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Abstract: We report on a study of the temperature dependence of the response of a BSO crystal
based polarimetric current sensor with spectral interrogation. Two possible interrogation schemes are
discussed. The spectral dependence of the optical rotation along the crystal caused by temperature
and current changes is investigated, and approximate dependences for the sensitivities to current SI

and temperature ST are derived. A mixed term in the response with spectral interrogation is revealed,
the elimination of which is achieved by tracking wavelength shifts ∆λ1 and ∆λ2 of two distinct
extrema in the polarimetric response. A temperature independent second degree equation for the
current changes ∆I as a function of the measured spectral shifts is derived and tested.

Keywords: magnetic field sensor; current sensor; temperature independent measurements; polarimetry;
fiber optic sensors; spectral interrogation

1. Introduction

Electric current and/or magnetic field fiber optic sensors have been known, developed
and commercialized [1] for quite some time for the purposes of the power industry [2]
and special applications [3]. These sensors are based either on the Faraday effect in the
fiber itself, or in bulk materials [4] which use optical fiber transducers, such as fiber Bragg
gratings (FBG), interferometers, or refractometers [5–11] in combination with magnetic
field sensitive materials. These sensors are characterized by specific advantages and
disadvantages as well as varying simplicity and complexity.

Among the simplest and most straightforward solutions are the polarimetric sensors
using magneto-optical materials such as BSO (Bi12SiO20) and BGO (Bi4Ge3O12) crystals
because of their high Verdet constant and because their wavelength dependence has been
accurately measured and is well known [12,13]. The first polarimetric fiber optic sensor
using BSO/BGO crystals [14,15], however, operated at a single wavelength and detected
amplitude changes of the polarimetric response. These crystals are also temperature de-
pendent [16,17], which limits the performance of the sensor. To account for temperature
dependence, detection at two wavelengths has been proposed [18], or the temperature
dependence of the BGO crystal has been taken into account [19]. The problem of the tem-
perature dependence for the other types of current sensor has been addressed in different
ways depending on the interrogation scheme and the magneto-sensitive material, using
either temperature compensation [18–23] or simultaneous magnetic field and temperature
measurement in the case of magnetic field sensors with spectral interrogation [24–29].

We have recently shown [30,31] that the well-known fluorescence in BSO crystals [32]
can be used to generate a broad spectrum under ultraviolet or white LED excitation, which
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serves as a broadband source for a polarimetric scheme with spectral interrogation. We
have also reported [33] that the BSO crystal based polarimetric sensor exhibits a wavelength
dependent temperature response.

In the present work, we measure the optical activity of a BSO crystal at different
temperatures, currents, and wavelengths and establish the spectral and temperature depen-
dence of the intrinsic and the magnetic field induced polarization rotation. We show that,
using a white LED, the spectrally interrogated polarimetric fiber optic current sensor can be
used to eliminate the temperature dependence in the measurement of the electric current.

Section 2 presents the general experimental setup, the principle of operation, and
the two possible interrogation techniques. Section 3 is devoted to the measurement of
the spectral dependence of temperature-influenced optical activity from which we derive
the spectral, temperature, and current dependences of the sensitivities to current and to
temperature. To eliminate the temperature dependence, we use the spectral shifts of two
extrema of the polarimetric spectral response and derive an expression for the current
changes. The performance of the current sensor is simulated numerically.

2. Principle of Operation and Experimental Arrangement
2.1. Experimental Setup

The experimental setup in Figure 1a was used to generate a broad spectrum from
520 nm to 800 nm in the BSO crystal and to observe the spectral distribution of the po-
larimetric responses. The side view with the crystal size are shown in Figure 1b, while
Figure 1c shows the side glow caused by fluorescence and scattering from the crystal with
white LED excitation, whose built-in blue LED is the major cause of fluorescence in the
crystal. Figure 1d shows the front view of the fluorescent light coming out from the crystal
when illuminated via a 1 mm diameter optical fiber with LEDs at 385 nm and 440 nm. A
low cost film polarizer LPVISE2 × 2 (Thorlabs, Newton, NJ, USA) with extinction ratios of
>100:1 for 400–740 nm, >1000:1 for 500–700 nm, and >5000:1 for 530–690 nm ranges was
used in the experiments. The polarimetric response of the broadband spectrum is given by
the expression [31]:

I =
1
4
{1 + cos[2(φ + θ − α)]} (1)

In (1) θ and α are the polarizer and analyzer orientations and

φ = ∆βL (2)

is the accumulated phase along the circularly birefringent BSO crystal whose length is L, and
∆β = βL – βR is the propagation constant difference between the left and the right circularly
polarized waves along the crystal. This difference is both wavelength and temperature
dependent, and is expressed as [31]:

∆β(λ, T) = ρ(λ, T) + VB(λ, T)B (3)

In (3) ρ (deg/mm) is the optical rotatory power of the crystal and the additional
rotatory power ρF = VBB caused by the Faraday effect, B is the magnetic field and VB is the
Verdet constant. The wavelength dependences of ρ(λ) and VB(λ) are well known [12,13],
both decrease with wavelength and VB is proportional to ρ [17]. However, the temperature
dependences have been insufficiently studied and later in the paper we present more
detailed results on them. Inserting (3) and (2) into (1), we have, for the wavelength and
temperature dependent intensity I(λ, T) [30,31]:

I(λ, T) =
1
4
{1 + cos[Φ(B, T, λ)]} = 1

4
{1 + cos[2(ρ(λ, T) + VB(λ, T)B)L + 2(θ − α)]} (4)

with Φ(B, T, λ) being the total phase in the polarimetric response. The typical spectral
responses of a polarimetric sensor to changes of the polarizer/analyzer orientations and
to current (magnetic field) are shown in Figure 2. The plots show that the particular
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position of the modulated pattern can be fine-tuned by changing the orientation of the
analyzer/polarizer via the θ − α term. The changes of the measurand (current/magnetic
field) and of the temperature lead to shifts of the polarimetric response, as shown in
Figure 2b.

Sensors 2023, 23, x FOR PEER REVIEW 3 of 16 
 

 

 
Figure 1. Polarimetric current sensor setup: (a) experimental arrangement, (b) side view of the BSO 
crystal used with dimensions, (c) top view of fluorescence and scattering with white LED illumination 
and (d) front views of fluorescence with 385 nm and 440 nm illumination via a large core optical fiber. 

In (3) ρ (deg/mm) is the optical rotatory power of the crystal and the additional ro-
tatory power ρF = VBB caused by the Faraday effect, B is the magnetic field and VB is the 
Verdet constant. The wavelength dependences of ρ(λ) and VB(λ) are well known [12,13], 
both decrease with wavelength and VB is proportional to ρ [17]. However, the tempera-
ture dependences have been insufficiently studied and later in the paper we present more 
detailed results on them. Inserting (3) and (2) into (1), we have, for the wavelength and 
temperature dependent intensity I(λ, T) [30,31]: 

[ ]{ } ( ) ( )[ ]{ }αθλλρλλ −+++=Φ+= 2),(),(2cos1
4
1),,(cos1

4
1),( LBTVTTBTI B  (4)

with Φ(B, T, λ) being the total phase in the polarimetric response. The typical spectral 
responses of a polarimetric sensor to changes of the polarizer/analyzer orientations and 
to current (magnetic field) are shown in Figure 2. The plots show that the particular po-
sition of the modulated pattern can be fine-tuned by changing the orientation of the an-
alyzer/polarizer via the θ − α term. The changes of the measurand (current/magnetic 
field) and of the temperature lead to shifts of the polarimetric response, as shown in 
Figure 2b. 

 

 

(a) (b) 

Figure 2. Spectral response of the polarimetric sensor: (a) as analyzer angle increases from 0° to 90°; 
(b) as current in the coil increases from −28 A to +28 A. 

2.2. Principle of Operation and Sensitivities 
Unlike the single wavelength polarimetric scheme [14] in which the intensity (4) is 

measured, in our arrangement, we observe by a spectrometer the whole spectrum, which 
exhibits an oscillatory response. Since both ρ(λ) and VB(λ) decrease with wavelength, the 
period of the wavelength dependent response Λ (which is the free spectral range–FSR) 

0

10,000

20,000

30,000

40,000

50,000

60,000

500 600 700 800 900

0°
30°
60°
90°

Wavelength, λ (nm)

In
te

ns
ity

, I
 (a

rb
.u

.)

α

0

10,000

20,000

30,000

40,000

50,000

525 575 625 675 725

-28
-20
-10
0
10
20
28

Wavelength, λ (nm)

In
te

ns
ity

l (
a.

u.
)

T = 22 °C Current, I (A)

Figure 1. Polarimetric current sensor setup: (a) experimental arrangement, (b) side view of the BSO
crystal used with dimensions, (c) top view of fluorescence and scattering with white LED illumination
and (d) front views of fluorescence with 385 nm and 440 nm illumination via a large core optical fiber.
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Figure 2. Spectral response of the polarimetric sensor: (a) as analyzer angle increases from 0◦ to 90◦;
(b) as current in the coil increases from −28 A to +28 A.

2.2. Principle of Operation and Sensitivities

Unlike the single wavelength polarimetric scheme [14] in which the intensity (4) is
measured, in our arrangement, we observe by a spectrometer the whole spectrum, which
exhibits an oscillatory response. Since both ρ(λ) and VB(λ) decrease with wavelength, the
period of the wavelength dependent response Λ (which is the free spectral range–FSR)
increases with wavelength. As the angle between polarizer and analyzer can be varied, we
can tune the phase 2(θ − α) and thus fix the position of the polarimetric response.

2.3. Interrogation Detection Techniques

There are two detection techniques that can be used to detect the changes in the
polarimetric spectral response. In the first we track the wavelength position of a minimum
λm or a maximum λM, as the magnetic field/electric current changes. Thus, the wavelength
shifts δλM = δλM − δλM,0 of a maximum and δλm = δλm − δλm,0 of a minimum, defined
with respect to some wavelength positions at I = 0 A and T = T0, are tracked. In the
second, we observe the intensities that are +π/2 and –π/2 phase-shifted with respect to
an extremum, namely IM

+ and IM
− for a maximum or Im

+ and Im
− for a minimum, and

calculate the differences and the sums of intensities that are π-shifts with respect to one
another: ∆M = IM

+–IM
−, ΣM = IM

+ + IM
− and ∆m = Im

+ − Im
−, Σm = Im

+ + Im
− and then
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calculate the normalized differences NM = ∆M/ΣM and Nm = ∆m/Σm which change with
current/magnetic field and with temperature.

2.3.1. Extrema Wavelength Shifts

In this case, for a given magnetic field B (or current I) and temperature T, the wave-
lengths λM,k and λm,k of the k-th maximum and minimum of the polarimetric response are
those for which the phase Φ from (4) is:

ΦM(B, T, λM,k) = 2kπ max and Φm(B, T, λm,k) = (2k + 1)π min (5a)

and the phase change ∆Φ is then

∆Φk =
∂Φk
∂λ

∆λk +
∂Φk
∂I

∆I +
∂Φk
∂T

∆T (5b)

As mentioned in [30,31], the periodic response is caused by the spectral dependence of
the optical activity ρ(λ) and the Verdet constant VB(λ). When we track the shifts ∆λk of an
extremum (at λM,k or λm,k) with respect to the position for I = 0 (B = 0) caused by changes
of the magnetic field (or current) ∆B (or ∆I) and of the temperature ∆T, the resultant phase
change ∆Φ of the phases ΦM or Φm is zero because the condition (5a) for the tracked
extremum remains constant i.e., ΦM = 2kπ = const and ΦM = 2kπ = const. The expression
(5b) becomes null, and solving with respect to ∆λ we obtain:

∆λk = λk − λk,0 = −
(

∂Φ
∂B

/
∂Φ
∂λ

)
∆B−

(
∂Φ
∂T

/
∂Φ
∂λ

)
∆T = SB∆B + ST∆T (6a)

where SB and ST are the sensitivities to magnetic field and temperature changes:

SB =
∆λk
∆B

, ST =
∆λk
∆T

(6b)

In (5a,b) and (6a,b) the instantly tracked λk is either λM,k or λm,k and ∆λ k is the
wavelength shift of the extremum from the initial value λk,0 for which I = 0 and T = T0.
This type of interrogation is illustrated in Figure 3a. Both the magnitude and the sign of
the current/magnetic field can thus be measured. Figure 4a shows the wavelength shifts
of the extrema from the response in Figure 3a, which prove to be linear with wavelength,
while Figure 4b shows the correspondingly measured sensitivities which increase with
wavelength [30,31] because they are inversely proportional to dispersion of the optical
activity and the Verdet constant.
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Figure 3. Interrogation techniques: (a) extrema wavelength shift; (b) π−shifted differential shift.
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Figure 4. Spectral responses of the extrema shift interrogation technique: (a) wavelength shifts of the
maxima M1, M2, M3 and the minima m1 and m2, (b) wavelength dependence of the sensitivities SI(λ).

2.3.2. π-Shifted Normalized Differential Response

In this case, the intensities I..+
k and I..−

k of the polarimetric response around the k-th
extremum (I..±

M,k and I..±
m,k) that are π-shifted to each other can be defined as:

I..+
k = I0 cos

[
2ϕk + 2(θ − α) +

π

2

]
I..−
k = I0 cos

[
2ϕk + 2(θ − α)− π

2

]
(7)

The normalized differential responses around the k-th maximum or the minimum are
defined as:

NM,k =
I..+
M,k − I..−

M,k

I..+
M,k + I..−

M,k
, Nm,k =

I..+
m,k − I..−

m,k

I..+
m,k + I..−

m,k
(8)

In the initial state I..+
M,k = I..−

m,k, but when the polarimetric response shifts to the right
the difference ∆ = I..+

M,k − I..−
M,k becomes positive and vice versa, as illustrated in Figure 3b

by the red and blue vertical arrows. Therefore, both the amplitude and the sign of the
current/magnetic field can be detected. The sensitivities to magnetic field/current and to
temperature are defined in this case as:

ΠB,k = 100
∆Nk
∆B

or ΠI,k = 100
∆Nk
∆I

, ΠT,k = 100
∆Nk
∆T

(9)

Figure 5 presents the responses of the normalized differential signals according to
the π-shifted interrogation technique. As is seen, the responses have different sensitivities,
though not quite as linear as those from Figure 4. The sensitivity in this case shows similar
wavelength dependence as with the first interrogation method (Figure 4b).

2.3.3. Comparison

In the present paper we present a more detailed analysis of a current sensor with
temperature correction using the first scheme; however, some general comparisons between
the two interrogation schemes can be outlined as follows:

(i) The responses of the π-shifted method exhibit nonlinearities compared with the
extrema shift method;

(ii) The normalized differential signal is faster to calculate compared with the extrema
shift method and is more appropriate if fast changing short circuit current changes are
to be detected, in which case slowly varying temperature induced noise is irrelevant;

(iii) The resolution of the π-shifted method is better because the signals are away from
minima and less sensitive to noise.
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3. Experiment and Results
3.1. Experimental Setup

To study the possibility for temperature corrected current measurements, we need to
know the dependences of the optical activity and the Verdet constant on the wavelength
ρ(λ), V(λ) and on temperature ρ(T), V(T). The experimental setup used to obtain the needed
measurements is shown in Figure 6.
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The light source was a white halogen lamp (Ocean Optics) and the spectrometer was
an Avantes VASPEC-ULS2048CL-EVO, (0.5 nm resolution and a 400 nm to 900 nm range).
The light from the source was coupled to a 600 µm large core quartz-polymer lead-in fiber,
collimated at its output, polarized by a polarizer through an angle θ, traversing the BSO
crystal, passed through an analyzer oriented to an angle α, and focused to the same type
of a lead-out fiber. Alternatively, for current and temperature measurements, the white
light halogen lamp was replaced by a white LED. The BSO crystal (4 × 4 × 25) was placed
in an aluminum holder and was heated/cooled using a thermoelectroc cooler (TEC). The
polarizer was fixed with the transmission axis along the horizontal axis of the crystal. Only
the analyzer was rotated during measurements of the optical activity and its temperature
dependence. The temperature could be varied from −32 ◦C to 62 ◦C. The power supply
could provide a current in the range from −30 A to +30 A (±0.1 A) which fed the solenoid
coil to create a homogeneous magnetic field along the BSO crystal, as shown in Figure 6.

3.2. Results of Optical Activity Measurements

Using the setup shown in Figure 6, we performed a sequence of measurements in
which we changed the temperature T and current I across the solenoid and measured the
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output angle of rotation of the polarization at a particular wavelength λ. The measurements
were made by compensation of the polarization rotation via turning the analyzer angle ϕ
so that a given minimum at a specified wavelength in the polarimetric response (Figure 2)
remained at the same position, which meant that for a given minimum (k = constant) as

Φk = 2[ρ(λk, T) + VI(λk, T)I]L + 2(θ − ϕ) = (2k + 1)π (10)

The sequence of measurements was as follows:

(i) A wavelength from among the following 540 nm, 570 nm, 600 nm, 630 nm, 660 nm
and 690 nm was chosen, starting from the highest value. In the absence of magnetic
field (I = 0 A) and at room temperature (≈22 ◦C) the analyzer was rotated until a
minimum of the response coincided with the chosen wavelength of measurement
(690 nm for example);

(ii) For a chosen value of the wavelength λk, a value of the current as fixed between
I = −30 A and I = 30 A. For a fixed value of the current, the temperature was varied
between T = −30 ◦C and 60 ◦C, and for each temperature the analyzer was rotated to
compensate for the temperature and current induced phase changes (26a,b) due to
the ρ(λk,T), VI(λk,T) and I, and the particular value for ϕ was found;

(iii) After the temperature was scanned, a new value for the current for the same wave-
length was set and then the temperature scanning was repeated;

(iv) After all currents were scanned, the next wavelength was chosen and the procedure
from (i) to (iii) was repeated.

The results obtained provided the possibility for the following analysis to be per-
formed.

First, the only spectral and temperature dependence was in the optical activity and the
Verdet constant, and second, neither of them depended on the current, so the compensation
angle can be represented as.

ϕ(λ, I, T) = VI(λ, T)L.I + ρ(λ, T)L with VI(λ, T)I = V(λ, T)B (11)

Second, we analyzed the results for I = 0, which revealed the dependences ρ(λk, T), so
we have

ϕ0(λ, T) = ϕ(λ, 0, T) = ρ(λ, T)L (12)

Figure 5a shows a plot of the rotation angle caused by optical activity vs. temperature
for the above six wavelengths in the absence of a magnetic field (I = 0). As is seen from this
figure, the optical rotation linearly reduces with temperature and can be represented in the
form:

ϕ0(λ, T) = ρ(λ, T)L =
⌊

aρ(λ)T + ρ0(λ)
⌋

L (13)

where the thermal coefficient aρ(λ) that determines the slope of the lines in Figure 7a as
well as the optical activity ρ0 are wavelength dependent.

Third, from the measurements at different temperatures in the −30 ◦C to 60 ◦C range
for different currents from−25 A to +25 A, we can retrieve the optical rotation VI.L (deg/A)
due to the magneto-optic effect and its wavelength dependence presented in Figure 8. In
that figure we plot VI(λ). L for three temperatures, −30 ◦C, 0 ◦C, and 60 ◦C, and it is seen
that the temperature deviations vary randomly in either direction. The relative error due to
temperature-dependent deviations of the magneto-optic activity varied with wavelength,
and, on average, was found to be ≈0.7%.
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Figure 7. Temperature and spectral dependences of the optical rotation without magnetic field (I = 0):
(a) rotation angle vs. temperature at different wavelengths; (b) wavelength dependence of the optical
activity ρ(λ) at room temperature (22 ◦C); (c) temperature corrections ∆ρ to the optical activity with
respect to the response from (b) at room temperature; (d) thermal coefficient aρ.
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We thus conclude that

VI(λ, T) = V(λ) + ε(T) ≈ V(λ) (14)

where ε(T) is a negligible thermally dependent correction.

3.3. Approximations

The experimental plots obtained for ρ0(λ), aρ(λ) and V(λ) are found to be sufficiently
well approximated by power law functions, namely as:

ρ0(λ) = R0λ−r R0 = 4 × 108, r = −2.573
(

R2 = 0.9995
)

(15a)

aρ(λ) = A0λ−a A0 = −60704, a = −2.511
(

R2 = 0.9878
)

(15b)

VI(λ) = V0λ−v V0 = 760533, v = −2.728
(

R2 = 0.9896
)

(15c)

Based on the above we can write (14) as

ϕ(λ, I, T) = ρ(λ, T)L + VI(λ)L.I = aρ(λ)T.L + ρ0(λ).L + VI(λ)I.L (16a)

and for λ from 540 nm to 700 nm and T from −30 ◦C to +60 ◦C, the power law approxima-
tions (21) can be used for all wavelength dependences:

ϕ(λ, I, T) =
⌊

A0λ−aT + R0λ−r + V0λ−v.I
⌋
.L (16b)

4. Simultaneous Current and Temperature Measurement Technique
4.1. Sensitivities to Current and Temperature

To realize temperature corrected current measurement the non-linear power-law ap-
proximations for aρ(λ), ρ0(λ) and V(λ) are simplified according to the following procedure:

(i) Use the power law approximations (21) to study the responses to current and temper-
ature changes and determine the sensitivities SI and ST;

(ii) Study the wavelength, temperature, and current (magnetic field) dependences of SI
and ST;

(iii) Develop a method for simultaneous two-parameter measurement.

We first model the white light LED spectral distribution used in the sensor by a shifted
Gamma function defined as [31]:

S(λ) =
βα

Γ(α)
(λ− λ0)

−αe−β(λ−λ0) (17)

Taking into account (21) and (22a,b), the intensity distribution at the analyzer can be
represented as

I(λ, I, T) =
I0

4
S(λ)

{
1 + cos

[(
A0λ−aT + R0λ−r + V0λ−v.I

)
L + 2(θ − ϕ)

]}
(18)

The parameters for the Gamma function are as follows: λ0 = 515 nm, α = 3.75 and
β = 27. The theoretical fit using (17) a real polarimetric response at analyzer angle 0◦ is
presented in Figure 7 and is compared with the response at 60◦.

The full differential of the phase per unit length dΦ/2L is found from (3b)
dΦ
2L

=
(
−aA0λ−a−1T − rR0λ−r−1 − vV0λ−v−1.I

)
dλ +

(
−vV0λ−v−1

)
dI +

(
A0λ−a)dT (19a)

dΦ
2L

= Fλdλ + FIdI + FTdT (19b)
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In case of spectral interrogation by extremum tracking, dΦ = 0, and for δλ we find:

dλ = − FI
Fγ

dI − FT
Fλ

dT = SIdI + STdT (20a)

SI =
dλ

dI
= − FI

Fγ
, ST =

dλ

dT
= − FT

Fγ
(20b)

As the power law expressions are non-linear, we proceed to the second step outlined
above and perform a study of the wavelength, temperature, and current (magnetic field)
dependences of SI(λ, I, T) and ST(λ, I, T). To do that, we change the current I at a constant
temperature T, and then change temperature for constant current and measure the resulting
wavelength shifts of the minima and maxima in the distribution from Figure 9. Then, we
plot the dependence of ∆λ vs. I for different temperatures for each extremum, as well as
∆λ vs. T for different currents, from which we determine the needed sensitivities.

∆λ = SI(λ, T)∆I + ST(λ, I)∆T (21)
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Figure 9. Two responses of the polarimetric sensor for the analyzer turned at 0◦ and 90◦ given by the
thin line. The thick line is a theoretical fitting to the response at 0◦ from (18).

Figure 10 shows the wavelength changes of four minima. The wavelength dependence
for the current sensitivity SI(λ) is experimentally confirmed in ref. [31], and, as we see
at each wavelength, the ∆λ(I) dependence is linear. So is the SI(λ) over the range of
wavelengths above 550 nm, though weakly dependent on temperature. As is seen from
Figure 10b, the sensitivity to current is linearly dependent on the wavelength and can be
represented as follows:

SI(λ) = A0(T) + A1(T)λ (nm/A) (22a)

The linear fits of each of the coefficients presented in Figure 10c,d below can be
represented as follows:

A0(T) = A00 + A01T (nm/A) and A1(T) = A10 + A11T (1/A) (22b)

The wavelength shifts of the four minima with temperature and the temperature
sensitivity on the wavelength ST(λ) at different current levels are presented in Figure 11.
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Figure 10. Responses to current changes: (a) shifts of the extremum wavelength vs. current changes
from −100 A to 100 A; (b) wavelength dependence of the sensitivity to current SI(λ); (c) the tempera-
ture dependence of the coefficient A0(T) from (22a); (d) the temperature coefficient A1(T).
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Figure 11. Temperature dependence: (a) Temperature induced wavelength shifts of four minima
at I = 0A; (b) Wavelength dependence of sensitivities to temperature ST(λ) for different currents;
(c) temperature dependence of the B0 coefficient from (23a); (d) the thermal coefficient B1from (23).

From Figure 9b it is seen that the temperature sensitivity ST(λ,I) is linearly dependent
on the wavelength and can be written as:

ST(λ, I) = B0(I) + B1(I)λ (nm/◦C) (23a)

where B0(I) and B1(I) are also linear functions of the current Figure 9c,d and are written as:

B0(I) = B00 + B01 I (nm/◦C) and B1(T) = B10 + B11 I (1/◦C) (23b)

As follows from (21)

λ− λ0 = SI(λ, T)(I − I0) + ST(λ, I)(T − T0)

4.2. Two Points Method for Simultaneous Two-Parameter Measurement

In this form, the unknown quantities are the current I and temperature T and after
insertion of (22b) into (22a) and of (23b) into (23a) and, after some rework for the k-th
extremum tracked, we obtain

λk − λk0 = ∆λk = Ak∆I + Bk∆T + Ck∆I∆T (24)

where
Ak = A00 + A10λk − A′kT0 A′k = A01 + A11λk (25a)

Bk = B00 + B10λk − B′k I0 B′k = B01 + B11λk (25b)

Ck = A′k + B′k (25c)

Equation (24) contains a mixed term proportional to ∆I∆T. To eliminate the tempera-
ture dependence, we chose two extrema wavelengths λ1 and λ2 (k = 1, 2) to track to our
choice. By varying the orientation of the analyzer we can fine tune the position of the
pattern. Equation (24) then is written for each of the wavelengths as:

∆λ1 = A1∆I + B1∆T + C1∆I∆T (26a)

∆λ2 = A2∆I + B2∆T + C2∆I∆T (26b)
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Solving (26a,b) with respect to the mixed ∆T term and eliminating the temperature
dependence leads to a quadratic equation with respect to the current:

a∆I2 + b∆I + c = 0 (27)

where

a = A1C2 − C1 A2, b = ∆λ2C1 − ∆λ1C2 + A1B2 − B1 A2, c = ∆λ2B1 − ∆λ1B2 (28)

Solving (27) with respect to ∆I yields

∆I =
−b−

√
b2 − 4ac

2a
(29)

The electric current measurement procedure runs thus as follows:

(i) The coefficients from Table 1 are substituted into (25a–c);
(ii) By fixing the position of the analyzer with respect to the polarizer, a desirable position

of the spectral response is fixed for I0 = 0 and T = T0 which quantities are also to be
inserted into (25a–c). The two extrema whose shifts are to be monitored are fixed, and
under these conditions their values λ10 and λ20 are measured and substituted into
(25a–c) as well;

(iii) The instant values of the extrema λ1 and λ2 are measured over regular intervals t and
are inserted into (25a–c) and into (28) for the coefficients a, b, and c from (27);

(iv) The current change is calculated (29).

Table 1. Coefficients for the expressions for the sensitivities SI and ST.

A00
(nm/A)

A01
(nm/◦C/A)

A10
(1/A)

A11
(1/◦C /A)

B00
(nm/◦C)

B01
(nm/◦C/A)

B10
(1/◦C)

B11
(1/◦C/A)

2.8 × 10−2 −3 × 10−5 2.548 × 10−4 2 × 10−7 2.1 × 10−3 −2.05 × 10−5 −9.97 × 10−5 8.2 × 10−8

To test the method, we perform the above procedure by setting in (29) the current I
from −100 A to +100 A for temperatures T = −30 ◦C, 0 ◦C, 30 ◦C, 60 ◦C, and 90 ◦C which
causes the spectral response to shift. For each combination of current and temperature we
determine the values of the wavelengths λ1, λ2, and λ3 of the three observable minima,
which values are inserted into (25a–c). The reference wavelength values λ1,0 = 525.7 nm,
λ2,0 = 572.8 nm, and λ3,0 = 639.7 nm from (24) are at T0 = 0 and I0 = 0. The pairs of wave-
lengths to determine the current are (λ1, λ3) and (λ2, λ3). Figure 9 shows the correspondence
between the preset value of the current I and the calculated Ic for each of the pairs from
Equation (29).

The results obtained for the temperatures from −30 ◦C to +90 ◦C reveal that the
correspondence is linear and close to an identity function, yet from the linear fits, the
proportionality coefficient is 0.9438 for the first pair and 0.9316 for the second (Figure 12a,b).
We first note that, on average, the responses are the same for all temperatures. Second, a
certain non-linearity is observed, and third, the two correspondences are differently offset
from the origin of the coordinate system. Figure 13a shows the correspondences averaged
over all temperatures with a third-order polynomial. Figure 13b shows the average of the
two responses from Figure 13a. The first and third order polynomials are summarized in
Table 2. Figures 12 and 13 reveal that the slight non-linearity is observed at the extremities
for negative currents. These we assume are due to the neglect of the weak temperature
dependence of the Verdet constant from Figure 8b and to extending by a factor of more
than three the current range in the simulations compared with the range of measurements
to determine the sensitivities. The high values of the coefficient of determination R2 for the
third-order polynomial mean that a convenient look-up table can be compiled to list the
correct value of the preset current.
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Figure 12. A linear fit for the orrespondence between calculated current and preset current: (a) for
the (λ1, λ3) pair; (b) for the (λ2, λ3) pair.
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Figure 13. A third degree polynomial fit for the orrespondence between calculated current and preset
current: (a) for the (λ1, λ3) pair; (b) for the (λ2, λ3) pair.

Table 2. Coefficients of the linear and third-order polynomial fits for the correspondence plots of the
calculated Ic versus preset value of the current I.

Pairs Linear Third-Order Polynomial

(λ1, λ3) Ic = 0.9438 I + 2.1467 (R2 = 0.9947) Ic = 1 × 10−5 I3 – 0.0009 I2 + 0.8612 + 5.9436 (R2 = 0.999)

(λ2, λ3) Ic = 0.9318 I + 12.041 (R2 = 0.9981) Ic = 9 × 10−6 I3 – 0.0009 I2 + 0.8594 + 15.139 (R2 = 0.9947)

Overall Ic = 0.9346 I + 6.8511 (R 2= 0.9958) Ic = 1 × 10−5 I3 – 0.0009 I2 + 0.8603 + 6.8511 (R2 = 0.9997)

Having presented the principle of temperature correction using wavelength shifts at
two different wavelengths, we can summarize the advantages of spectral interrogation as
follows:

First, since sensitivities to current and temperature vary with wavelength, by measur-
ing the responses at two different wavelengths it is possible to eliminate the temperature
dependence.

Second, the normalized differential π-shifted response and the signals measured to
track the spectral shifts do not depend on the power level of the source and are immune to
power fluctuations.
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Third, the optical scheme with a broadband source and spectral interrogation is simpler
that those at two wavelengths with temperature compensation which require polarization
beamsplitters, fiber optic splitters [18], or those based on magnetostrictive materials and
magnetic fluids [20–29].

5. Conclusions

The performed measurements, subsequent analysis, and simulations of a polarimetric
current sensor with spectral interrogation allow us to draw the following conclusions:

1. Two types of spectral interrogation technique could be used: Wavelength shifts of the
minima and/or maxima and normalized differential intensity response at pairs of
wavelengths which are π-shifted over the spectral range. In both cases the sensitivities
to current are wavelength dependent;

2. We performed detailed measurements on the temperature, current, and spectral
dependences of the intrinsic and magnetic field induced optical activity of BSO
crystals in the range from 540 nm to 690 nm, current range from −30 to +30 A, and
temperature range from −30 ◦C to 60 ◦C;

3. The temperature dependence of the intrinsic optical activity ρ(λ,T) was found to be
linear in the form ρ(λ,T) = ρ0(λ) + a(λ)T within the above range, while the wavelength
dependence of the coefficients ρ0(λ) and aρ(λ) could be fitted with coefficients of
determination of R2 = 0.9878 or better;

4. The temperature dependence of the Verdet constant was found to be very weak, and
over a ∆T = 90 ◦C temperature range is less than 1.08 × 10−3 deg/A/mm, typically
<7.2 × 10−4 deg/A/mm above 570 nm. The wavelength dependence of the Verdet
constant could be fitted by a power law with R2 = 0.989;

5. On the basis of the above established approximations, it was found that the wave-
length shift of an extremum is a linear combination of the current and temperature
changes, but contains a mixed term. By making use of spectral shifts at two extrema λ1
and λ2, the temperature dependence was lifted and a third-order polynomial equation
for current changes ∆I was derived;

6. A straightforward current measurement procedure was proposed and tested numeri-
cally.
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