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Abstract: Ecological forests are an important part of terrestrial ecosystems, are an important carbon
sink and play a pivotal role in the global carbon cycle. At present, the comprehensive utilization of
optical and radar data has broad application prospects in forest parameter extraction and biomass
estimation. In this study, tree and topographic data of 354 plots in key nature reserves of Liaoning
Province were used for biomass analysis. Remote sensing parameters were extracted from Landsat
8 OLI and Sentinel-1A radar data. Based on the strong correlation factors obtained via Pearson
correlation analysis, a linear model, BP neural network model and PSO neural network model were
used to simulate the biomass of the study area. The advantages of the three models were compared
and analyzed, and the optimal model was selected to invert the biomass of Liaoning province. The
results showed that 44 factors were correlated with forest biomass (p < 0.05), and 21 factors were
significantly correlated with forest biomass (p < 0.01). The comparison between the prediction results
of the three models and the real results shows that the PSO-improved neural network simulation
results are the best, and the coefficient of determination is 0.7657. Through analysis, it is found that
there is a nonlinear relationship between actual biomass and remote sensing data. Particle swarm
optimization (PSO) can effectively solve the problem of low accuracy in traditional BP neural network
models while maintaining a good training speed. The improved particle swarm model has good
accuracy and speed and has broad application prospects in forest biomass inversion.
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1. Introduction

Forests are the main reservoir of terrestrial carbon and a major component of global
primary productivity [1]. Forests, therefore, play a crucial role in reducing greenhouse gas
concentrations and mitigating the effects of global warming [2,3]. Forest above-ground
biomass (AGB) is the basis of forest carbon storage research. Accurate estimations of forest
AGB can provide strong scientific support for China to achieve carbon peak and carbon
neutrality [4]. In this study, tree and topographic data of 354 plots in key nature reserves
of Liaoning Province were used for biomass analysis. Remote sensing parameters were
extracted from Landsat 8 OLI and Sentinel-1A radar data. Based on the strong correlation
factors obtained via Pearson correlation analysis, a linear model, BP neural network model
and PSO neural network model were used to simulate the biomass of the study area. The
advantages of the three models were compared and analyzed, and the optimal model was
selected to invert the biomass of Liaoning Province. The research objectives include three
aspects: (1) Which indexes of optical remote sensing and microwave remote sensing are
correlated with forest biomass? (2) Which of the three models is more suitable for biomass
inversion in Liaoning Province? (3) How is biomass distributed in Liaoning Province? The
research results will provide a reference for exploring the application of optical and active
remote sensing in forest biomass inversion.

Traditional forest biomass measurement is field measurement, which is time-consuming
and laborious, and cannot be observed continuously on a large scale [5]. Remote sensing
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technology has many advantages in quantifying and mapping forest structures and in
monitoring and mapping above-ground biomass, and it is accurate in both time and space.
Therefore, a good biomass dataset containing canopy height and canopy structure can pro-
vide carbon sequestration potential for forest stocks [6]. Landsat 8 data are one of the most
widely used remote sensing data types in biomass estimation. However, due to the short
wavelength of the spectrum used, only forest canopy structure information can be obtained,
and vertical direction parameters cannot be effectively obtained [7]. In addition, Landsat
is prone to supersaturation when estimating high biomass forests [8]. Microwave remote
sensing technology can obtain ground information effectively. Microwave penetration is
strong, can penetrate the canopy and works all day. Synthetic aperture radar (SAR) is the
most widely used radar in microwave remote sensing. SAR technology has the advantages
of high spatial and temporal resolution, being all-weather, having no cloud interference and
a strong penetrating ability in estimating forest above-ground biomass. This method has
great potential and broad application prospects in forest biomass estimation [9]. However,
different wavelengths of SAR have different saturation points. The longer the wavelength,
the more sensitive it is to biomass, so long-wave radar data are more suitable for biomass
estimation. Due to the high cost of large-area data acquisition with most long-wave SARs,
their application in regional forest biomass estimation is limited. In 2013, the European
Space Agency’s Sentinel-1A satellite began providing free high-resolution SAR data to the
world. This solved the problem perfectly. Therefore, the collaborative strategy of active
and passive remote sensing data can improve the accuracy of remote sensing estimations
of forest above-ground biomass [10]. The application of multi-source remote sensing data
fusion can better complement each other and reduce data redundancy. With the deepening
of research on remote sensing technology, the collaborative application of multi-sensor re-
mote sensing data has gradually become a trend in forest biomass estimation; in particular,
the joint use of optical and radar data has become more and more popular [11]. How-
ever, there is a big problem when applying multi-source remote sensing data to forestry
research, that is, data fusion; multi-source remote sensing data have different sensors or
resolutions, and the data time is not correlated [12]. The diversity and extensiveness of data
provide multiple possibilities for the study of forest biomass, but at the same time, it faces
more challenges.

In 2005, Hyde began to use multi-source remote sensing data to invert forest parame-
ters [13]. Kankare V et al. predicted AGB using airborne laser scanning (ALS) data and TM
data collected by the Finnish National Land Survey (NLS), which began in 2008 [14]. Teja
Kattenborn et al. used photogrammetric WorldView-2 data, interferometric TANTANDEM
X data and hyperspectral EO-1 Hyperion data to estimate the biomass of temperate forest
land near Karlsruhe, Germany [15]. Based on multi-source remote sensing data, Liu and
Yaser et al. adopted the random forest regression algorithm to obtain better results [16,17].
Based on ALOS PALSAR data and other remote sensing data, respectively, Getu and
Deng et al. mainly used a neural network method to estimate biomass, and achieved good
inversion accuracy [18,19].

In recent years, with the rapid development of Deep Learning [20], scholars have
applied it to vegetation classification. Burai et al. used SVM to identify 20 types of alkaline
grassland vegetation, and the overall classification accuracy reached 82.60% [21]. Based on
UAV time series images, Kwak et al. used RF and SVM to classify crops grown in Anban-
degi, South Korea, and achieved good classification results [22]. Raczko et al. compared
SVM, RF and ANN classifiers in vegetation classification based on aerial hyperspectral
APEX images, and the results showed that ANN classifiers were superior to RF and SVM
classifiers [23]. Convolutional neural networks (CNNs) have received widespread atten-
tion due to their powerful modeling capabilities and have been successfully applied in
natural language processing, image recognition and other fields [24]. Kussul et al. used
a convolutional neural network (CNN) to identify 11 crops in the study area, and the
classification accuracy was 94.6%, which was significantly higher than the RF classification
result [25]. Ji et al. used a 3D CNN framework to extract multi-temporal image information
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for vegetation classification; compared it with SVM, PCA and other classifiers; and found
that 3D-CNN can make better use of remote sensing image phase information and im-
prove classification accuracy [26]. In the biomedical image segmentation field, CNN-based
encoding–decoding structures have exhibited superior segmentation effects in this field [27].
In the past few years, convolutional neural networks (CNNs) and graph convolutional
networks (GCNs) have achieved good results in HSI classification, but CNNs struggle to
achieve good accuracy in low samples, while GCNs have a huge computational cost. To
resolve these issues, Bhatti et al. proposed Multi-Feature Fusion of 3D-CNN and Graph
Attention Network MFFCG [28].

A neural network is a mathematical model of a distributed parallel information
processing algorithm which simulates the behavior characteristics of an animal neural
network. Although the combination of different bands is theoretically related to the above-
ground biomass of forests, the complex environment of forests makes various statistical
functions unable to express all uncertainties, so artificial neural networks have opened up a
convenient, fast and reliable method for biomass estimation. This kind of network depends
on the complexity of the system by adjusting the interconnection between a large number
of nodes in the network to achieve the purpose of processing information. However, the BP
(Back Propagation) neural network model has some problems such as slow convergence
and local optimization. The performance comparison between Mahmud Iwan Solihin’s
PID based on PSO (PSO-PID) and ZN-PID proves that PID tuning based on particle swarm
optimization has certain advantages, so a PID controller is designed [29]. Wu Deng’s PSO
algorithm can effectively improve the classification accuracy of LS-SVM and provide a new
method for fault diagnosis of rotating machinery [30]. Mohamed Ahmed Mohandes used
particle swarm optimization (PSO) to train an artificial neural network (PSO) to estimate
the monthly average daily global solar radiation (GSR) for locations without measuring
stations, using data from available stations, with excellent estimates [31]. Jin Wang used
particle swarm optimization (EC-PSO) to search for energy centers and avoid energy holes
in the routing protocol design of wireless sensor networks (WSNs) [32]. The above research
indicates that the particle swarm optimization (PSO) method can obtain the optimal weight
and deviation value, improve the prediction accuracy and training speed of the model and
avoid falling into the local extreme value.

2. Materials and Methods

2.1. Overview of the Study Area

Liaoning Province has a forest area of 6.0157 million hectares, among which arbor
forests account for about 75% of the forest area, which is 4.5163 million hectares, playing an
important role in the process of carbon sink. Liaoning Province is located in the southeast
of China. The terrain is generally north–south, with the east and west sides tilting towards
the middle; the east and west sides are mountains, tilting towards the central plain and
tilting towards the tidal sea, forming a horseshoe shape. A topographic map of Liaoning
Province is shown in Figure 1. It belongs to the temperate continental monsoon climate
zone. The annual average temperature is 4–11 ◦C, affected by the monsoon climate. The
annual precipitation is between 600 and 1100 mm, with uneven precipitation, wet in the
east and dry in the west. The eastern part of Liaoning Province belongs to the temperate
coniferous broad-leaved mixed forest belt of the Changbai flora. The main forest trees are
Picea asperata Mast, Abies fabri (Mast.) Craib, Larix gmelinii (Rupr.) Kuzen, Pinus sylvestris var.
mongolica, Betula and so on. The rest of the province belongs to the deciduous broad-leaved
forest belt in the warm temperate zone, and the flora of North China is dominated by Betula
and Ulmus pumila.
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Figure 1. A terrain and plot distribution map of Liaoning Province.

2.2. Data Source

In the study conducted by SHE X [33], vegetation indexes of five different seasons were
extracted from Landsat 7 and Landsat 8 images, and the results showed that vegetation
indexes in summer and autumn had a good correlation with forest biomass. Therefore,
September and October, when forest vegetation grows and matures, were selected as the
time period of remote sensing images.

The Landsat image was a Landsat 8 OLI remote sensing image of Liaoning Province
in September and October 2019 downloaded from the Geospatial Data Cloud website
(www.gscloud.cn, accessed on 1 March 2022), with a spatial resolution of 30 m × 30 m.

Sentinel-1A images were remote sensing images of Liaoning Province downloaded
from the EARTHDATA website (www.earthdata.nasa.gov, accessed on 16 March 2022)
in September and October 2019, with spatial resolutions of 5 m × 20 m and polarization
modes of VV and VH.

The ground-measured data in this paper were the data of 354 fixed plots in the
continuous forest resource inventory of Liaoning Province from 2014 to 2019. The data
were from the National Ecological Science Service Center (www.nesdc.org.cn, accessed on
16 March 2022) and were divided into vegetation information and topographic information.
Vegetation information included plot number, plant name, diameter at breast height,
tree height, etc. Other topographic information included plot attribute table, including
longitude, latitude, altitude, slope, etc.

2.3. Data Preprocessing

2.3.1. Landsat 8 OLI Data Processing Method

Because Landsat 8 data have been geometrically and topographically corrected, pre-
processing operations include radiometric calibration, atmospheric correction, image stitch-
ing and cropping. Then, the vegetation index, texture index (Mean, Variance, Homogeneity,
Contrast, Dissimilarity, Entropy, Second Moment, Correlation) and band information
(band2–band7) were extracted. Vegetation index is an index to measure the status of
ground vegetation. In this study, seven commonly used remote sensing indices (ARVI, DVI,

www.gscloud.cn
www.earthdata.nasa.gov
www.nesdc.org.cn
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EVI, NDPI, NDVI, RVI, SVAI) were selected, and the calculation formula of each index is
as follows:

NDVI =
XNIR − XRED
XNIR + XRED

(1)

Among them, XNIR refers to the near-infrared band and XRED refers to the red band.

SAVI = (1 + L)
XNIR − XRED

XNIR + XRED + L
(2)

Among them, L is the soil adjustment coefficient; generally, its value is 0.5.

DVI = XNIR − XRED (3)

RVI =
XNIR
XRED

(4)

ARVI =
XNIR − (2XRED − XBLUE)

XNIR + (2XRED − XBLUE)
(5)

where XBLUE represents the blue band.

EVI = 2.5
(XNIR − XRED)

XNIR + 6XRED − 7XBLUE + 1
(6)

NDPI =
XNIR − (0.74XRED + 0.26XSWIR)

XNIR + (0.74XRED + 0.26XSWIR)
(7)

where XSWIR stands for short-wave infrared.

2.3.2. Sentinel-1A Data Preprocessing Method

The processing of Sentinel-1A images, based on the official open-source software
SNAP7.0 developed by the European Space Agency, involves a series of preprocessing
steps aimed at enhancing data quality. These steps encompass track correction, thermal
noise removal, radiation calibration, speckle filtering, topographic radiation correction
and geocoding, as well as geometric correction. Subsequently, SAR backscatter coefficient
extraction and texture information analysis (Mean, Variance, Homogeneity, Contrast, Dis-
similarity, Entropy, Second Moment, Correlation, ASM, MAX, Energy) are performed to
derive remote sensing feature factors associated with biomass.

2.3.3. Calculation of Tree Biomass in Sample Plot

The above-ground biomass per plant was calculated using the allometric growth
equation proposed by Dong Lihu [34].

W = a · Db · HC (8)

In the formula, W is the above-ground biomass, D is the diameter at breast height and
H is the height of the tree. a, b and c are the parameters of the model, and their values are
set to 0.0470, 2.1181 and 0.7088, respectively.

2.3.4. Correlation Analysis of Remote Sensing Factors and Biomass

It is very important to select highly correlated independent variables to estimate
biomass. Adding unnecessary variables to the model will increase the calculation and
affect the stability of the model, but if the variables are too few, it will not be conducive to
the correct construction of the model [35]. Therefore, we conducted Pearson correlation
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analysis to screen out the independent variables significantly correlated with biomass. The
correlation coefficient is calculated as follows:

r = ∑n
i=1 (xi − x)(yi − y)√

∑n
i=1(xi − x)2(yi − y)2

(9)

In the above formula, xi representsthe i-th x variable, yi represents the i-th y variable
and x and y represent the average value of the variables. The absolute value of r indicates
the degree of correlation. When r is positive, it means positive correlation; when r is
negative, it means negative correlation.

By removing outliers, 162 plots of biomass and their corresponding correlation factors
were screened out from the samples. Pearson correlation statistical analysis was performed
on the sample biomass in SPSS 26 software, and finally the correlation between tree biomass
and various factors was obtained.

2.3.5. Build a Linear Regression Model

Variables significantly correlated at the level of 0.01 (two-sided) were selected, and
the traditional stepwise regression method was used in SPSS 26 software to construct the
biomass recovery model. F test and t test were used to verify the accuracy of the model.
R2 represents the square of the correlation coefficient of the regression equation, reflecting
the goodness of fit between sample data and regression equation. The closer R2 is to 1, the
better the regression equation model is. Meanwhile, the model was tested by using the
measured data as the true value of the sample.

2.3.6. Establish BP Neuron Network Model

The simple idea of BP neural network is as follows: the first layer is the input layer
of the neural network, which acts on the neurons of the second layer; the second layer
is the hidden layer, where neurons transmit stimuli to each other. The hidden layer can
have multiple layers; the third layer is the output layer, and the neuron stimulation is
transmitted to the outside world after multiple layers. The artificial neural network model
has the advantage of high precision, but its disadvantage is that the simulation process is
similar to the “black box” operation, and the internal mechanism of the model is difficult to
explain well. When the artificial neural network is applied to estimate forest biomass, the
input variables are remote sensing data, slope, altitude, canopy density and other factors,
and the output variables are the forest biomass at the corresponding position of the pixel
for modeling. Due to the strong nonlinear fitting ability of single hidden layer BP neural
networks, they were used for biomass estimation. The number of neurons in the input
and output layers was determined, and the number of hidden layers was required. For a
single hidden layer neural network, the more neurons in the hidden layer, the stronger the
nonlinear ability of the model, but the generalization error of the model will increase. The
determination of the number of neurons in the hidden layer was crucial. Usually, increasing
the number of hidden layer nodes can improve the output accuracy of the BP network,
while also making it more complex and difficult to control the training time. Currently, the
number of hidden layers is usually set according to the following formula:

• ∑n
i=0 Ci

M > k, where k is the set size of input data, M and n are the number of hidden
layer and input layer nodes, respectively. If i > M, specify Ci

M = 0;
• M =

√
n + m + a, where m is the number of network output layer nodes, n is the

number of network input layer nodes and a is a constant between [0 and 10];
• M = log2 n, where n is the number of input layer nodes.

On the basis of meeting the accuracy requirements, this study explored how to reduce
the number of hidden layer neurons as much as possible to reduce the computational com-
plexity of the model. In practical applications, considering the complexity and nonlinear
factors of the problem studied, the number of hidden layer nodes is often determined with
“trial and error”, that is, the number of hidden layer nodes corresponding to the minimum
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output error of the neural network is selected. The specific method was tested one by one
in Matlab from the initial 5 hidden layer nodes to 20 hidden layer nodes. The datasets were
randomly divided into training sets, validation sets and test sets according to a ratio of
70%, 15% and 15%. For the training set, by comparing the three algorithms in the neural
network library of Matlab 2020a software, the neural network model based on the trainlm
algorithm is finally used for calculation, and the measured data are used as the true value
of the sample to test the model.

2.3.7. Establishment of BP Neural Network Model Improved by Particle Swarm Optimization

Particle swarm optimization (PSO) has the advantages of fast convergence speed, few
parameters, a simple algorithm and easy implementation. Particle swarm optimization
(PSO) simulates the predation behavior of birds. Imagine a scenario where a flock of birds
randomly searches for food. There is only one piece of food in this area. All the birds do
not know where the food is. But they know how far the food is from their current location.
So, what is the best strategy for finding food? The easiest and most efficient way is to
search the area around the bird that is currently closest to the food. Throughout the search,
the flock lets other birds know where it is by passing messages to each other. Through
such cooperation, they can judge whether the optimal solution has been found, and at the
same time convey the information of the optimal solution. For the whole flock of birds,
eventually the whole flock of birds can gather around the food source, that is, find the
optimal solution.

In PSO, the solution to each optimization problem is a bird in the search space. We call
them “particles”. All particles have a fitness value determined by the optimized function,
and each particle has a velocity that determines the direction and distance they fly. Then,
the particles follow the current optimal particle to search in the solution space. PSO is
initialized as a group of random particles (random solutions). The optimal solution is
then found through iteration. In each iteration, the particle updates itself by tracking two
“extrema”. The first is the optimal solution found by the particle itself, which is called the
individual extremum pBest. Another extremum is the optimal solution currently found
by the entire population, and this extremum is the global extremum gBest. In addition,
instead of the whole population, only a part of it can be used as the neighbor of the particle;
then, the extremum among all the neighbors is the local extremum.

There are two properties of particles: velocity and position. Velocity represents the
direction and distance the particle will move in the next iteration, and position is a solution
to the problem being solved.

The algorithm has 6 important parameters: the position of the i-th particle; the velocity
of the i-th particle (the distance and direction the particle travels); the optimal position
of the i-th particle (individual optimal solution); the optimal position of the group search
(the group optimal solution); the fitness value of the optimal position searched by the i-th
particle (the value of the optimization objective function); the adaptive value of the optimal
location searched by the group.

The specific algorithm flow is as follows:

(1) Initialize a group of particles (the group size is N), including random positions
and velocities;

(2) Evaluate the fitness of each particle;
(3) For each particle, compare its fitness value with the best position pbest it has passed,

and if it is better, use it as the current best position pbest;
(4) For each particle, compare its fitness value with its best position gbest, and if it is

better, use it as the current best position gbest;
(5) Adjust particle velocity and position;
(6) If the end condition is not met, go to step 2.

The iteration termination condition is generally selected as the maximum number of
iterations and/or the optimal position searched so far by the particle swarm meets the
predetermined minimum adaptation threshold according to the specific problem.
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2.3.8. Spatial Biomass Mapping

Through the comparison of the above modeling methods, the optimal model based
on active and passive remote sensing data was selected to invert the above-ground forest
biomass in Liaoning Province, and a map was made.

3. Results

3.1. Plot Data Processing

After calculating the above-ground biomass of a single plant in various places, the
biomass of the same tree species was added together to obtain a histogram of the biomass
distribution of each tree species, and the results are shown in Figure 2. Among them,
Quercus mongolica accounted for about 24% of the biomass in the study area, and
Populus davidiana, Quercus aliena Blume and other major tree species accounted for about
3–7%, respectively. The other tree species accounted for about 25% of the total biomass in
the study area.
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3.2. Correlation Analysis of Remote Sensing Factors and Biomass

Because the optical remote sensing band information records the information received
by the sensor through electromagnetic radiation, the vegetation index is a measure of
surface vegetation status. Texture feature information is the structural feature formed
by the regular distribution or change in color in an optical image. In optical images,
texture reflects the change law of an image’s gray value or color. The SAR backscattering
coefficient contains abundant information on ground objects. Therefore, these remote
sensing parameters were extracted and three variables, namely forest elevation, slope and
canopy, were added. There were 86 variables in total. Their correlation statistics with
forests are shown in Table 1.
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Table 1. Correlation statistics between biomass and variables.

Factor B2 B3 B4 B5 B6 B7

Correlation
coefficient −0.342 ** −0.290 ** −0.302 ** −0.157 * −0.337 ** −0.307 **

Factor ARVI DVI EVI NDPI NDVI RVI

Correlation
coefficient 0.250 ** 0.249 ** −0.228 ** 0.323 ** 0.313 ** 0.322 **

Factor SVAI VH VV altitude slope canopy closure

Correlation
coefficient 0.310 ** −0.070 −0.004 0.404 ** −0.015 0.328 **

Mean Variance Homogeneity Contrast Dissimilarity Entropy Second
Moment Correlation ASM MAX Energy

B2 −0.310 ** −0.056 0.069 −0.036 −0.063 −0.087 0.083 0.107

B3 −0.271 ** −0.092 0.162 * −0.084 −0.137 −0.185 * 0.184 * −0.040

B4 −0.286 ** −0.052 0.171 * −0.068 −0.163 * −0.186 * 0.169 * −0.007

B5 −0.158 * −0.046 0.004 0.001 −0.006 0.023 −0.063 0.004

B6 −0.322 ** −0.168 * 0.145 −0.152 −0.159 * −0.211 ** 0.194 * 0.002

B7 −0.285 ** −0.132 0.175 * −0.156 * −0.174 * −0.201 * 0.184 * 0.037

VH −0.174 * −0.191 * −0.197 * 0.119 0.148 0.196 * −0.053 −0.139 −0.136 −0.168 *

VV −0.126 −0.148 −0.143 0.065 0.093 0.241 ** 0.004 −0.136 −0.099 −0.176 *

Note: **, significantly correlated at the 0.01 level (two-sided); *, significantly correlated at the 0.05 level (two-sided).

The results showed that 35 feature factors extracted from Landsat 8 OLI images were
correlated with the forest biomass of the plot (p < 0.05), and 22 texture features were
correlated with the forest biomass of the plot (p < 0.05). The Landsat 8 band2 had the
highest correlation, with a correlation coefficient of −0.342. Among the vegetation index,
NDPI had the highest correlation with biomass, and the correlation coefficient was 0.323.
Among the characteristic factors extracted from Sentinel-1A radar images, seven factors
were correlated with biomass (p < 0.05), and the other five factors were negatively correlated,
except entropy. In other aspects, the correlation coefficients of altitude and canopy density
with biomass were 0.404 and 0.328, respectively.

In summary, a total of 44 factors were correlated with biomass, among which
21 factors were strongly correlated with biomass at the (p < 0.01) level. Because the
following three models need appropriate variables, too many variables will increase the
amount of calculation and affect the stability of the model, but too few variables will not be
conducive to the correct construction of the model. At the same time, a too strong or too
weak correlation between variables will also affect the construction of the model. Therefore,
factor 21, which showed a strong correlation at the level of 0.01, was screened and put into
three models.

3.3. Linear Regression Model Processing Results

The results of the regression estimation model are shown in the table below (Table 2):

Table 2. Stepwise regression model coefficients.

Model
Unstandardized Coefficient

Standardized Coefficient t Sig.
B Standard Error

Constant −243.422 126.015 −1.932 0.055

Altitude 0.090 0.025 0.276 3.533 0.001

Canopy closure 125.943 33.185 0.267 3.795 0.000
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Table 2. Cont.

Model
Unstandardized Coefficient

Standardized Coefficient t Sig.
B Standard Error

ARVI −156.917 64.266 −0.472 −2.442 0.016

EVI 73.454 35.773 0.236 2.053 0.042

RVI 148.340 43.052 0.676 3.446 0.001

VVEntropy 34.447 18.391 0.127 1.873 0.063

B6Mean 24.306 13.932 0.417 1.745 0.083

B6 −245.049 93.419 −0.656 −2.623 0.010

The t-test significance levels of B6Mean, VVEntropy and constant in the model were
greater than 0.05; the significance levels of other variables’ t-tests were less than 0.05; and
the F-test significance level of the model was less than 0.001 for the whole model, indicating
that the regression model passed the test. By comparing the absolute value of the standard
coefficient, it can be found that RVI has the greatest impact on biomass, but the absolute
value of the Pearson correlation test coefficient of RVI on biomass is not the largest, and
the Pearson correlation test does not match the standard coefficient. On the one hand, this
shows that the data distribution does not satisfy the normality assumption, and on the
other hand, it shows that there is a linear correlation between the regression coefficients of
the model. Therefore, regression model results use unstandardized coefficients.

Biomass = −243.422 + 0.09 ∗ Altitude + 125.943 ∗ Canopy closure− 156.917 ∗ ARVI + 73.454 ∗ EVI
+148.34 ∗ RVI + 34.447 ∗VVEntropy + 24.306 ∗ B6Mean− 245.049 ∗ B6

(10)

Through linear model prediction, the predicted value of forest biomass was compared
with the real value, as shown in Figure 3.
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The linear model was used to measure the biomass of the sample plot, and the
measured data were used as the real value of the sample plot to test the model. The
comparison between the predicted value and the actual value of forest biomass in the test
set is shown in Figure 3, and the coefficient of determination is 0.3625. The maximum
relative error of linear simulation is 209.61 and the minimum relative error is −37.35.
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After disposing the values with relative errors greater than 100% as outliers, the average
deviation of the predicted values is calculated to be 32%.

3.4. BP Neuron Network Model Processing Results

The trainlm algorithm uses the Levenberg–Marquardt algorithm, and the training
speed is faster when the amount of training data is small. The performance plots, training
parameter values and regression analysis of the simulated neural network are shown in
Figures 4 and 5.
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After many experiments, it was found that when the number of hidden layers is set
to 10 and the training iteration is set to the eighth generation, the mean square error of
the verification set is the smallest, which is 0.06604, and the training result is the best. The
coefficient of determination is 0.78226.

The BP neural network model was used to invert the biomass, and the prediction
value of the forest biomass in the test set was compared with the real value, as shown in
Figure 6.



Sensors 2023, 23, 9313 12 of 18Sensors 2023, 23, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 6. A comparison of the results of the neuronal network model test set with the true values. 

As Figure 6 shows, the coefficient of determination between the predicted value and 
the real value was 0.5295, the maximum relative error between the network prediction 
value and the measured biomass value was 2539.94, the minimum relative error was −1.63 
and the rest of the test data had small errors. After treating the value with a relative error 
greater than 100% as an outlier and discarding it, the average deviation of the predicted 
value was calculated to be 30%, which can well invert the value of biomass, indicating 
that there was a nonlinear relationship between tree biomass and related factors. 

3.5. Particle Swarm Optimization Algorithm Improves BP Neural Network Model Processing 
Results 

When the number of hidden layers was set to 10, the data fitting value of the PSO 
algorithm improved neural network model training reached 0.8320, and the simulation 
effect was better than that of the BP neural network. The training results are shown in 
Figures 7 and 8. 

  
(a) (b) 

Figure 7. (a) Schematic diagram of network performance corresponding to PSO algorithm. (b) Sche-
matic diagram of PSO algorithm corresponding to network training state. 

Figure 6. A comparison of the results of the neuronal network model test set with the true values.

As Figure 6 shows, the coefficient of determination between the predicted value and
the real value was 0.5295, the maximum relative error between the network prediction
value and the measured biomass value was 2539.94, the minimum relative error was −1.63
and the rest of the test data had small errors. After treating the value with a relative error
greater than 100% as an outlier and discarding it, the average deviation of the predicted
value was calculated to be 30%, which can well invert the value of biomass, indicating that
there was a nonlinear relationship between tree biomass and related factors.

3.5. Particle Swarm Optimization Algorithm Improves BP Neural Network Model
Processing Results

When the number of hidden layers was set to 10, the data fitting value of the PSO
algorithm improved neural network model training reached 0.8320, and the simulation
effect was better than that of the BP neural network. The training results are shown in
Figures 7 and 8.
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The BP neural network model improved by PSO was used to invert the biomass, and
the predicted value of forest biomass in the test set was compared with the real value, as
shown in Figure 9.
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Figure 9. A comparison of the results of the PSO-improved neural network model test set with the
real values.

The neural network model improved by the PSO algorithm was used for biomass
inversion, and the coefficient of determination between the model’s predicted value and
the real value was 0.7657, which was higher than that of the BP neural network model. The
maximum relative error between the network prediction value and the measured biomass
value was 74.61, the minimum relative error was 0, and the rest of the test data had small
errors. After treating the values with a relative error greater than 100% as outliers and
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discarding them, the average deviation of the predicted value was calculated to be 19%,
which can well invert the biomass value, indicating that the improved BP neural network
model was better than the BP neural network model.

3.6. Results of Spatial Biomass Mapping

Through the comparison of the above modeling methods, the PSO model based on
active and passive remote sensing data with the best performance was finally selected
to invert the above-ground forest biomass in Liaoning Province, and a biomass spatial
distribution map as shown in Figure 10 was obtained.
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As can be seen from Figure 10, the areas with high above-ground forest biomass in
Liaoning Province are mainly distributed in the southeast and southwest areas with high
altitudes and steep slopes, while the areas with low biomass are mainly concentrated in
the plain areas with low altitudes and gentle slopes. The spatial distribution trend of
above-ground forest biomass is consistent with the topographical features and social and
economic conditions of the study area.

4. Discussion

The traditional stepwise regression method was used for modeling, the R2 between
the predicted value and the actual value after adjustment of the linear model was only
0.3625, and the Pearson correlation coefficient between each band of Landsat 8 and Sentinel
1A VV and VH polarization mode was less than 0.36. The accuracy of the model can be
significantly improved by adding vegetation index data and texture index data, which
is consistent with many research results [36,37]. At the same time, when the elevation
data were input into the model, the dynamic elevation gradient of the study area had
a greater impact on biomass, which is consistent with the research results of Olimann
and Gregory [38]. Each band of Landsat 8 (band2–band7) was negatively correlated with
biomass, and the other vegetation indices except the enhanced vegetation index were
positively correlated with biomass, which was consistent with the research results of Guo
Zhihua [39]. The correlation coefficient between the band2 value and biomass was the
highest, which may be because the chlorophyll in green plants absorbed the most light,
making the spectral curve of reflected plants at the lowest point in the spectral range. NDPI
had the highest correlation coefficient among all vegetation indices. NDPI is the ratio of
the difference between the sum of near-infrared light and red light and short-wave infrared
light to the difference between the sum of near-infrared light, red light and short-wave
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infrared light. The main absorption band of chlorophyll is red light. The lower the red light
brightness value, the lower the red light reflectivity, the higher the chlorophyll content and
the larger the biomass.

The running time and model determination coefficient R2 of the three models were
compared, as shown in Table 3. It can be seen that the model training speed based on
the linear stepwise regression method is slightly faster than that of the BP neural network
model, but the model accuracy is lower. The BP neural network model has high prediction
accuracy and short prediction time, indicating that the nonlinear model is more suitable for
the inversion of tree biomass in Liaoning Province. However, the prediction value of the
improved PSO neural network model is better than that of the BP neural network model.
Although the time is longer, it is also within the acceptable range.

Table 3. Comparison of prediction accuracy and training time of different models.

Model R2 Time

Stepwise regression model 0.5468 0.0862 s

BP neural network model 0.78226 0.13 s

POS improved neural network model 0.83204 235.16 s

On the other hand, some output results were quite different from the measured value
of biomass. In the validation of linear model results, the measured biomass distribution
range was 0.56 kg/hm2~430 kg/hm2, and the scattered points were evenly distributed on
both sides of the line in a ratio of approximately 1:1. However, the distance between the
scattered points and the line was relatively large, indicating a large deviation in biomass
prediction and a large coefficient of determination. The decision coefficient value of 0.5295
also reflected this point. There were outliers such as (0.609, 163.863) in the model, which
cannot be explained by the BP neural network model. The reasons for this phenomenon
may be as follows:

(1) This experiment was only a preliminary study on a forest estimation model, and
there were still some shortcomings and deficiencies in the specific technical pro-
cessing. More parameter characteristics would be needed for further analysis in
order to better understand the impact of biological factors on factors of quantitative
inversion accuracy;

(2) Due to limited conditions, the number of training data samples used in this experiment
was small, which made the prediction network not stable enough and could cause
certain errors in the results;

(3) The data collected with remote sensing technology were greatly affected by factors
such as sensors, shooting angles and atmosphere, which may cause the
inversion errors.

5. Conclusions

This paper takes forest biomass inversion in Liaoning Province as the research ob-
ject, extracts remote sensing factors through remote sensing data processing, combines
topographic data (elevation, slope) and forest sample plot data, discusses the influencing
factors of biomass in Liaoning Province and compares three different models to construct
an optimal spatial distribution map of biomass in Liaoning Province. The main conclusions
are as follows:

(1) The correlation between altitude and biomass was the highest, and the correlation
coefficient was 0.404. The B2 band of Landsat 8 and the NDPI characteristic quantity
of the vegetation index have important correlations with forest biomass inversion, and
the correlation coefficients are−0.342 and 0.323, respectively. Among the characteristic
factors extracted from Sentinel-1A radar images, seven factors were correlated with
biomass (p < 0.05), and five factors were negatively correlated, except entropy.
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(2) Comparing the inversion accuracy and training speed of the three models, the model
based on the linear stepwise regression method has the fastest training speed, but
the lowest model accuracy. The BP neural network has a strong fitting ability with
complex data, a short training time and high model accuracy. Although the train-
ing time of the PSO improved neural network model is longer, the coefficient of
determination between the predicted value and the measured value is the high-
est. The results show that there is a nonlinear relationship between the biomass
and the strong correlation factors. The neural network model based on the particle
swarm optimization algorithm is the best model for forest biomass inversion in the
Liaoning region.

(3) According to the spatial distribution map of biomass, the areas with high forest
biomass in Liaoning Province are mainly distributed in areas with high altitudes and
steep slopes in the east and southwest, while the areas with low biomass are mainly
concentrated in the plain areas with low altitudes and gentle slopes.
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