accuracy of pen tilt and pen azimuth features was the lowest on the xLongSignDB
and SVC 2004 datasets, with results of 73.94% (mean values of 74.39% and 73.48% in Table 4)
and 75.14% (mean values of 77.32% and 72.96% in Table 4), respectively. It is worth noting
that signature verification performance of the pen pressure feature using the two feature
vector length alignment methods was impressive. After multiple imputation (MI), the
average accuracy of the pen pressure feature was the highest on the xLongSignDB and SVC
2004 datasets, reaching 93.02% (mean values of 92.58% and 93.46% in Table 3). Conversely,
the average accuracy of the pen pressure feature was the lowest on the xLongSignDB and
SVC 2004 datasets when filled with zero. However, it still reached 80.94% (mean values of
80.46% and 81.41% in Table 3). Furthermore, comparing the results presented in Tables 3
and 4 revealed that the average accuracy of signature verification was the lowest for the
five features after filling with zero. This method produced an average accuracy of 73.56%
on the xLongSignDB dataset and 72.81% on the SVC 2004 dataset. The above two results
were close to the average signature verification accuracy of the five features after filtering
and fusion on the xLongSignDB datasets (77.03%) and SVC 2004 datasets (73.17%).

Based on the above results, it can be concluded that each feature’s signature verifica-
tion comprehensive performance was better after mean imputation (MEI) and multiple
imputation (MI); conversely, each feature’s signature verification comprehensive perfor-
mance was worse after filling with zero and filtering and fusion. The explanation for this
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finding could be that mean imputation (MEI) and multiple imputation (MI) had minimal
impact on the original feature vectors during the process of feature vector length alignment,
resulting in maximum data preservation in its original form. However, the method of
feature vectors with filtering and fusion altered their original form considerably, potentially
impacting the calculation of correlation coefficients between features. On the other hand,
both mean imputation (MEI) and multiple imputation (MI) methods used the original
data to generate the newly filled data. However, the method of filling the missing parts
of the data directly with zero did not actually use the original feature data and ignored
the original characteristics of the data. Furthermore, signature verification performance
improved when using the pen pressure, pen tilt, and pen azimuth features, indicating that
increasing the weight of these features in the multi-feature fusion process could further
improve signature verification performance.

Considering that some studies use the equal error rate (EER) as the primary perfor-
mance index, in this paper, EER was also calculated, and a smaller EER represented better
overall performance of the algorithm [1]. A comparison of this work with existing methods
is shown in Table 5.

Table 5. Comparison of signature verification methods.

Literature DataSet Method Feature FRR FAR EER ACC

Lei et al. [21] SVC DTW

X - - 0.251 -
Y - - 0.187 -
P - - 0.256 -
T - - 0.291 -
A - - 0.266 -

Friedman et al. [22] SVC DTW + Feature Normalization
P - - - 75.40%
T - - - 57.50%
A - - - 73.30%

Saleem et al. [55] SVC
Signer-Dependent

Sampling Frequency

X - - 0.178 -
Y - - 0.163 -
P - - 0.138 -

Cpałka et al. [56] SVC Signature Partitioning +
Fuzzy Classifier (X,Y) 0.109 0.105 - 89.30%

Shen et al. [6] SVC Siamese Neural Network (X,Y,P) 0.186 0.208 - 80.05%
Chandra et al. [57] SVC Random Forest (X,Y,P,T,A) 0.063 0.058 - 94.00%

Zalasiński et al. [58] xLongSignDB Signature Partitioning +
Fuzzy Classifier (X,Y,P,V) 0.029 0.041 - 96.52%

Our paper SVC
Multiple Imputation +

Correlation Coefficient +
Gaussian Density Function

X 0.282 0.061 0.139 86.51%
Y 0.269 0.103 0.187 84.15%
P 0.082 0.057 0.076 93.46%
T 0.240 0.073 0.138 87.11%
A 0.207 0.053 0.109 89.56%

Our paper xLongSignDB
Multiple Imputation +

Correlation Coefficient +
Gaussian Density Function

X 0.287 0.176 0.270 74.71%
Y 0.215 0.257 0.262 77.32%
P 0.058 0.110 0.089 92.58%
T 0.133 0.162 0.172 85.79%
A 0.114 0.138 0.148 87.88%

Table 5 compares the performance of online signature verification using uni-feature
and multi-feature fusion, respectively. For uni-features, the results of the experiments
presented in this paper are superior to those found in the existing literature. Further-
more, previous experiments have shown that signature verification performance using pen
pressure features is superior, a finding that is consistent with our findings. In contrast to
previous multi-feature fusion studies, improved signature verification accuracy using only
the pen pressure feature was demonstrated (93.46%). It outperformed both the signature
verification accuracy achieved by fusing the X and Y features (89.30%) and that achieved by
fusing all three features (X coordinate, Y coordinate, and pen pressure features) (80.05%).
Moreover, even though the signature verification accuracy of the Y coordinate feature was
the lowest in this paper (84.15%), it was also better than the signature verification accuracy
after fusing the X coordinate, Y coordinate, and pen pressure features (80.05%). These
results reveal that using a certain uni-feature improved signature verification performance
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compared to that when fusing certain features. However, it was also found that certain
features are unsuitable for use alone, such as the X coordinate and Y coordinate features.

Furthermore, Table 5 indicates that this paper’s experimental findings are marginally
inferior to those of the methods proposed by Cpalka et al. [56] and Chandra et al. [57].
This may indicate that multi-feature fusion can alleviate the problem of limited individual
information attached to a uni-feature to a certain extent. However, there are uncertainties
and challenges associated with multi-feature fusion. Table 5 shows the results of experiments
fusing different numbers and types of features. However, we found it difficult to draw
definitive conclusions. For instance, as seen in Table 5, the accuracy declined after fusing
three features (80.05%) compared to that when fusing two features (89.30%), and the accuracy
also decreased after fusing five features (94%) compared to that when fusing four features
(96.52%). Undoubtedly, the verification algorithm used may contribute to this phenomenon,
but the quantity and type of the fused features must be considered during the multi-feature
fusion process. Furthermore, the fusion of multi-features may be restricted by both the
device and the specific scenarios. Accomplishing feature fusion presents a challenge in
cases where the device cannot extract multi-features simultaneously. However, while using
uni-features may occasionally result in slightly lower signature verification accuracy than
after feature fusion, it can also reduce computational costs compared to using multi-features,
and uni-features are less likely to be limited by device or scenario constraints.

4. Conclusions

An online signature verification method based on the correlation coefficient of uni-
features was proposed, considering the problems of unequal feature vector length and low
signature verification accuracy when using uni-features for online signature verification.
Firstly, two feature vector length alignment methods were proposed, and the correlation
analysis method was determined by determining the distribution type of feature data.
Then, the correlation coefficients between the same feature vectors were calculated. Finally,
a Gaussian density function model was used for signature verification. The experimental
results showed that the comprehensive performance of each feature’s signature verification
was better after mean imputation (MEI) and multiple imputation (MI). The experimental
results also showed that signature verification performance based on the pen pressure
feature was the best among that of the five features, with an average accuracy of 86.83%
on the xLongSignDB dataset. In the future, we will expand the range of features to be
investigated, experiment with additional algorithms, and evaluate their performance in a
broader selection of signature datasets to minimize potential constraints due to feature and
dataset types and enhance signature verification accuracy.
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