
Citation: Cicero, S.; Guarascio, M.;

Guerrieri, A.; Mungari, S. A Deep

Anomaly Detection System for

IoT-Based Smart Buildings. Sensors

2023, 23, 9331. https://doi.org/

10.3390/s23239331

Academic Editor: Paul Davidsson

Received: 24 October 2023

Revised: 30 October 2023

Accepted: 16 November 2023

Published: 22 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Deep Anomaly Detection System for IoT-Based
Smart Buildings
Simona Cicero 1, Massimo Guarascio 2,* , Antonio Guerrieri 2 and Simone Mungari 2,3,*

1 Independent Researcher, 87032 Amantea, CS, Italy; simona.cicero@gmail.com
2 ICAR-CNR, Institute for High-Performance Computing and Networking, National Research Council of Italy,

Via P. Bucci 8/9C, 87036 Rende, CS, Italy; antonio.guerrieri@icar.cnr.it
3 University of Calabria, Via P. Bucci, 87036 Rende, CS, Italy
* Correspondence: massimo.guarascio@icar.cnr.it (M.G.); simone.mungari@icar.cnr.it (S.M.)

Abstract: In recent years, technological advancements in sensor, communication, and data storage
technologies have led to the increasingly widespread use of smart devices in different types of
buildings, such as residential homes, offices, and industrial installations. The main benefit of using
these devices is the possibility of enhancing different crucial aspects of life within these buildings,
including energy efficiency, safety, health, and occupant comfort. In particular, the fast progress in the
field of the Internet of Things has yielded exponential growth in the number of connected smart devices
and, consequently, increased the volume of data generated and exchanged. However, traditional
Cloud-Computing platforms have exhibited limitations in their capacity to handle and process the
continuous data exchange, leading to the rise of new computing paradigms, such as Edge Computing
and Fog Computing. In this new complex scenario, advanced Artificial Intelligence and Machine Learning
can play a key role in analyzing the generated data and predicting unexpected or anomalous events,
allowing for quickly setting up effective responses against these unexpected events. To the best of
our knowledge, current literature lacks Deep-Learning-based approaches specifically devised for
guaranteeing safety in IoT-Based Smart Buildings. For this reason, we adopt an unsupervised neural
architecture for detecting anomalies, such as faults, fires, theft attempts, and more, in such contexts.
In more detail, in our proposal, data from a sensor network are processed by a Sparse U-Net neural
model. The proposed approach is lightweight, making it suitable for deployment on the edge nodes
of the network, and it does not require a pre-labeled training dataset. Experimental results conducted
on a real-world case study demonstrate the effectiveness of the developed solution.

Keywords: internet of things; sensor data stream; deep learning; safety; anomaly detection;
industry 4.0

1. Introduction

The rapid advancements in hardware, software, and communication technologies have
facilitated the development of Internet-connected smart devices capable of observing and
measuring data from the physical world. The term Internet of Things (IoT) [1] is commonly
used to define a novel paradigm in which interoperable Smart Objects are interconnected
and communicate among themselves to perform several activities (e.g., monitoring, control,
optimization, and automation) [2]. Specifically, IoT technologies facilitate the creation of
Smart Buildings. Buildings serve as fundamental yet essential components of the human
living environment. The idea of Smart Buildings emerged as a result of the growing
incorporation of cutting-edge IoT technology into building systems, enabling remote
operation and control throughout the entire lifespan of the structures. This integration
aims to enhance convenience, comfort, cost-effectiveness, and energy efficiency [3]. Today,
IoT has gained extensive usage in Smart Buildings [4], representing the vanguard of
architectural design: integrating sensors and actuators enables both gathering data for
informed decision-making and performing intelligent actions.

Sensors 2023, 23, 9331. https://doi.org/10.3390/s23239331 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23239331
https://doi.org/10.3390/s23239331
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7711-9833
https://orcid.org/0000-0003-1469-9484
https://orcid.org/0000-0002-0961-4151
https://doi.org/10.3390/s23239331
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23239331?type=check_update&version=2

Sensors 2023, 23, 9331 2 of 15

Since the great diffusion of such devices, the data gathered by them has taken the form
of Big Data [5] i.e., they are characterized by large volumes, frequency, and variety. Although
the data generated by IoT networks deployed in smart buildings represent a precious source
for developing intelligent tools that can enhance the perceived well-being of people while
ensuring their safety, their usage entails addressing various challenges due to the nature
of the data to be processed. First, the sensors employed for environment monitoring
generate large data streams that need to be processed in real time to promptly detect
potential unexpected behaviors or anomalies that may occur within the building, allowing
for the immediate activation of appropriate countermeasures. In our reference scenario, an
anomaly can result from a sensor malfunction or from an abrupt change detected in the
readings of sensors within the physical environment due to an exceptional/unusual event.
Examples of anomalies that can occur include fires, gas leaks, disasters, unauthorized
physical access during non-working hours, and attempted theft. In this sense, detecting in
time these anomalies can be crucial to take measures against possible harmful phenomena.

However, the collected data are often low-level raw data (e.g., measurements on
temperature, humidity, CO2 levels, and air quality) that require domain expert intervention
to be prepared for the analysis. Moreover, the observed behavior can naturally evolve [6];
therefore, an effective solution must be able to incrementally update itself to distinguish
between true anomalies and normal changes in the monitored environment.

Given the speed and volume of data generated, recently, there has been a growing
interest in developing solutions leveraging Artificial Intelligence (AI) and Machine-Learning
(ML) techniques [7,8]. In particular, the approaches based on the Deep-Learning (DL)
paradigm represent the state-of-the-art in several application scenarios for revealing the
presence of unexpected behaviors. DL-based architectures can be used to create effective
anomaly detection models by combining raw low-level data collected from sensors of
various types. Deep Neural Networks (DNNs) operate hierarchically, with multiple layers
of non-linear processing units organized in a hierarchical structure [9]. Each subsequent
layer in the architecture produces a set of features with a higher abstraction level than the
previous one. As a result, DL-based approaches are effective for deriving data abstractions
and representations at various levels. They also serve as an excellent choice for analyzing
raw data provided in different formats and from different sources. Finally, Deep-Learning
techniques inherently leverage the availability of large volumes of data, while many tra-
ditional Machine-Learning algorithms with shallow hierarchies fail to explore and learn
highly complex patterns.

However, learning accurate models requires coping with several challenging issues:
(i) unavailability of labeled data, in many real-world scenarios, the training set often
lacks labels and includes only normal examples for the learning phase; (ii) unbalanced
class distribution, the majority of data points belong to the “normal” class, while the
“anomalous” or rare class represents only a small portion of the data; and (iii) zero-shot
anomaly detection, identifying anomalies that have not occurred or been observed in
the past.

1.1. Contribution

The main objective of this work is to define a solution able to cope with all the
abovementioned issues. In more detail, we are interested in learning effective and efficient
detection models when labeled data are not available for the training stage. Moreover,
the approach must be able to learn only from the new batches of data made available
(discarding the old ones) since we want to deploy the detection models on edge devices
with limited hardware resources in terms of computation and storage. To this aim, here
we defined an unsupervised Deep Learning-based solution for guaranteeing safety in
IoT-based Smart Buildings. The proposed model does not necessitate any prior knowledge
of anomalies; moreover, our model adopts online training based on a sliding-window
strategy to enhance robustness against changes in the underlying data distribution. In
particular, our approach allows for detecting and reporting anomalies that can occur in a

Sensors 2023, 23, 9331 3 of 15

Smart Building monitored by intelligent sensors. The main contributions of this work are
summarized below:

• Design and development of a neural model for identifying anomalies in large data
streams from IoT sensors. Specifically, a neural architecture inspired by the Sparse
U-Net (widely used in other contexts, such as cybersecurity applications [10]) has
been employed. Basically, it can be figured out as an autoencoder (AE) embedding
several skip connections to facilitate the network learning process and some sparse
dense layers to make the AE more robust to noise. The approach is unsupervised and
lightweight, making it suitable for deployment at the network’s edge.

• An extensive experimental evaluation was conducted on the test case generated using
the abovementioned strategy. Numerical results demonstrate the effectiveness and
efficiency of our approach.

1.2. Organization of the Paper

The rest of the paper is organized as follows: Section 2 reviews the state-of-the-art
methods for detecting anomalies in Smart Building; Section 3 illustrates the unsupervised
neural architecture adopted in this work and showcases the detection approach used to
reveal the presence of unexpected behaviors; Section 4 describes the considered case study,
while Section 5 details the experimental evaluation conducted on the introduced case.
Finally, Section 6 concludes the paper and outlines future research directions.

2. Related Works

IoT systems produce massive quantities of data. Thus, identifying abnormal obser-
vations in data streams is not trivial. Many models have been proposed over the years
exploiting different frameworks. In Shahraki et al. [11], the authors proposed TONTA: an
online model able to identify abrupt changes. For this purpose, the proposed model aims
to compare different network traffic trends by exploiting time-series data gathered from the
IoT architecture. In particular, the distance between two sequences is computed, and if the
result is above a specific threshold, a change point is detected and notified. This approach
can be easily adopted in scenarios with limited computational and storage resources.

Some other different approaches in the literature are based on the use of Machine/Deep-
Learning techniques since they are successfully adopted in several scenarios due to their
capabilities of capturing patterns by analyzing historical data. For example, within the
context of Internet of Vehicles (IoV), in [12], the authors exploit a single LSTM by combining
temporal and data dimensions in the input. The model’s output is then compared to the
actual data to identify possible anomalies. A different solution exploiting DL approaches
is proposed by Gao et al. [13], which is used for identifying anomalies in IoT time-series
data. The proposed model, TSMAE, uses a sequence-to-sequence architecture based on
LSTMs for reproducing the input to the output. Moreover, it is empowered with a memory
module [14] to enhance the computation by combining information extracted from old data
with current observations.

Recently, distributed frameworks, such as federated machine/deep-learning mod-
els [15–17] and Edge Computing [18], have been investigated for developing efficient solu-
tions for revealing anomalies in different applications. In this setting, each network node
can process its local data without the need to send data to an external processing unit
(e.g., the Cloud). An example is READ-IoT [19], which adopts a bifold architecture: the
first module, based on logic rules, detects whether there is an anomaly following some
predefined thresholds (such as temperature, humidity and so on); while the second module,
based on ML models, is used to double-check the previous output (refinement). It is worth
noting that the main limitation of this approach is that it is wired to specific scenarios,
and it is not a general-purpose model. In [20], the authors devised a model for anomaly
detection in edge computing, which introduces a novel framework encompassing data
compression and a moth flame swarm optimization algorithm to route the data among
the network efficiently. Finally, an LSTM is used in a supervised framework to predict

Sensors 2023, 23, 9331 4 of 15

whether the observation is anomalous. Alas, in real-world scenarios, it is unlikely to have
labeled anomalies. For this reason, unsupervised approaches are frequently preferred
to supervised ones. To overcome this limitation, our proposed model detects anomalies
in an unsupervised fashion. However, to the best of our knowledge, our approach is
the first tentative to combine unsupervised deep neural models with a sliding-window
strategy to reveal the presence of unexpected behaviors to guarantee safety in IoT-Based
Smart Buildings.

3. Proposed Approach

This section illustrates the Deep Learning-based solution designed to identify anoma-
lous behaviors within Smart Buildings. Our detection model adopts an unsupervised
approach and incorporates a preprocessing procedure to enhance its efficacy.

The main benefit of employing an unsupervised learning scheme relies on its capacity
to trigger alerts for previously unseen anomalies. This is a common scenario in sensor-
monitored environments, as incidents and safety issues are frequently undocumented and
unknown beforehand.

3.1. Neural Detector Architecture

The underlying idea of the proposed solution is to employ an encoder-decoder architec-
ture trained on data collected from a sensor network deployed in a monitored environment.
Essentially, an autoencoder (AE) is an unsupervised neural network model (i.e., trained with-
out any prior knowledge about the nature of normal/anomalous behavior) that performs
two main operations: first, it compresses the input data (i.e., a set of statistics computed
from sensor measurements at specific time intervals) into a latent space, and subsequently, it
attempts to reconstruct the original information provided as input to the model.

In the considered application scenario, the model is trained solely on normal data,
i.e., data in which anomalies are not present. The fundamental insight is that input data
describing normal behaviors should be mostly reconstructed accurately by the autoencoder.
In other words, the encoding/decoding phases should not introduce significant distortion
in the output. Conversely, outliers and anomalies in the input should lead the AE to
generate a “deviant” output. Basically, the approach is unsupervised because the neural
network learns the identity function between input and output (without considering the
anomaly label). In an operational scenario, the model is trained on a limited number of
normal examples selected by the expert, and then, as soon as new tuples for the learning
stage are made available, the ones more likely “normal” are used to update the model. The
detection of the anomalies is performed based on the divergence between the input and
the model output.

The use of reconstruction error as a measure of outliers to discover anomalous behav-
iors has already been proposed in the literature. However, the application of unsupervised
techniques (particularly encoder-decoder architectures) to detect critical situations in in-
dustrial and smart building environments is currently the subject of study. As discussed
in [21,22], autoencoders are regarded as a valid solution to effectively summarize the main
information of a given input into a low-dimensional representation. In essence, these neural
network models aim to produce an output that closely duplicates the provided input.

In this work, we adopted the architecture depicted in Figure 1 [10]. Basically, it consists
of two main components referred to as the Encoder and the Decoder.

Let x = {x1, . . . , xN} be a set of numerical features (in our scenario, a set of statistics
computed from sensor data within a specific time interval). The first subnetwork’s goal is
to map the input data into a latent space (encoding), i.e., to learn a function z = enc(x). The
second subnetwork provides the overall network output y = dec(z) by reconstructing the
input from the features extracted by the encoder (decoding). Gradient descent is employed
to learn the model weights by minimizing an appropriate loss function. The Mean Squared
Error (MSE) [23], defined as MSE = 1

N ∑N
i=1(xi − yi)

2, is used for the learning phase.

Sensors 2023, 23, 9331 5 of 15

Dense Layer (E-DLM-1)

Dense Layer (E-DL1)

Input Layer

Dense Layer (E-DL1)

Dense Layer (E-DLM-1)

Dense Layer

Dense Layer (D-DL2)

Dense Layer (D-DLM)

Output Layer

Encoder

Decoder

skip
connections

concatenation

…

…

latent
space

Figure 1. Neural architecture (Sparse U-Net) used to detect anomalous behaviors in our approach.

Please note that the architecture in Figure 1 exhibits two main differences compared to
a standard encoder-decoder model:

• Skip Connections: These connections allow the layers of a neural network to be con-
nected in a way that enables a direct flow of information from one layer to another,
bypassing one or more intermediate layers and, in this way, preserving information
and gradients [24]. Skip connections allow the construction of much deeper neural
networks without suffering from performance or training issues. This is particularly
useful because deeper neural networks can capture more complex data representations.
Moreover, they enable neural networks to learn residual differences between input
data and the predicted data. Hence, skip connections enhance the model’s predictive
performance and reduce the number of iterations required for the convergence of the
learning algorithm.

• Hybrid Approach: The architecture incorporates the use of “Sparse Dense Layers” to
make the autoencoder more robust to noise, particularly because the anomalies to
be identified often exhibit slight differences from normal behaviors. Sparse Dense
Layers used in our solutions fall within the Sparse-AE framework. In this scenario, a
Sparse Dense Layer is essentially a dense layer with a significantly larger number of
neurons compared to the size of its input. However, what makes it “sparse” is that
the learning process actively encourages sparsity in the activations within this layer.
This means that only a subset of neurons is encouraged to be active, with non-zero
activations for a given input. The primary purpose of this design is to reduce the
complexity of the representations learned by the network. By promoting sparsity in
the activations, the Sparse Dense Layer effectively learns a more concise and efficient
representation of the input data. This can be particularly advantageous in scenarios
where data dimensionality reduction or feature selection is desired. The architecture’s
Sparse Dense Layers are placed in the first layer of the encoder and the last layer of

Sensors 2023, 23, 9331 6 of 15

the decoder. Both the encoder and the decoder consist of M hidden layers, resulting
in a symmetrical architecture.

In more detail, the use of skip connections simplifies the learning process by providing,
as input to each layer of the decoder (D-DLi), except for the shared latent space, both the
previous layer (D-DLi−1) and the corresponding layer of the encoder (E-DLM−i+1). As
for the Sparse Layers, they are employed to generate a greater number of discriminative
features, allowing for the extraction of a more representative latent space.

3.2. Detection Protocol

Figure 2 illustrates the anomaly detection process. Without loss of generality, we
assume to monitor an “infinite data stream”, i.e., data produced by k IoT devices continuously
feeding the detection mechanism.

At each predefined time interval (corresponding to a “time slot” in the figure), a set of
descriptive statistics is computed to represent the state of the environment being monitored
during that specific time window. This approach offers several advantages, most notably
the ability to carry out this process without overloading network traffic and using limited
computational resources. This efficiency is achieved because, for both the learning and
inference phases, it is only necessary to store aggregated statistics. These statistics are
generated based on the measurements provided by the sensors and include metrics such as
the minimum, average, maximum, different percentile values, and more.

The data to be processed by the Sparse-AE model are preprocessed to improve the ef-
fectiveness of the approach. This preprocessing phase includes normalizing the data within
the range of [−1, 1], achieved through a MinMax strategy. Additionally, any irrelevant
features, such as those exhibiting minimal variability, are dropped from the dataset. This
preprocessing is a crucial step performed consistently in both the learning phase and the
deployment stage.

Sensor Data Stream

sensor[k]isensor[k]i-mk

slotjslotj-1slotj-s

reconstructed
instanceinstance

compute
reconstruction error

Sparse U-Net

is over the
threshold?

temporally
sampled data

raise alarm

no

yes

feed the model with the
new example

...

group sensor data and
compute statistics

DjDj-1Dj-s

preprocess input
data

drop useless features
and normalize data

sensor[1]isensor[1]i-m1 ...

...sensor[k]i-nksensor[k]i-ok

sensor[1]i-n1sensor[1]i-o1 ...

...sensor[k]i-pksensor[k]i-qk

sensor[1]i-p1sensor[1]i-q1 ...

...

..................

Figure 2. Detection mechanism used to reveal the presence of anomalies.

Sensors 2023, 23, 9331 7 of 15

The heart of the process lies in utilizing an autoencoder that has been pre-trained on
normal data verified by an expert. This autoencoder is used to reproduce the computed
statistics, and subsequently, the reconstruction error for the current example is calculated
as the Mean Squared Error between the original input data, denoted as x, and the autoen-
coder’s output denoted as y. The core of the detection system is included in this phase: if
the reconstruction error falls below a predefined “outlierness threshold”, the current data are
labeled as “normal”. This labeled data then contributes to updating the detection model,
ensuring that it remains current and capable of accurately capturing the evolving state of
the monitored environment. On the other hand, if the reconstruction error exceeds the es-
tablished threshold, the system triggers an alert, signaling a potential anomaly or deviance
in the environment. This approach not only allows for efficient real-time monitoring but
also provides the flexibility to adapt to changing conditions.

4. Case Study

The case study for testing the proposed approach has been obtained by altering
and injecting anomalies in the dataset described in [25], and that can be found on GitHub
(Occupancy-detection-data—https://github.com/LuisM78/Occupancy-detection-data Last
seen on 23 October 2023). The dataset has been obtained by gathering experimental mea-
surements from different types of sensors necessary for occupancy detection. Specifically,
the data were obtained by monitoring an office room with approximate dimensions of
5.85 m × 3.50 m × 3.53 m (L ×W × H) using specific sensors to real-time monitor (every
minute) the following parameters: temperature, humidity, light, and CO2 levels. The
devices used for data collection are listed below:

• A microcontroller for preprocessing the data.
• A ZigBee radio is connected to the microcontroller for collecting data from the sensors

and transmitting the information to a recording station.
• A digital camera to determine room occupancy.

Collected data were made available in the form of three datasets whose main char-
acteristics are listed in Table 1. In particular, each dataset consists of 7 fields, also called
features, which are all numeric except the last one, which is binary: Date, Temperature,
Humidity, Light, CO2, HumidityRatio, and Occupancy.

Table 1. Initial datasets.

Dataset Features Number of Tuples Further information

Training 7 8143 Measurements mainly obtained with the closed
door while the room is occupied

Testing_1 7 2665 Measurements mainly obtained with the closed
door while the room is occupied

Testing_2 7 9752 Measurements mainly obtained with the opened
door while the room is occupied

However, since the training dataset consists mainly of measurements recorded with
the door closed during the occupied state, we extract a sample from Testing_2 equal to the
first 50% of the data (i.e., 4876 tuples) and add it to the original training set of 8143 tuples.
In this way, we aim to feed the neural network with a wider variety of possible normal
cases during the learning phase. The new training set will thus contain 13,019 tuples,
while Testing_2 will only contain the remaining 4876 tuples. The new datasets are named,
respectively, Training_1_plus, Testing_1, and Testing_2_sampled and are highlighted in
Table 2.

https://github.com/LuisM78/Occupancy-detection-data

Sensors 2023, 23, 9331 8 of 15

Table 2. Considered datasets for experimental evaluation.

Dataset Features Number of Tuples Further information

Training_1_plus 7 13,019 Measurements obtained both with the
closed and the opened door while the
room is occupied

Testing_1 7 2665 Measurements mainly obtained with the
closed door while the room is occupied

Testing_2_sampled 7 4876 Measurements mainly obtained with the
opened door while the room is occupied

Injecting Synthetic Anomalies

Here, we describe the protocol adopted to insert unexpected behaviors in both the test
cases introduced above, namely Testing_1 and Testing_2_sampled. Let i be the i-th feature
randomly selected from the list of features to be considered within a generic test set. Three
types of anomalies have been generated:

• Peak Anomalies. In this case, we replace the actual value xi with anomaly(xi). The
anomaly is computed using the following formula:

anomaly(xi) = µi ± α · σi

where α is a real number sampled from the interval [2, 4], µi is the mean value of the
feature i, and σi represents its variance.

• Sensor Fault Anomalies. The i− th feature of xi is set to zero to simulate the breakdown
of the corresponding sensor. It is assumed that each fault generates a 15-min window
in which the sensor does not detect any measurements, meaning it consistently records
a null value.

• Expert-Induced Anomalies. These are anomalies conveniently added by a domain expert
that simulate three different scenarios: (i) a fire, (ii) a window left open in the room,
and (iii) people staying in the room at night. These kinds of anomalies involve changes
in different features together since a real event in the environment is simulated (e.g.,
in the case of fire, the CO2 dramatically increases together with the temperature, while
the humidity decreases; in the case of a window opened, the CO2 slowly decreases
together with the temperature, while the humidity increases).

The number of anomalies injected depends on the type and, specifically, the following
were injected:

• 100 peak anomalies (corresponding to 100 modified tuples);
• 25 sensor fault anomalies (i.e., 25 · 15 = 375 modified tuples);
• 10 expert-induced anomalies (equal to 160 modified tuples).

After inserting the anomalies, the data in each test set was grouped into time slots
following the approach described in Section 3.2 in order to calculate the descriptive statistics
to be provided as input to the neural model. In our experimentation, the statistics were
computed by considering a time window with a duration of 5 min.

5. Experimental Section

In this section, we describe a set of experiments aimed at evaluating the detection
capabilities of our approach against the case study described above. The experiments were
conducted to: (i) compare the accuracy of our neural model with respect to a baseline
model, (ii) analyze the sensitiveness of the approach in terms of detection capabilities with
respect to the threshold parameter, and finally (iii) evaluate the convergence rate of the
proposed model.

Sensors 2023, 23, 9331 9 of 15

5.1. Parameter Settings and Evaluation Metrics

As discussed in Section 3, the neural architecture adopted in our solution approach
includes different layers: the sparse layer of the encoder is composed of 256 neurons, while
the other ones are 24 and 16, respectively. The latent space includes 8 neurons. The decoder
layer is built symmetrically. Each layer is equipped with a ReLU activation function [26]
except for the output layer, which was equipped with a linear activation while Adam is
used as optimizer [27]. The parameters used for the training phase are summarized below
in Table 3.

Table 3. Training parameters of the Sparse U-Net.

Parameters Values

batch_size 16

num_epoch 32

optimizer adam

loss mse

To fully evaluate our model, we compared the accuracy performances with a Deep
Autoencoder (DAE) model. The main differences between the two architectures are: (i) DAE
does not include skip connections, and (ii) the sparse layer has been replaced with a linear
layer with 28 neurons.

A key parameter of the proposed approach is the reconstruction error threshold, which
allows for discriminating between normal behaviors and anomalies. In our evaluation,
we considered three different threshold values estimated by computing the reconstruction
error against the training set and sorting the obtained values:

• 98th percentile. The threshold is the 98th percentile of the training reconstruction errors;
• max_value. The threshold is the maximum value among the reconstruction errors of

the training set data;
• max + tolerance. It is computed according to the following formula: max + tolerance =

max_value + (max_value− 98th percentile)

The performances of our approach have been assessed using well-known quality
metrics commonly used in unbalanced scenarios. For this evaluation, we define TP as the
count of correctly classified positive cases, FP as the count of negative cases incorrectly
classified as positive, FN as the count of positive cases incorrectly classified as negative,
and TN as the count of correctly classified negative cases.

Leveraging these values, we can calculate the following metrics [28]:

• Accuracy: defined as the fraction of cases correctly classified, i.e., TP+TN
TP+FP+FN+TN ;

• Precision and Recall: metrics employed for assessing a system’s ability to detect anoma-
lies, as they offer a measure of accuracy in identifying anomalies while minimizing
false alarms. Specifically, Precision is defined as TP

TP+FP , while Recall as TP
TP+FN ;

• F-Measure: summarizes the model performance and computed as the harmonic mean
of Precision and Recall.

Lastly, to perform experiments, we used a machine with 16 GB RAM, an AMD Ryzen
7 5700U CPU @4.30GHz, and a 1TB SSD drive.

5.2. Quantitative Evaluation: Comparison with the Baseline and Sensitivity Analysis

Although all the measures are reported in the following tables, we focused the analysis
on the F − Measure as it effectively summarizes the overall performances of the model
with a single value and Accuracy, which provides a helicopter view of the performances.
Moreover, the performance values obtained by ranging different anomaly thresholds
are shown.

Sensors 2023, 23, 9331 10 of 15

We can observe that the proposed model outperforms the baseline on both the test
cases in terms of F−Measure and Accuracy (results in Tables 4–9), except for the sensor
fault anomalies in Testing_1.

Table 4. Experimental results for Testing_1 dataset altered with peak anomalies. In bold and italics are
reported the best results for the Sparse U-Net and the baseline, respectively.

Neural Model Threshold Accuracy Precision Recall F-Measure

Deep Autoencoder (baseline)
98th percentile 0.956 0.801 0.996 0.888
max value 0.889 1.000 0.359 0.529
max + tolerance 0.868 1.000 0.242 0.390

Sparse U-Net (Proposed Model)
98th percentile 0.960 0.814 0.996 0.896
max value 0.943 0.984 0.682 0.806
max + tolerance 0.926 1.000 0.571 0.727

Table 5. Experimental results for Testing_1 dataset altered with sensor fault anomalies. In bold and
italics are reported the best results for the Sparse U-Net and the baseline, respectively.

Neural Model Threshold Accuracy Precision Recall F-Measure

Deep Autoencoder (baseline)
98th percentile 0.969 0.851 1.000 0.919
max value 0.903 1.000 0.458 0.628
max + tolerance 0.885 1.000 0.352 0.521

Sparse U-Net (Proposed Model)
98th percentile 0.948 0.850 0.859 0.854
max value 0.940 0.985 0.675 0.801
max + tolerance 0.893 1.000 0.399 0.570

Table 6. Experimental results for Testing_1 dataset altered with expert-induced anomalies. In bold and
italics are reported the best results for the Sparse U-Net and the baseline, respectively.

Neural Model Threshold Accuracy Precision Recall F-Measure

Deep Autoencoder (baseline)
98th percentile 0.944 0.586 0.850 0.694
max value 0.959 1.000 0.450 0.621
max + tolerance 0.948 1.000 0.305 0.467

Sparse U-Net (Proposed Model)
98th percentile 0.955 0.645 0.900 0.752
max value 0.967 0.959 0.590 0.731
max + tolerance 0.959 1.000 0.460 0.630

Table 7. Experimental results for Testing_2_sampled dataset altered with peak anomalies. In bold and
italics are reported the best results for the Sparse U-Net and the baseline, respectively.

Neural Model Threshold Accuracy Precision Recall F-Measure

Deep Autoencoder (baseline)
98th percentile 0.852 0.395 0.973 0.562
max value 0.945 0.986 0.449 0.617
max + tolerance 0.927 1.000 0.249 0.399

Sparse U-Net (Proposed Model)
98th percentile 0.875 0.438 0.966 0.603
max value 0.968 0.952 0.711 0.814
max + tolerance 0.961 1.000 0.604 0.753

Sensors 2023, 23, 9331 11 of 15

Table 8. Experimental results for Testing_2_sampled dataset altered with sensor fault anomalies. In
bold and italics are reported the best results for the Sparse U-Net and the baseline, respectively.

Neural Model Threshold Accuracy Precision Recall F-Measure

Deep Autoencoder (baseline)
98th percentile 0.846 0.381 0.928 0.541
max value 0.947 0.987 0.463 0.630
max + tolerance 0.939 1.000 0.371 0.541

Sparse U-Net (Proposed Model)
98th percentile 0.864 0.405 0.838 0.546
max value 0.965 0.966 0.667 0.790
max + tolerance 0.943 1.000 0.415 0.586

Table 9. Experimental results for Testing_2_sampled dataset altered with expert-induced anomalies. In
bold and italics are reported the best results for the Sparse U-Net and the baseline, respectively.

Neural Model Threshold Accuracy Precision Recall F-Measure

Deep Autoencoder (baseline)
98th percentile 0.831 0.185 0.915 0.308
max value 0.979 0.971 0.510 0.669
max + tolerance 0.974 1.000 0.370 0.540

Sparse U-Net (Proposed Model)
98th percentile 0.862 0.225 0.960 0.364
max value 0.985 0.893 0.710 0.791
max + tolerance 0.980 1.000 0.510 0.675

Regarding the sensitivity analysis, we consider mainly the F−Measure.
Examining all the tables, we can note that for both neural architectures, as the threshold

increases, the Precision also increases, while Recall decreases, and vice versa. This allows
us to state that by adjusting the threshold value, it is possible to obtain a more precise
system or one with higher Recall, depending on the application context: if the goal is to
have a more accurate system, a higher threshold is required, while if the system still needs
to detect as many anomalies as possible, even at the cost of raising more false alarms, then
the threshold value should be lowered. This analysis aimed to determine which threshold
allows for capturing the highest number of anomalies while simultaneously limiting the
number of false alarms. We can observe that for Testing_1, the best threshold is the 98th
percentile while for Testing_2_sampled is the max_value. This is mainly due to how the
Training_1_plus is composed. Indeed, it contains more tuples with the door closed (as in
the Testing_1 dataset) than with the door opened (as in the Testing_2_sampled dataset).

The obtained results are better compared in Figures 3 and 4, in which we highlight, for
Testing_1 and Testing_2_sampled, a comparison on the F-Measure using the best-performing
thresholds (i.e., 98th percentile and max value). In particular, in such figures, we show
the different F-Measure values given by the used Deep Autoencoder and Sparse U-Net
models by varying the anomaly type. These charts provide a helicopter view of the overall
performances achieved in different settings and could allow any expert to choose the
best-needed threshold according to the specific scenario.

5.3. Convergence

The objective of the following analysis is to verify whether the Sparse U-Net archi-
tecture allows for faster convergence of the learning algorithm. In detail, the behavior of
the loss function on the training set for the two architectures was compared regarding the
number of epochs.

It is worth noting that, at the first iteration, the loss value of the Sparse U-Net is
lower by 0.05 compared to the loss value of the DAE. This demonstrates the benefit of
adopting skip connections and sparse layers in the early stages of training. This behavior is
even more evident in Figure 5, which presents the comparison of the loss functions on a
logarithmic scale.

Sensors 2023, 23, 9331 12 of 15

peak sensor fault expert induced
Anomaly Type

0.0

0.2

0.4

0.6

0.8

1.0

F-
M

ea
su

re

(DAE, 98th)
(DAE, max)
(Spase U-Net, 98th)
(Spase U-Net, max)

Figure 3. F-Measure comparison varying different settings per anomaly type on Testing_1.

peak sensor fault expert induced
Anomaly Type

0.0

0.2

0.4

0.6

0.8

1.0

F-
M

ea
su

re

(DAE, 98th)
(DAE, max)
(Spase U-Net, 98th)
(Spase U-Net, max)

Figure 4. F-Measure comparison varying different settings per anomaly type on Testing_2_sampled.

Figure 5. Deep Autoencoder and Sparse U-Net loss functions trend in logarithmic scale

Indeed, we can note that the proposed model converges much faster than the baseline
model. However, the rapid convergence of the loss does not lead to overfitting phenomena.
As shown earlier, the Sparse U-Net exhibits superior predictive performance compared to
the baseline in all the evaluated test scenarios except for one.

Sensors 2023, 23, 9331 13 of 15

Finally, we measured the time required for both the training and inference phases.
Basically, in the learning stage, the model is able to process the entire dataset in 3 s. (Time
per epoch) and a single data batch in 3 ms, whereas as regards the inference time (per tuple),
the model requires less than 1 ms to yield the output for a single input. This demonstrates
the efficiency of our solution and the possibility of deploying it on the edge of the network
(lightweight).

6. Conclusions

IoT technology is becoming increasingly pervasive in people’s lives. Its ability to en-
able the realization of Smart Buildings is increasing the willingness of the buildings’ in-
habitants to have IoT devices spread in their homes since they can enhance convenience,
comfort, cost-effectiveness, and energy efficiency in building environments. Based on the
January 2023 update from the Global IoT Enterprise Spending Dashboard by IoT Ana-
lytics, the overall cost of enterprise IoT in 2022 saw a significant growth of 21.5% (IoT
Analytics—https://iot-analytics.com/iot-market-size/ Last seen on 23 October 2023),
highlighting the increasing interest in these technologies. IoT sensors deployed in Smart
Buildings generate large amounts of data that no longer require physical transportation
for processing and analysis. Meanwhile, new technologies based on Artificial Intelligence
enable the detection of anomalies almost in real time, allowing for prompt responses
to them.

In this work, a Machine-Learning-based approach has been defined for the analysis
of data from a sensor network to detect anomalies related to sensor malfunctions or
exceptional events such as fires, gas leaks, and intrusion attempts.

In more detail, a specific Deep-Learning architecture has been developed for iden-
tifying unexpected behaviors, which is an Autoencoder that integrates skip connections
to facilitate the network’s learning process and sparse dense layers to make the AE more
robust to noise. This model can be trained without the need for previously labeled data.
Therefore, the approach is unsupervised and lightweight, making it suitable for use directly
on the network’s edge nodes. The experimentation conducted on a real case study demon-
strates the quality of the proposed approach, which achieves an F-Measure improvement
until the 20% compared to the baseline model, also lowering the convergence time.

Challenges and Opportunities

Although the results are encouraging and significant, some challenges remain open.
First, the presence of changes in data distributions due to normal situations (e.g., the
increase in temperature during the transition from winter to spring) could affect the predic-
tive capacity of the model (Concept Drift). Basically, the prompt detection of these changes
can allow for updating the model to reduce the risk of raising false alarms. Different ap-
proaches have been proposed to tackle this issue. One common approach is to implement
real-time monitoring systems that continuously collect and analyze data to identify abrupt
or gradual deviations from the expected patterns. Another strategy is to employ anomaly
detection methods that highlight unusual patterns or outliers in the data. These anoma-
lies may signify changes in the underlying processes, warranting further investigation.
Machine-learning models, such as neural networks and decision trees, can be trained to
identify these changes. When the concept drift detection methods fail, the use of Ensemble
Learning approaches can represent an effective tool to mitigate this problem, as different
models learned in different time intervals could be combined to gradually adapt to the new
state while maintaining the memory of the previous state. Hence, the learned models can
be combined using trainable or not-trainable functions to weigh the importance of each
model according to different criteria (e.g., more recent models could influence the response
of the ensemble more than the old ones). Additionally, the possibility of combining in-
formation from multiple edge nodes using Federated-Learning (FL) tools [29,30] (via the
exchange of DL models only) can be harnessed to leverage the collaborative capacity of
these new distributed systems, making them even more effective [31]. Moreover, these

https://iot-analytics.com/iot-market-size/

Sensors 2023, 23, 9331 14 of 15

methods play a key role in all those scenarios where data cannot be moved in a single
place (e.g., due to privacy issues) to perform traditional centralized learning. Essentially,
FL comprises a range of methods and techniques designed to facilitate the training of
machine-learning models in a decentralized manner. Typically, this decentralized learn-
ing takes place on edge devices or servers that store data. By promoting collaboration
among various stakeholders, FL enables the development of robust and efficient predictive
models without the necessity of centralized data sharing. However, it is worth noting that
several FL frameworks involve multiple rounds of communication between devices and
the central server, resulting in heightened communication overheads. This represents a
main limitation; therefore, we are interested in investigating current and new protocols
and strategies for efficient learning federated models in our scenario. As future works,
we want to also extend the experimentation by considering other approaches leveraged
in different IoT-based scenarios to highlight the quality of our technique. Finally, another
relevant aspect concerns the defense of these models, whose shared in a distributed setting
could be subject to different forms of cyberattacks [32,33]. For instance, they can be targeted
through techniques known as data poisoning. In this scenario, an adversary intentionally
injects malicious data into the training dataset used to train a DL model. This poisoned
data can skew the model’s understanding of normal behavior, making it less effective at
identifying anomalies. Moreover, attackers can tamper with the weights and parameters of
a neural network to achieve specific outcomes for particular inputs. By manipulating these
weights, they can make the network produce desired outputs, allowing for the exfiltration
of sensitive information. This phenomenon is often referred to as data leakage. In essence,
these attack methods can render deep-learning models vulnerable to adversaries seeking
to evade detection and compromise security systems.

Author Contributions: All the authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This work has been partially supported by: (i) the Italian MUR, PRIN 2022 Project “iSafety:
Leveraging artificial intelligence techniques to improve occupational and process safety in the iron
and steel industry”, Prot.: 20222YRP2F, ERC field: PE8, CUP: D53D23003010006; (ii) European
Union-NextGenerationEU-National Recovery and Resilience Plan (Piano Nazionale di Ripresa e
Resilienza, PNRR)-Project: “SoBigData.it-Strengthening the Italian RI for Social Mining and Big Data
Analytics”-Prot. IR0000013-Avviso n. 3264 del 28/12/2021; (iii) the Italian MUR, PRIN 2022 Project
“COCOWEARS” (A framework for COntinuum COmputing WEARable Systems), Prot. 2022T2XNJE,
CUP: B53D23013190006.

Data Availability Statement: The original data used in this work are available at https://github.
com/LuisM78/Occupancy-detection-data (accessed on 23 October 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805. [CrossRef]
2. Syed, A.S.; Sierra-Sosa, D.; Kumar, A.; Elmaghraby, A. IoT in Smart Cities: A Survey of Technologies, Practices and Challenges.

Smart Cities 2021, 4, 429–475. [CrossRef]
3. Jia, M.; Komeily, A.; Wang, Y.; Srinivasan, R.S. Adopting Internet of Things for the development of smart buildings: A review of

enabling technologies and applications. Autom. Constr. 2019, 101, 111–126. [CrossRef]
4. Daissaoui, A.; Boulmakoul, A.; Karim, L.; Lbath, A. IoT and Big Data Analytics for Smart Buildings: A Survey. Procedia Comput.

Sci. 2020, 170, 161–168. [CrossRef]
5. Wu, X.; Zhu, X.; Wu, G.Q.; Ding, W. Data mining with big data. IEEE Trans. Knowl. Data Eng. 2014, 26, 97–107. [CrossRef]
6. Ditzler, G.; Roveri, M.; Alippi, C.; Polikar, R. Learning in Nonstationary Environments: A Survey. IEEE Comput. Intell. Mag. 2015,

10, 12–25. [CrossRef]
7. Alanne, K.; Sierla, S. An overview of machine learning applications for smart buildings. Sustain. Cities Soc. 2022, 76, 103445.

[CrossRef]
8. Aguilar, J.; Garces-Jimenez, A.; R-Moreno, M.; García, R. A systematic literature review on the use of artificial intelligence in

energy self-management in smart buildings. Renew. Sustain. Energy Rev. 2021, 151, 111530. [CrossRef]
9. Le Cun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]

https://github.com/LuisM78/Occupancy-detection-data
https://github.com/LuisM78/Occupancy-detection-data
http://doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.3390/smartcities4020024
http://dx.doi.org/10.1016/j.autcon.2019.01.023
http://dx.doi.org/10.1016/j.procs.2020.03.021
http://dx.doi.org/10.1109/TKDE.2013.109
http://dx.doi.org/10.1109/MCI.2015.2471196
http://dx.doi.org/10.1016/j.scs.2021.103445
http://dx.doi.org/10.1016/j.rser.2021.111530
http://dx.doi.org/10.1038/nature14539

Sensors 2023, 23, 9331 15 of 15

10. Cassavia, N.; Folino, F.; Guarascio, M. Detecting DoS and DDoS Attacks through Sparse U-Net-like Autoencoders. In Proceedings
of the 2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI), Macao, China, 31 October–2 November
2022; pp. 1342–1346. [CrossRef]

11. Shahraki, A.; Taherkordi, A.; Haugen, O. TONTA: Trend-based Online Network Traffic Analysis in ad-hoc IoT networks. Comput.
Netw. 2021, 194, 108125. [CrossRef]

12. Zhu, K.; Chen, Z.; Peng, Y.; Zhang, L. Mobile Edge Assisted Literal Multi-Dimensional Anomaly Detection of In-Vehicle Network
Using LSTM. IEEE Trans. Veh. Technol. 2019, 68, 4275–4284. [CrossRef]

13. Gao, H.; Qiu, B.; Barroso, R.J.D.; Hussain, W.; Xu, Y.; Wang, X. TSMAE: A Novel Anomaly Detection Approach for Internet of
Things Time Series Data Using Memory-Augmented Autoencoder. IEEE Trans. Netw. Sci. Eng. 2023, 10, 2978–2990. [CrossRef]

14. Weston, J.; Chopra, S.; Bordes, A. Memory Networks. In Proceedings of the 3rd International Conference on Learning
Representations, ICLR 2015, Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015.

15. Sater, R.A.; Hamza, A.B. A Federated Learning Approach to Anomaly Detection in Smart Buildings. ACM Trans. Internet Things
2021, 2, 1–23. [CrossRef]

16. Li, S.; Cheng, Y.; Liu, Y.; Wang, W.; Chen, T. Abnormal Client Behavior Detection in Federated Learning. arXiv 2019,
arXiv:1910.09933.

17. Folino, F.; Guarascio, M.; Pontieri, L. Context-Aware Predictions on Business Processes: An Ensemble-Based Solution. In
Proceedings of the New Frontiers in Mining Complex Patterns— First International Workshop, NFMCP 2012, Held in Conjunction
with ECML/PKDD 2012, Bristol, UK, 24 September 2012; Revised Selected Papers; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2012; Volume 7765, pp. 215–229. [CrossRef]

18. Khan, W.Z.; Ahmed, E.; Hakak, S.; Yaqoob, I.; Ahmed, A. Edge computing: A survey. Future Gener. Comput. Syst. 2019,
97, 219–235. [CrossRef]

19. Yahyaoui, A.; Abdellatif, T.; Yangui, S.; Attia, R. READ-IoT: Reliable Event and Anomaly Detection Framework for the Internet of
Things. IEEE Access 2021, 9, 24168–24186. [CrossRef]

20. Lydia, E.L.; Jovith, A.A.; Devaraj, A.F.S.; Seo, C.; Joshi, G.P. Green Energy Efficient Routing with Deep Learning Based Anomaly
Detection for Internet of Things (IoT) Communications. Mathematics 2021, 9, 500. [CrossRef]

21. Hinton, G.; Salakhutdinov, R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507. [CrossRef]
22. Bengio, Y.; Pascal, L.; Dan, P.; Larochelle, H. Greedy Layer-Wise Training of Deep Networks. In Advances in Neural Information

Processing Systems (NeurIPS); MIT Press: Cambridge, MA, USA, 2007; Volume 19, pp. 153–160.
23. Rosasco, L.; De Vito, E.D.; Caponnetto, A.; Piana, M.; Verri, A. Are Loss Functions All the Same? Neural Comput. 2004,

15, 1063–1076. [CrossRef]
24. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of

the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab, N.,
Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241.

25. Candanedo, L.M.; Feldheim, V. Accurate occupancy detection of an office room from light, temperature, humidity and CO2
measurements using statistical learning models. Energy Build. 2016, 112, 28–39. [CrossRef]

26. Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th International
Conference on International Conference on Machine Learning (ICML’10), Madison, WI, USA, 21–24 June 2010; pp. 807–814.

27. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2017, arXiv:cs.LG/1609.04747.
28. Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009,

45, 427–437. [CrossRef]
29. Rajagopal, S.M.; Supriya, M.; Buyya, R. FedSDM: Federated learning based smart decision making module for ECG data in IoT

integrated Edge–Fog–Cloud computing environments. Internet Things 2023, 22, 100784. [CrossRef]
30. Khan, I.; Delicato, F.; Greco, E.; Guarascio, M.; Guerrieri, A.; Spezzano, G. Occupancy Prediction in Multi-Occupant IoT

Environments leveraging Federated Learning. In Proceedings of the 2023 IEEE Intl Conf on Dependable, Autonomic and Secure
Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on
Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), to Appear, Abu Dhabi, United Arab Emirates,
13–17 November 2023; pp. 1–7.

31. Xia, Q.; Ye, W.; Tao, Z.; Wu, J.; Li, Q. A survey of federated learning for edge computing: Research problems and solutions.
High-Confid. Comput. 2021, 1, 100008. [CrossRef]

32. Caviglione, L.; Comito, C.; Guarascio, M.; Manco, G. Emerging challenges and perspectives in Deep Learning model security: A
brief survey. Syst. Soft Comput. 2023, 5, 200050. [CrossRef]

33. Williams, P.; Dutta, I.K.; Daoud, H.; Bayoumi, M. A survey on security in internet of things with a focus on the impact of emerging
technologies. Internet Things 2022, 19, 100564. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICTAI56018.2022.00203
http://dx.doi.org/10.1016/j.comnet.2021.108125
http://dx.doi.org/10.1109/TVT.2019.2907269
http://dx.doi.org/10.1109/TNSE.2022.3163144
http://dx.doi.org/10.1145/3467981
http://dx.doi.org/10.1007/978-3-642-37382-4_15
http://dx.doi.org/10.1016/j.future.2019.02.050
http://dx.doi.org/10.1109/ACCESS.2021.3056149
http://dx.doi.org/10.3390/math9050500
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1162/089976604773135104
http://dx.doi.org/10.1016/j.enbuild.2015.11.071
http://dx.doi.org/10.1016/j.ipm.2009.03.002
http://dx.doi.org/10.1016/j.iot.2023.100784
http://dx.doi.org/10.1016/j.hcc.2021.100008
http://dx.doi.org/10.1016/j.sasc.2023.200050
http://dx.doi.org/10.1016/j.iot.2022.100564

	Introduction
	Contribution
	Organization of the Paper

	Related Works
	Proposed Approach
	Neural Detector Architecture
	Detection Protocol

	Case Study
	Experimental Section
	Parameter Settings and Evaluation Metrics
	Quantitative Evaluation: Comparison with the Baseline and Sensitivity Analysis
	Convergence

	Conclusions
	References

