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Abstract: In this study, we introduce a novel hyperspectral imaging approach that leverages variable
filament temperature incandescent lamps for active illumination, coupled with multi-channel im-
age acquisition, and provide a comprehensive characterization of the approach. Our methodology
simulates the imaging process, encompassing spectral illumination ranging from 400 to 700 nm at
varying filament temperatures, multi-channel image capture, and hyperspectral image reconstruction.
We present an algorithm for spectrum reconstruction, addressing the inherent challenges of this
ill-posed inverse problem. Through a rigorous sensitivity analysis, we assess the impact of various
acquisition parameters on the accuracy of reconstructed spectra, including noise levels, temperature
steps, filament temperature range, illumination spectral uncertainties, spectral step sizes in recon-
structed spectra, and the number of detected spectral channels. Our simulation results demonstrate
the successful reconstruction of most spectra, with Root Mean Squared Errors (RMSE) below 5%,
reaching as low as 0.1% for specific cases such as black color. Notably, illumination spectrum accuracy
emerges as a critical factor influencing reconstruction quality, with flat spectra exhibiting higher accu-
racy than complex ones. Ultimately, our study establishes the theoretical grounds of this innovative
hyperspectral approach and identifies optimal acquisition parameters, setting the stage for future
practical implementations.

Keywords: hyperspectral imaging; spectroscopy; active illumination

1. Introduction

Hyperspectral imaging has emerged as a versatile and powerful technique that enables
capturing spectral information across various applications. This technology allows for
the acquisition of images in numerous narrow and contiguous spectral bands, facilitating
detailed analysis and characterization of materials, objects, and scenes [1]. The wealth of
spectral data obtained through hyperspectral imaging has applications in remote sensing,
agriculture, geology, biology, and industrial inspection.

Various hyperspectral imaging techniques have been developed to cater to different re-
quirements and scenarios. These techniques encompass push-broom [2] and whisk-broom
systems for spatial scanning, snapshot methods utilizing filters or dispersive elements, and
Fourier transform-based approaches for spectral decomposition [3]. Each technique has ad-
vantages and limitations, often tailored to specific applications and equipment constraints.

Active illumination hyperspectral imaging is a specialized technique that uses con-
trolled and deliberate illumination sources to enhance the accuracy and quality of spectral
information captured in an image [4–7]. In traditional passive hyperspectral imaging, the
scene is illuminated by ambient light or natural light sources, and the sensor measures the
reflected or emitted light across multiple spectral bands. On the other hand, active illumi-
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nation techniques introduce an element of control over the illumination source, allowing
for precise manipulation of its spectral characteristics.

In active illumination hyperspectral imaging, the illumination source is typically
chosen to emit light at specific wavelengths. This illumination enables the acquisition
of images with more accurate spectral information, which can be crucial in applications
where distinguishing between closely related materials is essential. By using controlled
illumination, the signal received by the sensor can be optimized for the specific spectral
bands of interest [7], which leads to improved SNR in those bands, enhancing the overall
quality of the hyperspectral data. Active illumination also minimizes the impact of lighting
variations due to natural lighting conditions by providing consistent and controlled lighting
conditions. In addition, active illumination allows the adaptation of illumination to specific
applications and compensation for sensor characteristics.

In this article, we present a different variant of active illumination hyperspectral
imaging, where a spectral shape variation of broadband illumination is utilized instead
of multiple spectral bands at specific wavelengths. From the images recorded with many
different illumination spectra, a spectral response consisting of a small number of spectral
channels is reconstructed. The light source with variable illumination spectra is an incan-
descent lamp with adjustable filament temperature. Control of the filament temperature
can be achieved by controlling the electric current through the bulb. As the temperature of
the filament changes, the emitted spectrum follows Planck’s Law for black body radiation,
allowing for controlled spectral variations. In this way, the illumination spectrum is tunable
with arbitrary precision, with a small caveat that the maximal filament temperature limits
the available spectra variations.

The reflected or transmitted spectrum reconstruction is formulated as an inverse
problem. As the illumination spectra are of similar spectral shape due to blackbody emis-
sion characteristics, the inverse problem is ill-posed, necessitating robust mathematical
algorithms and regularization techniques to mitigate the ill-posedness. We present a mathe-
matical formulation of the reconstruction algorithm and the simulation study assessing the
performance of the hyperspectral imaging approach under various circumstances. Through
this investigation, we seek to provide a deep understanding of the approach’s capabilities,
limitations, and sensitivity to imaging parameters.

The proposed active illumination approach holds promise in scenarios where illumi-
nation is already implemented with incandescent lamps, like classical microscopy or macro-
scopic imaging using RGB sensors. Moreover, the simplicity and affordability of incandes-
cent lamps make this technique accessible and practical for various novel imaging setups.

2. Theoretical Background

The principle of hyperspectral imaging is the recovery of an object’s spectral response
for each image element. The main idea of the novel approach is to illuminate a sample
with M known and linearly independent broadband spectra from an incandescent lamp
at M different lamp filament temperatures; record M images with a camera that has p
spectral channels with known spectral response; and reconstruct hyperspectral image with
N < pM channels.

2.1. Incandescent Lamp Spectra

The spectrum of light emitted by an incandescent lamp changes as the temperature of
the filament is varied. The Planck’s Law determines the spectrum of light emitted by the
filament for black body radiation [8]:

I(λ) =
8πhc
λ5

1

e
hc

λkT − 1
(1)

Here, I(λ) is the spectral radiance, h is the Planck constant, c is the speed of light, k
is the Boltzmann constant, and T is the temperature of the black body. The glass bulb of
an incandescent lamp can also affect the spectrum of light emitted. The glass can act as a
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filter, absorbing specific wavelengths more than the others [9]. The absorption can change
the overall spectrum of the light emitted by the bulb. The temperature of the filament in
an incandescent lamp can be controlled by varying the electric current passing through
it. As the current increases, so does the filament’s temperature, affecting the spectrum of
light emitted.

2.2. Monochrome Image Acquisition

In the following text, we assume a reflectance imaging (algorithm would be the same
for transmitive imaging, except that reflectance would be replaced with transmittance) and
a sample reflectance r(λ). We further assume to have a sample illuminated with a light of
I(λ) spectral distribution and a monochrome camera with known spectral sensitivity ε(λ).
Here, ε(λ) also includes spectral dependence of imaging lens transmissivity. Under these
assumptions, we obtain an imaging signal S:

S = α

∞∫
−∞

I(λ)ε(λ)r(λ)dλ + η (2)

We have an additional scaling factor α that includes other factors related to data
acquisition (e.g., amplification factor in acquisition electronics) and the term η that stands
for the noise. The scaling factor can be removed by the normalization and will be omitted
in the following text. Assume we have M illumination realizations consisting of M linearly
independent discrete spectral distributions discretized over N spectral channels. The
illumination can be written with the illumination matrix I(λ) that has M rows and N
columns: Ii

(
λj
)
; i = 1, . . . , M, j = 1, . . . , N. The spectral sensitivity of the imaging system

is also discretized over N spectral channels into row-vector: ε(λ)→ ε
(
λj
)
; j = 1, . . . , N .

From that, we get an imaging signal column-vector that is calculated as:

Si =
M

∑
j=1

Ii
(
λj
)
ε
(
λj
)
r
(
λj
)

(3)

Here, the noise term η is omitted from the derivations of the signal expressions since
it does not affect the actual results. However, it will be included later in the numerical
simulations. In matrix notation, we have the following expression for the signal:

S = (I ◦ (u ε))r, (4)

where ◦ stands for Hadamard product, S is the M × 1 column-vector of imaging signals, I
is the M × N illumination matrix, U is the M × 1 column-vector consisting of ones, ε is 1 ×
N row-vector consisting of imaging spectral sensitivity, and r is the row-vector consisting
of spectral-dependent reflectance (hyperspectral image). In this way, we got a linear system
where the signal is a result of the multiplication of the reflectance vector by the system
characteristics matrix:

S = A r,
A = I ◦ (u ε).

(5)

The system is overdetermined if M > N and the rows of the illumination matrix I are
linearly independent, i.e., we have M linearly independent discrete spectral distributions.
Therefore, the sample reflectance r can be reconstructed by solving the linear system (5).
However, the illumination spectra from the incandescent lamp at all reasonable tempera-
tures have similar spectral shapes, so this inverse problem is ill-posed. Here, the highest
temperature is limited by the melting temperature of the filament and the lowest reasonable
temperature is set by requiring certain amount of illumination power in the spectral range
of the detector (power increases with temperature to 4th power) and not too much power
in the infrared range.
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2.3. Multi-Channel Data Acquisition

One solution to improve reconstruction accuracy of r is to introduce multiple spectral
channels of the detector. Assuming the camera has p spectral channels with known spectral
responses ε1, . . . , εp, each illumination spectrum provides p signals, and M illumination
spectra provide pM imaging signals. With p channels, the system matrix becomes:

A = I ◦

u ε1
...

u εp

. (6)

I is a pM × N illumination matrix with the illumination matrix repeated p times
column-wise, U is an M × 1 column-vector consisting of ones, and the signal vector S is a
pN × 1 column-vector of p imaging signals. The system is overdetermined if pM > N.

2.4. Regularization

Due to the ill-posedness of the problem, regularization is introduced in the linear
system. We used two regularization strategies:

• penalization of the second norm of solution vector r (Tikhonov regularization),
• penalization of the second norm of the first derivative of solution vector r.

The Tikhonov regularization is implemented by appending the identity matrix J
of size N × N with suitable weight k1 to the system matrix A of the linear system and
column-vector of N zeros to the imaging signal vector S:

Ar1 =

[
A

k1 J

]
,

Sr1 =

[
S
0

]
.

(7)

Penalization of the second norm of the first derivative of the solution vector is imple-
mented similarly by appending tridiagonal matrix D of size N × N with suitable weight k2
to the system matrix A of the linear system and column-vector of N zeros to the imaging
signal vector S:

Ar2 =

[
A

k2 D

]
,

Sr2 =

[
S
0

]
,

D =


1 −1 0
−1 2 −1

· · · 0 0
0 0

...
. . .

...
0 0 0 · · · −1 1

.

(8)

For the best reconstruction of r(λ), both the Tikhonov regularization and the penaliza-
tion of the second norm of the first derivative are implemented simultaneously:

Ar =

 A
k1 J
k2 D

,

Sr =

S
0
0

,

Sr = Ar r.

(9)
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3. Materials and Methods

In this section, we delineate the methodology employed to carry out the simulations,
assess the quality of the reconstructed spectra, and conduct a comprehensive sensitivity
analysis of the novel hyperspectral approach.

3.1. Simulation Process

The simulation process serves as the foundational step to evaluate the efficacy of the
new approach. The following subsections detail the various aspects of the simulation,
including the setup, parameter choices, and the reconstruction of spectral responses.

We simulated reflectance imaging of 24 different tiles of a color standard (ColorChecker
Passport 2, X-Rite, Grand Rapids, MI, USA). It is a well-established color standard and
includes the 18 colored and six gray-scale tiles used as reference spectra in imaging, as
each color spectrum is well-known. The colors and gray scales of the ColorChecker
with the corresponding names are shown in Figure 1. The spectra of the color standard
were obtained by our custom push-broom hyperspectral system [2]. A standard imaging
procedure described in the reference was performed, and the spectra were calculated as the
average spectra of each color tile. The spectra of each color tile served as our simulation’s
simulated reflectivity rs(λi). The spectra are presented in Results.
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Figure 1. ColorChecker has the following colors and gray scales: (1) Dark skin, (2) Light
skin, (3) Blue sky, (4) Foliage, (5) Blue flower, (6) Bluish green, (7) Orange, (8) Purplish blue,
(9) Moderate red, (10) Purple, (11) Yellow green, (12) Orange yellow, (13) Blue, (14) Green,
(15) Red, (16) Yellow, (17) Magenta, (18) Cyan, (19) White, (20) Neutral 8, (21) Neutral 6.5,
(22) Neutral 5, (23) Neutral 3.5 and (24) Black. More information can be found on the manu-
facturer’s website (https://www.xrite.com/categories/calibration-profiling/colorchecker-classic-
family/colorchecker-passport-photo-2 (accessed on 10 September 2023)).

The chosen illumination source was incandescent light, which adheres to the principles
of black body radiation (Equation (1)). The filament temperature of the incandescent lamp
was systematically varied to cover a range from a minimal filament temperature of 2450 up
to a 3400 K, encompassing practically achievable temperatures.

Three detector channels in the visible wavelength range were simulated: 400–500,
500–600, and 600–700 nm. We simulated these filters as top-hat filters, specifically the

https://www.xrite.com/categories/calibration-profiling/colorchecker-classic-family/colorchecker-passport-photo-2
https://www.xrite.com/categories/calibration-profiling/colorchecker-classic-family/colorchecker-passport-photo-2
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transmissivity of one inside the pass band and zero outside. In practice, this is achievable by
applying bandpass optical filters (e.g., hard-coated filters by Thorlabs, Newton, NJ, USA).

The imaging process was modeled by assuming a CMOS monochrome imaging sensor.
A realistic sensor’s quantum efficiency (data for the Sony ICX414 CMOS) was used to
simulate the imaging signal acquired by the camera. The acquired images in each spectral
channel were calculated according to Equation (3). Spectra were discretized with a 10 nm
step, and summation was over the wavelengths that are within the selected spectral window.
The imaging signal was divided by the simulated temperature to 4th power to compensate
for substantially higher irradiance at higher temperatures, which would, in practice, be
compensated with shorter exposure times. Calculated imaging signals were subjected
to normally distributed random noise, mirroring the noise inherent in practical image
acquisition scenarios.

The spectrum reconstruction process aimed to recover the original spectral reflectance
of the color standard. It involved solving an overdetermined linear system (Equation (9))
and provided the estimated reflectivity re(λi). Weights for the regularization were set
by manual iteration until satisfactory results were obtained for each signal-to-noise ratio
(SNR) value. Satisfaction with the results was determined subjectively by comparing
reconstructed spectra. The same weights were used to analyze all 24 spectra and were
changed only for different SNRs. The linear system was solved using Left array division
function implemented in Matlab R2023a (Mathworks, CA, USA). Negative solutions were
set to zero.

3.2. Default Simulation Parameters

The simulation was initially conducted under a set of default parameters:

• Signal-to-Noise Ratio (SNR): A signal-to-noise ratio of SNR = 100 was adopted as a
typical SNR value in hyperspectral images [10].

• Filament Temperatures: A sequence of 20 different filament temperatures was selected,
from 2450 to 3400 K, with ∆T = 50 K increments.

• No error in illumination spectrum: The filament temperature and the illumination
spectrum were assumed to have no error or variation (δT = 0).

• Reconstructed Spectral Step: The spectral response was reconstructed to ∆λ = 10 nm step.
• Number of spectral channels for image acquisition: Simulation of image acquisition

assumed three spectral channels (p = 3) with 100 nm bandwidth, covering 400 to
700 nm range approximating RGB channels.

3.3. Sensitivity Analysis

The following parameters were varied to assess the approach’s sensitivity to different
parameters while keeping other parameters fixed at default values:

• Signal-to-Noise Ratio (SNR): SNR values were varied to assess the algorithm’s perfor-
mance under two alternative noise conditions: SNR = 10 and SNR = 1000.

• The number of Filament Temperatures: The number of filament temperatures was
varied, changing temperature increments to 100 and 10 K, exploring scenarios with 10
and 100 temperature steps.

• Lowest Filament Temperature: The lowest filament temperatures were set to Tmin = 1950 K
and Tmin = 2950 K, resulting in 30 and 10 filament temperature steps.

• Illumination spectrum Error: The algorithm’s resilience to illumination spectrum
errors was examined by introducing an error in filament temperature, which had a
normal distribution with a standard deviation of 10 K.

• Reconstructed Spectral Step: The spectral step of reconstructed spectra was modified
to 5 and 20 nm to study the effect of higher or lower spectral resolution.

• Number of spectral channels for image acquisition: The number of simulated spectral
channels p was set to six to assess the effect of detection channels on the reconstructed
spectra, resulting in subsequential bands of 50 nm bandwidth covering the 400 to
700 nm spectral range.
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3.4. Reconstructed Spectra Quality Assessment

For each configuration of simulation parameters and color standard spectra, the
same error assessment metrics were applied to evaluate the accuracy and robustness of
the approach. From the simulated reflectivity rs(λi) and estimated reflectivity re(λi), we
calculated two error metrics:

• Root Mean Squared absolute spectral error (RMSE): For each reconstructed wave-
length, the absolute error was calculated, squared, and averaged over the whole
wavelength spectrum, and the square root was taken:

RMSE =

√
∑N

i=1(re(λi)− rs(λi))
2

N
, (10)

• Root Mean Squared relative spectral error (rRMSE): For each reconstructed wavelength,
the relative error was calculated, squared, and averaged over the whole wavelength
spectrum, and the square root was taken:

rRMSE =

√√√√∑N
i=1

(
re(λi)−rs(λi)

rs(λi)

)2

N
. (11)

3.5. Spectra from Real-Life Examples

To further evaluate the novel hyperspectral imaging methodology, it was simulation-
tested on nine spectra from three real-life examples. The first example is microscopic
hyperspectral imaging of the peritoneum of the mice colitis model. The second example is
macroscopic hyperspectral imaging of an apple with mold infection. The third example is
macroscopic hyperspectral imaging of basal cell carcinoma in the nose. Three spectra from
each example are used for the simulation test.

4. Results

The signals S were simulated using the default parameters as described in the previous
section. Values of regularization parameters for the default simulation were set to k1 = 10−6

and k2 = 10−2. The k2 parameter was always an inverse value of SNR, while k1 was for a
factor of 104 smaller. Suitable values for regularization parameters depend on the imaging
signal’s scale.

Imaging signals for all three channels, in dependence on filament temperature, are
shown in Figure 2. They are presented for selected three spectra: blue (spectrum #13),
green (spectrum#14), and red (spectrum #15). As expected, the blue color (spectrum #13)
with the strongest signal in the 300–400 nm channel increases with filament temperature.
Similarly, the green color (spectrum #14) has the strongest signal in the 400–500 nm channel
and reaches the maximum when the filament temperature is close to 3400 K. The red color
(spectrum #15) is the strongest signal in the 500–600 nm channel and reaches its maximum
slightly below 2800 K. All three colors have distinctive temperature dependence for three
spectral channels, facilitating the reconstruction of spectra shape. It should also be stressed
that the shape of imaging signal vs. filament temperature is affected by various factors,
namely Planck’s black body radiation law, normalization to T4 that mimics exposition
adaption to higher radiation power at higher temperature, spectral-dependant quantum
efficiency of the sensor, and filter spectral dependant transmission.
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Figure 2. Imaging signal versus filament temperature for all three imaging channels. Three graphs
are from three color spectra: (a) shows blue color (spectrum #13), (b) shows green color (spectrum
#14), and (c) shows red color (spectrum #15). Line colors represent wavelength range.

The corresponding reconstructed spectra are shown in Figure 3. In general, the
reconstructed spectra (dashed lines) follow the original spectra (solid lines), with somewhat
higher errors near the edge of the spectral range in case of the spectra with increased
dynamic in that spectral region (e.g., spectra #3, #5, #19). The spectra that have a transition
from low to high reflectivity (e.g., spectra #16, #17, #18) typically have a well-reconstructed
location of the transition. At the same time, the shape does not always fully agree with
the original spectra. Some spectra featuring ripples are reconstructed with high accuracy
(e.g., spectra #6, #11), while others show some discrepancies (e.g., spectra #4, #13, #16). The
original grey-scale spectra are mostly flat (Figure 3d), except at the low wavelengths, where
the reflectivity is significantly lower. The corresponding reconstructed spectra have some
ripples and do not capture well the reduced reflectivity at low wavelengths. However, on
average, the reconstructed grey-scale spectra are quantitatively close to the original spectra.
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Analyzing reconstructed spectra under default simulation parameters has provided
valuable insights into the algorithm’s performance. The algorithm’s ability to closely follow
true spectra is evident, with slight deviations near the edges of the spectral range for
some spectra. Spectra exhibiting transitions from low to high reflectivity generally exhibit
accurate transition locations, although the precise shape is not always consistently captured.
Notably, the spectra with ripples, such as spectra #6 and #11, demonstrate high accuracy
in reconstruction. However, discrepancies arise for specific spectra like #4, #13, and #16.
Original gray-scale spectra, characterized by mostly flat reflectance, show subtle ripples
in the reconstructed versions. Although these reconstructions of gray-scale spectra do not
fully capture the reduced reflectivity at low wavelengths, their quantitative proximity to
true values is promising.

All RMSEs are less than 5.1%, on average less than 2.3%. The largest RMSE is obtained
in spectrum #19, which has a reflectivity of about 90% at almost all wavelengths. For
spectrum 24, which has a reflectivity of only a few percent over the entire spectrum, the
error is only 0.1%. However, the results are different when we inspect the relative error
rRMSE, considering also the amplitude of the spectra. The rRMSE values are generally
larger, on average 9.9%, reaching 25.1% in the case of spectrum #13. Specific spectra, like
spectrum #13, exhibit RMSE that can get up to 25%. The reason for high relative error for
some spectra, like spectrum #13, is because the spectrum has ripples and relatively high
error in the spectrum where the reflectivity is high, while most parts of the spectrum are
low. The reconstruction errors in terms of RMSE and rRMSE are presented in Table 1.

Table 1. Absolute (RMSE) and relative Root Mean Square Error (rRMSE) in (%). The positions in the
table correspond to the positions of color tiles on the color standard (Figure 1).
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4.1. Sensitivity Analysis

Changing SNR from 100 to 1000, which can be experimentally realized by increasing
integration time or light intensity, consistently improves the RMSE for all reconstructed
spectra. Improvement in RMSE is higher for some spectra (e.g., spectrum #18, where RMSE
goes from 2.9% to 0.6%), while others have moderate improvement (e.g., spectrum #7,
where RMSE goes from 3% to 2.5%). On average, the RMSE was reduced to 1.4% compared
to 2.3% for SNR = 100. In general, rRMSE decreases by increasing SNR, but surprisingly,
it also slightly increases for some spectra (spectra #7, #12. #15, and #15, where the RMSE
does not improve considerably). The reason for such unexpected behavior of rRMSE is that
those spectra have ripples, hence the notable error in the area of very low reflectivity in the
case of SNR = 1000. Therefore, a substantial relative error in this part of the spectrum is
present (note that the absolute error is normalized to the true value of reflectivity, which
is very low) and, consequently, the increase in rRMSE. The increased rRMSE is possible
because our spectrum reconstruction uses the means for least squares absolute error, so it
tries to find the minimum in RMSE, not the rRMSE. The average rRMSE in the case of SNR
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= 1000 is still improved; it is 8.2% compared to 9.9% for SNR = 100, resulting in a much
smaller error reduction than RMSE. The errors for all spectra are collected in Tables 2 and 3.

Table 2. The RMSE in reconstructed spectra (%) for perturbated simulation parameters.

Modified Parameter Default
Parameters

SNR SNR ∆T ∆T Tmin Tmin δT ∆λ ∆λ p
New Value 1000 10 10 K 100 K 1950 K 2950 K 10 5 nm 20 nm 6
Dark skin 1.0 0.4 0.8 0.5 0.7 0.6 0.5 2.9 0.8 0.4 0.4
Light skin 2.8 2.0 4.5 2.1 4.8 2.7 4.3 7.5 3.9 3.2 2.0
Blue sky 1.3 0.8 2.6 1.3 1.9 1.2 1.2 3.7 1.7 1.5 0.8
Foliage 1.2 1.0 2.3 1.1 1.2 1.2 1.9 3.4 1.4 1.4 0.9

Blue flower 2.3 1.5 3.4 1.5 3.0 1.8 3.6 3.2 2.4 2.4 1.4
Bluish green 1.3 0.7 5.4 0.8 2.0 1.0 4.2 4.5 0.9 4.0 0.7

Orange 3.0 2.5 5.5 2.5 2.7 2.9 4.6 5.5 3.4 4.1 2.5
Purplish blue 3.2 2.1 3.8 2.2 3.4 2.6 3.2 2.5 2.2 4.0 1.9
Moderate red 3.5 1.9 5.9 2.6 5.2 2.3 5.6 7.7 4.2 5.2 1.8

Purple 1.5 1.0 2.9 1.1 1.8 1.1 2.1 3.3 1.6 1.9 1.1
Yellow green 3.5 1.2 5.8 2.2 3.0 2.4 5.5 5.8 2.8 5.4 1.0

Orange yellow 1.8 1.4 5.0 2.4 2.4 2.0 2.0 5.1 1.7 3.2 1.4
Blue 3.3 2.4 4.7 2.5 3.8 2.9 4.6 2.6 2.5 4.6 2.2

Green 1.8 0.8 4.6 1.1 1.6 1.5 3.2 5.2 1.0 3.0 0.7
Red 3.7 2.4 5.1 2.5 3.7 2.8 3.8 8.1 2.5 3.8 2.2

Yellow 2.6 1.6 4.2 2.5 5.4 1.6 3.3 5.6 3.5 3.5 1.4
Magenta 2.6 1.8 3.7 2.2 4.1 3.1 3.0 8.5 2.2 3.0 1.7

Cyan 2.9 0.6 7.6 1.0 3.3 1.2 4.4 3.3 0.9 5.1 0.6
White 5.1 4.6 6.4 5.5 5.2 5.5 5.2 7.3 6.7 5.2 4.9

Neutral 8 3.8 2.3 3.6 2.8 3.0 2.8 2.9 7.0 3.5 2.2 2.2
Neutral 6.5 1.1 0.8 1.6 1.1 1.3 1.4 1.1 4.9 1.2 0.7 0.9
Neutral 5 1.0 0.3 0.6 0.4 0.9 0.5 2.3 3.7 0.7 0.7 0.3

Neutral 3.5 0.5 0.1 0.7 0.3 0.9 0.2 0.8 2.4 0.8 0.2 0.1
Black 0.1 0.0 0.4 0.0 0.1 0.1 0.5 1.4 0.3 0.2 0.1

A similar improvement as with the increased SNR is achieved by doubling the number
of acquisition spectral channels to p = 6. The average RMSE is 1.4%, and the average
rRMSE is 7.2%. The reconstruction error reduction is smaller in the case of the decrease
in the filament temperature step (∆T = 10 K). Namely, the average RMSE is 1.8%, and the
average rRMSE is 8.3%. Increasing the number of acquisition spectral channels and smaller
increments in filament temperature provides twice and five times more measurements,
which have the same effect as improved SNR. When combining repeated measurements,
the SNR increases with the square root of the number of repeated measurements. We
expect similar behavior (i.e., an apparent improvement in SNR) if the number of acquisition
spectral channels is doubled or the number of filament temperatures is five times higher.
The apparent improvement in SNR should be for the

√
2 or
√

5. A smaller increment in
filament temperature provides information that could be obtained by interpolating the data
with default simulation parameters. Hence, the improvement is likely due to more data and
apparent improvement of the SNR. Increasing the number of acquisition spectral channels
provides better spectral resolution in the measured data, so improvement in reconstructed
spectra is also expected due to this reason. Worse performance for p = 6 acquisition spectral
channels, compared to SNR = 1000 in gray-scale spectra, is because improved SNR facilitates
better estimation of relatively low reflectivity at low wavelength range.
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Table 3. The rRMSE in reconstructed spectra (%) for perturbated simulation parameters.

Modified Parameter Default
Parameters

SNR SNR ∆T ∆T Tmin Tmin δT ∆λ ∆λ p
New Value 1000 10 10 K 100 K 1950 K 2950 K 10 5 nm 20 nm 6
Dark skin 7.5 3.7 8.5 4.6 8.2 4.3 4.4 27.9 6.2 3.3 3.1
Light skin 7.3 5.2 17.7 6.1 10.3 7.4 17.0 19.6 7.7 11.0 5.1
Blue sky 6.1 3.2 9.6 5.0 7.6 6.1 4.4 22.4 8.2 5.4 3.3
Foliage 13.4 12.1 26.0 12.1 11.2 11.2 26.0 32.2 19.9 14.4 11.3

Blue flower 8.0 4.6 10.4 4.6 9.3 5.6 10.7 10.0 7.3 6.7 4.1
Bluish green 4.8 2.3 18.0 2.7 5.6 3.0 14.3 15.8 3.1 14.2 2.3

Orange 9.6 12.5 29.2 8.9 8.0 8.9 16.9 28.3 16.4 15.7 7.7
Purplish blue 13.8 9.3 17.5 9.5 14.9 11.0 16.4 18.1 12.0 16.8 8.7
Moderate red 9.7 8.2 21.7 8.9 14.0 11.7 20.5 31.2 10.5 18.8 7.0

Purple 8.6 5.1 22.3 5.9 11.3 5.5 13.1 29.7 13.1 12.4 4.9
Yellow green 13.7 11.2 40.5 8.6 21.2 9.4 31.6 37.8 11.9 38.6 9.0

Orange yellow 11.8 12.5 54.3 13.7 18.1 13.9 19.2 18.4 9.8 33.0 11.9
Blue 25.1 20.1 36.3 21.8 28.5 22.6 35.8 33.0 23.4 31.5 17.3

Green 9.7 5.5 42.6 5.6 12.1 14.9 37.4 44.3 5.7 29.9 5.0
Red 20.9 28.8 68.0 27.4 26.7 24.7 39.4 33.2 33.9 32.2 23.3

Yellow 12.1 19.0 43.5 13.7 16.9 12.4 42.4 33.3 28.3 40.3 14.7
Magenta 9.2 9.7 21.3 7.6 9.1 7.9 11.4 19.4 11.5 13.1 8.8

Cyan 11.5 2.9 34.3 5.8 12.9 7.0 17.8 32.4 5.6 19.7 3.3
White 9.3 8.0 11.4 9.2 9.2 9.6 8.6 8.7 10.6 8.1 8.8

Neutral 8 8.2 5.0 7.9 5.9 6.7 6.0 6.5 12.2 6.8 4.5 4.8
Neutral 6.5 3.3 2.4 4.9 3.5 4.1 4.0 3.6 14.1 3.9 2.1 2.9
Neutral 5 5.5 1.6 3.5 2.3 5.0 3.0 12.3 20.5 4.0 3.7 1.8

Neutral 3.5 5.8 1.6 7.9 3.9 10.0 2.3 9.3 28.2 9.0 2.8 1.7
Black 2.8 1.5 12.5 1.4 3.2 2.2 17.2 44.8 8.6 5.6 1.6

In the next step, we impaired these three imaging parameters. By reducing SNR to
10, the reconstruction accuracy also reduces. The average RMSE is 3.8% compared to 2.3%
for the default set, and the average rRMSE is 23.7% compared to 9.9% for the default set.
Similarly, by increasing ∆T to 100 K, reconstruction accuracy is reduced, resulting in the
average RMSE = 2.7% and rRMSE = 11.8%. However, the errors increase substantially
less when increasing ∆T than decreasing SNR, thus showing that the reconstruction is
very sensitive to low SNR. A more significant increment in filament temperature does not
exclude the information that could not be obtained by interpolating the data with default
simulation parameters, so slightly worse results are likely due to less data and apparent
degradation of the SNR. That explains why reducing SNR tenfold (to SNR = 10) affects
the accuracy of reconstructed spectra more severely than the simulated larger filament
temperature increments, which would reduce the apparent SNR only for a factor of

√
2.

Then, we tested the effect of minimal filament temperature on the reconstructed
spectra accuracy and found that by decreasing the minimum filament temperature, a
slight improvement in the reconstruction accuracy was achieved. Still, the increase in
the minimum filament temperature results in a significant reduction in the reconstruction
accuracy. Specifically, if the minimum temperature is decreased to 1950 K, the average
RMSE and rRMSE are 1.9% and 8.9%, respectively. If the minimum temperature increases
to 2950 K, the average RMSE and rRMSE are 3.1% and 18.2%, respectively. These results
can be explained by noting that lower and higher minimal filament temperatures determine
how different illumination spectra are used in the inverse problem. Going to a very low
filament temperature cannot have much effect because, in that case, the spectrum is heavily
shifted towards infrared. Even at the maximal achievable temperature T = 3400 K, the black
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body radiation spectrum has maximum in infrared (λmax = 853 nm). Still, this spectrum
has to be weighted with the CMOS quantum efficiency, which rapidly decreases at 700 nm
and above.

On the other hand, if the lowest temperature is set at a higher value, we omit spectra
at lower temperatures. Consequentially, the inverse problem is formed with similar spectra,
and the reconstruction problem is more ill-posed. In addition, increasing the lowest
temperature also reduces the number of available temperatures and, therefore, the number
of acquired signals and the apparent SNR. All of that explains the lower accuracy of the
reconstructed spectra when the minimal temperature was raised to Tmin = 2950 K.

The next test was introducing the illumination spectra errors by assuming the wrong
estimation of the filament temperature (δT). While RMSE is still below 10%, on average 4.8%,
the spectra are visually inaccurate. That is especially true for the gray-scale spectra (spectra
#19 to #24), where pronounced ripples appear. Poor quality of the reconstructed spectra is
also revealed by the rRMSE, which reaches 45% and is, on average, 25.7%. These results
demonstrate that the filament temperature error is the most prominent source of error in
the reconstructed spectra and should not be surprising. Our hyperspectral algorithm relies
on inverse reconstruction of the spectra, using linearly independent illumination spectra,
but they are of similar spectral shape. As the spectra are similar, it is not surprising that the
algorithm is sensitive to the error of the illumination spectra. Even with a small spectral
error (δT = 10 K), differences among the different temperature illumination spectra are lost
due to the spectral error. Therefore, this issue must be adequately addressed.

The final sensitivity test was changing the wavelength step size of the reconstructed
spectra ∆λ. It has some effect, but it depends on the actual spectrum. In some cases,
smaller wavelength step size improves accuracy, and larger reduces it (e.g., #6, #14, or
#18), while in other cases, the smaller wavelength step even reduces the rRMSE (e.g., #3
or #19). Specifically, when ∆λ is reduced to 5 nm, the average RMSE and rRMSE are 2.2%
and 11.6%, respectively. When ∆λ increases to 20 nm, the average RMSE and rRMSE are
2.9% and 16.0%, respectively. The reasons for such behavior are not clear. However, the
spectral resolution of the reconstructed spectra is significantly better than the resolution of
the detected spectra (p = 3 or 6), implying that the subtle differences could arise from the
regularization techniques or other sources.

The complete results of the sensitivity analysis are shown in Tables 2 and 3. The
reconstructed reflectance spectra, together with the original spectra for all parameter
variations within the sensitivity analysis, are included in Supplementary Materials.

4.2. Spectra from Real-Life Examples

RGB images from real-life examples are shown in Figure 4. Three points where the
spectra were taken for the simulation tests are marked on those images.
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Simulated and reconstructed spectra are shown in Figure 5. Background or apple
holder have flat spectra, which are correctly reconstructed. Other spectra are more com-
plex and do not have all details properly reconstructed. However, the basic shape is
reconstructed correctly.
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Figure 5. Simulated and reconstructed spectra from real-life examples: (a) microscopic transmission
hyperspectral imaging of peritoneum of the mice colitis model, (b) macroscopic hyperspectral imaging
of apple with mold infection, and (c) macroscopic hyperspectral imaging of basal cell carcinoma in
the nose.

Accuracy in terms of RMSE and rRMSE is reported in Table 4. While RMSE is always
within 5%, rRMSE can be high. That is the case when part of the true spectrum is very
low, and the relative spectrum error is significant even though the absolute error is not that
large (e.g., peritoneum around 550 nm).

Table 4. The RMSE and rRMSE of reconstructed spectra from real-life examples (%).

RMSE rRMSE

(a) (b) (c) (a) (b) (c)

Red graph 4.2 4.4 3.7 50.8 25.0 9.2
Blue graph 3.2 4.9 2.4 6.9 23.4 7.8
Black graph 3.5 0.4 0.1 5.1 2.4 8.0

5. Discussion

This study presents a novel hyperspectral imaging approach that harnesses the poten-
tial of active illumination and a small number of detection channels. Our choice to explore
three- and six-channel scenarios reflects the practical feasibility of integrating this approach
into existing imaging setups. The three-channel configuration is particularly advantageous
due to its compatibility with commonly used filter cubes in microscopes and RGB cameras.
In contrast, the six-channel configuration aligns with the prevalent design of filter wheels.
The findings of this study are relevant to both reflectance imaging, which was the selected
imaging method in this study, and transmittance imaging since the imaging approach and
spectral reconstruction algorithm are the same.

A critical result of our simulation-based investigation is the approach’s sensitivity
to the accuracy of the illumination spectrum. Introducing illumination spectrum errors
by assuming incorrect filament temperatures is a significant source of the reconstruction
error. While RMSE remains generally below 10% and often below 5%, visual discrepancies
are prominent, especially in the gray-scale spectra with notable ripples. The elevated
rRMSE values, reaching up to 45%, underscore the algorithm’s sensitivity to the accuracy
of illumination spectra. Therefore, we must always remember the necessity of precisely
knowing the emission spectrum of the illumination source, which can be achieved through
spectrometer-based measurements. For example, a fiber probe can collect the emitted
spectrum, which a spectrometer samples in real-time. The accurate illumination spec-
trum information is a foundation for successful spectral reconstruction, ensuring that the
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algorithm can effectively separate and recover the unique spectral characteristics of the
imaged samples.

An alternative avenue for the calibration would involve imaging spectral standards of
well-defined spectra at different filament temperatures and subsequently calibrating the
system using these standards. However, the effectiveness of this approach hinges on the
repeatability of the incandescent lamp’s emission spectrum at these temperatures. If the
spectrum remains consistent across different imaging sessions, it could provide a practical
calibration route, particularly when spectrometer-based calibration is challenging.

Other parameters that were systematically varied to assess their impact on recon-
struction accuracy also affect the algorithm’s accuracy. The first two parameters are the
SNR and the number of acquisition spectral channels p. Elevated SNR from 100 to 1000
consistently improves RMSE across all reconstructed spectra. Prominent RMSE reduction is
observed for some spectra (e.g., #18) and only moderate improvements for others (e.g., #7).
Interestingly, the rRMSE findings differ slightly, with improved SNR generally leading to
reduced rRMSE, though occasional increases occur (e.g., #7 and #12). Investigation of the
reconstructed spectra shows that the Orange for the SNR = 1000 has a higher error in the
part with very low reflectivity, which results in substantial relative error for that part of the
spectrum. The effectiveness of improving reconstruction accuracy through an increased
number of acquisition spectral channels (up to p = 6) or a smaller increment in filament
temperature (∆T = 10 K) is evident. While both strategies enhance accuracy, the impact
of increased spectral channels is more pronounced, underscoring the importance of data
quantity and quality in hyperspectral reconstruction. Decreasing SNR to 10 consistently
degrades reconstructed spectra accuracy. However, the magnitude of reduction varies
among different colors and gray-scale spectra. Particularly, rRMSE values are more ad-
versely affected than RMSE, emphasizing the algorithm’s sensitivity to relative errors under
low SNR conditions. Similar trends emerge with larger filament temperature increments
(∆T = 100 K), albeit with less pronounced effects. Notably, specific spectra, like #6, perform
relatively well with larger increments in filament temperature but exhibit poorer results
with lower SNR.

The influence of filament temperature range selection on reconstruction accuracy is
also explored. Lower minimal filament temperature has a marginal effect on accuracy,
while higher minimal temperature leads to reduced accuracy. This outcome highlights the
role of illumination spectra diversity in the inverse problem, particularly in scenarios where
similar spectra exacerbate ill-posedness. The analysis of varying wavelength step sizes in
reconstructed spectra demonstrates mixed outcomes. Smaller step sizes enhance accuracy
in some cases but worsen it in others, a pattern also observed with larger step sizes.

Our simulations involved spectral channels with sharp passbands commercially avail-
able at optical component sellers like Thorlabs. While these filters introduce small ripples
within the passband, it is reasonable to assume that they are unlikely to significantly impact
the algorithm performance because they are often on a wavelength scale lower than the
spectral resolution of this hyperspectral approach. However, it is essential to validate this
aspect during the actual implementation.

The simulation study leaned on the regularization techniques for reflectivity spectra
reconstruction. Acknowledging that these regularization techniques may not be universally
optimal across all scenarios is pertinent. The potential for enhancing results by optimiz-
ing these techniques underscores the iterative nature of algorithm refinement and the
scope for further improvements in accuracy and applicability. Like the regularization
optimization, optimizing the illumination protocol is also essential to implementing the
method. Higher filament temperature increases the radiation power (proportional to T4)
and spectrum. Increased radiation power should be compensated by decreased exposure
time to prevent under- or overexposure. We simulated that by T−4 normalization of the
illumination spectra from Planck’s law (Equation (1)). However, different normalizations
might improve spectrum identifiability as the illumination power in pass wavelength band
is not proportional to T4.
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This study partially relates to existing active illumination spectral imaging [4–7]. How-
ever, it fundamentally differs from these studies by introducing continuously variable
spectrum illumination, possibly enabling the reconstruction of far more spectral points
than active illumination using a few distinct spectra. Specifically, Kaariainen and Donsberg
combined a supercontinuum laser (SC) and a Fabry–Perot interferometer (FPI) to build
a tunable light source enabling active illumination at selected spectral bands. Since the
spectral transmittance of FPI is tuned by voltage, custom spectral bands can be selected,
resulting in multiple spectral images (100 in this study). In contrast to our approach, a
set of monochromatic images is recorded in [4], like the filtered hyperspectral imaging
method [11]. However, the SC–FPI active illumination hardware is expensive and bulky
compared to our approach and cannot be easily implemented in existing imaging setups. A
similar method of active illumination for HIS was implemented in [5]. Here, 27 LEDs with
different and disjunct spectral emissions covering the 300–1050 nm spectral region were
combined in a light-pipe module carefully designed to provide a homogenous illumination
field. The same illumination idea, but in a ring illumination geometry, was demonstrated
also in [7]. In this study, 19 LEDs covering the spectral range 365–1050 nm were distributed
within a ring. These two approaches are as expensive as the SC-FPI illumination. The imag-
ing is limited to only a small number of preselected spectral bands, while the illumination
modules are still bulky and mostly incompatible with existing imaging setups. The authors
of these studies showed some HSI results, namely spectra and spatial images, but they
neither provided a comparison to reference imaging modalities nor assessed the effect of
different imaging parameters on the imaging performance. However, it is necessary to
point out that our proposed active illumination differs entirely from the above methods
since multiple images integrated over the whole detection spectral range are acquired, and
hypercubes are obtained by performing reconstruction.

Traditionally, the approach with active illumination is to perform imaging of multiple
narrow spectral bands [4–7]. There are also methods for spectra reconstruction from
an RGB image, which is an underdetermined problem and cannot be solved without a-
priori information [12]. Moreover, it is argued that the same RGB can map to different
spectra depending on the context [13]. The problem is typically solved by deep neural
networks (DNN). One DNN approach primarily focuses on training a “pixel-centric”
mapping, wherein each pixel’s RGB values are mapped to its spectral estimate without
considering neighboring pixels [12–15]. More recently, DNN has shifted towards “patch-
centric” mappings. In this approach, substantial image content information is anticipated
to be extracted from extensive image patches and integrated into the super-resolution
process [16,17]. However, our proposed approach does not need a-priori information since
multiple spectral images are recorded, which are used to reconstruct hyperspectral cubes.

Like the spectrum reconstruction from RGB images, our approach to hyperspectral
imaging could produce better results if the regularized inversion of the mathematically
formulated problem was inverted with machine learning techniques such as Random
Forest, Artificial Neural Networks (ANN), and Convolutional Neural Networks (CNN).
Improved results are anticipated due to the inherent nonlinearity of machine learning
methods, which should yield superior results.

The inherent problem of our approach is the spectrum of the incandescent lamp, which
has substantial power in red and NIR ranges for all achievable filament temperatures. This
problem could be solved with a custom-designed filter that has high transmission in the
blue region and gradually decreased transmission for longer wavelengths. However, an
appropriate filter may not be available as a standard component, so it should be custom-
designed, which likely defeats the idea of having a simple and cheap hyperspectral imaging
system. On the other hand, that might not be a problem if the presented concept of
hyperspectral imaging is employed in a device that is produced in a large quantity.

Given their widespread availability and simplified hardware requirements, the allure
of employing RGB cameras instead of dedicated spectral filters is evident. However, this
transition poses notable challenges. Spectral bands in RGB cameras tend to overlap, which
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could affect the separability of the spectral information. Furthermore, some RGB cameras
exhibit outstanding quantum efficiency in the red and near-infrared (NIR) regions for all
three spectral channels. Therefore, successfully adapting this methodology to RGB cameras
necessitates meticulous camera selection, focusing on cameras with low quantum efficiency
for the G and B channels within the red and NIR wavelength ranges or using a suitable
cut-on optical filter to eliminate the NIR light contribution to the signal.

The simulation study primarily explored hyperspectral imaging within the optical
400–700 nm range, leveraging the standard ColorChecker spectra. However, we posit
that the technique’s potential extends to wider spectral ranges. The CMOS cameras can
operate within the 300–1000 nm range, which presents new opportunities for hyperspectral
imaging in this wavelength range, but they have lower quantum efficiency in the UV and
NIR range. However, we must note the interplay between the camera’s quantum efficiency
and the incandescent lamp’s emission spectrum within the NIR range. This compensatory
effect should contribute to the algorithm’s viability in this extended range.

We have discussed some of the study’s limitations earlier (e.g., ignoring the actual
transmissivity of the bandpass filters that may have ripples). Another limitation was using
a direct method to solve linear systems and obtain reflectance spectra from the simulated
signals. Iterative methods may yield better results, such as preconditioned conjugate
gradients or least squares. We used a simple T4 normalization factor to normalize the
signals at different temperatures. However, this may not be the best approach, and we
should explore other normalization strategies. We used the same regularization weights,
k1 and k2, for the same SNR values. Yet, the optimal weights may vary depending on the
signal shapes and noise levels. We could develop a method to select the optimal weights
based on these factors. We used ColorChecker as a sample to evaluate our approach.
ColorChecker is a standard reference object in visible light imaging, RGB, and spectral
imaging, but we could also simulate other reference standards, such as skin colors or
minerals, to mimic specific applications. We expect that using more suitable reference
standards would improve the reconstructed spectra for these narrower sample sets. Finally,
the main limitation of this study is that we only report numerical simulation results without
experimental validation. However, this study aims to suggest the possibility of using
active illumination for hyperspectral imaging, which needs to be tested experimentally
in the future.

For implementation of this technique in real-world applications, some challenges
remain to be solved. One of them is the accurate determination of illumination spectra,
which could be solved by including a spectrometer in the system to measure the spectrum
of the emitted light in real-time. Proper calibration makes it possible to provide the
spectrum of adequate accuracy as the input parameter of the reconstruction technique. The
information about the spectral sensitivity of the detector, including the filters’ transmissivity,
can be obtained either from the manufacturer or experimentally measured. Another
possible solution to get an accurate transformation matrix A is to thoroughly calibrate
different measured illumination spectra on different reflectance standards. This information
is used to estimate the A’s for different imaging conditions by the Wiener estimation
method [18]. In this case, it is unnecessary to know the detector sensitivity and filter
transmissivity since they would already be part of the estimated Wiener transformation
matrices. Another challenge is the time needed to change the incandescent bulb filament
temperature. The filament temperature is approximately proportional to the electric current;
thus, it is possible to change the filament temperature rapidly by rapidly changing the
current. It was shown that under normal operating conditions, starting at 300 K after
turning on an incandescent lamp, it reaches its final temperature of approx. 3000 K in
less than 0.5 s [19]. Based on that, a quick estimate would be that to change filament
temperature to 50 K, it would be necessary to wait 10 ms. A complete imaging involving
20 temperature steps would take less than 1 s. In real imaging conditions, this time would
be longer due to the image recording, acquisition of spectra, and other steps involved in
the imaging procedure, but the imaging would be relatively fast. A challenge might also be
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integrating the new imaging components, including the programmable current source and
spectrometer, in an existing system. However, in most imaging systems, this should not be
a problem since both components are relatively small, compact, and non-expensive.

The versatility of this approach is underscored by its applicability to both hyperspectral
microscopy and macroscopic hyperspectral imaging. However, the design of illumination
schemes and calibration procedures must be tailored to the specifics of each technique.
Integrating this approach into hyperspectral microscopy could revolutionize the spatial
analysis of biological samples, while its application to macroscopic imaging holds promise
in diverse fields such as medicine, material characterization, and industrial inspections.

6. Conclusions

In conclusion, this study’s novel hyperspectral approach marks a significant advance-
ment in hyperspectral imaging. We demonstrate the feasibility of integrating active illumi-
nation using a variable filament temperature incandescent lamp and a small number of
acquisition channels. Our findings show the applicability of the approach for hyperspectral
imaging. However, they also underscore the importance of knowing the accurate illumi-
nation spectrum and highlight other potential challenges in the practical implementation.
With its simplicity and broad applicability, it shows a potential to provide new insights
across various domains where spectral information is of importance.
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