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Abstract: Modal analysis is an effective tool in the context of Structural Health Monitoring (SHM)
since the dynamic characteristics of cement-based structures reflect the structural health status of
the material itself. The authors consider increasing level load tests on concrete beams and propose a
methodology for damage identification relying on the computation of modal curvatures combined
with continuous wavelet transform (CWT) to highlight damage-related changes. Unlike most litera-
ture studies, in the present work, no numerical models of the undamaged structure were exploited.
Moreover, the authors defined synthetic damage indices depicting the status of a structure. The
results show that the I mode shape is the most sensitive to damages; indeed, considering this mode,
damages cause a decrease of natural vibration frequency (up to approximately −67%), an increase of
loss factor (up to approximately fivefold), and changes in the mode shapes morphology (a cuspid
appears). The proposed damage indices are promising, even if the level of damage is not clearly
distinguishable, probably because tests were performed after the load removal. Further investigations
are needed to scale the methodology to in-field applications.

Keywords: cement-based structure; modal analysis; modal curvature; damage identification; contin-
uous wavelet transform; Structural Health Monitoring

1. Introduction

Structural Health Monitoring (SHM) technologies are pivotal for the management of
cement-based structures and infrastructures, which can be frequently subjected to destruc-
tive factors causing damage to the structure itself. Indeed, both the costs and life cycle of
structures and infrastructures can be optimized through the regular monitoring of relevant
parameters, providing a broad picture of the health status of the supervised structure, and
avoiding rapid damage propagation. Given the relevant costs of inspection, maintenance,
and intervention operations, the SHM techniques can play an essential role in assessing
damages or even predicting their occurrence. The advantages concerning inspections are
unquestionable, given the prompt identification of structural issues and the consequent
planning of deeper inspection operations, providing an invaluable contribution, especially
for critical structures [1]. Moreover, monitoring tools also allow for the inclusion of envi-
ronmental parameters in the evaluation, properly considering their effect on the measured
signals, varying with these factors [2,3]. In this regard, Ietka et al. [4] highlighted the
correlation between temperature and displacement in a bridge case study. However, even
with all the potentialities of SHM strategies, at present, it is not easy to widely diffuse the
installation of a SHM system on buildings or infrastructures, since the potential economic
benefit is not so straightforward to final users [5,6], despite the possibility of achieving
completely automated monitoring systems through the exploitation of sophisticated smart
sensors and also Artificial Intelligence (AI) tools [7,8].
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In the last decades, several different technologies have been exploited to this aim,
each showing pros and cons; among them, it is worthy to cite self-sensing/monitoring
techniques (where electrical impedance sensors are strictly related to materials with con-
ductive additions enhancing their self-sensing/monitoring capability [9]) and smart sensor
networks exploiting deep learning computing tools [1], acoustic sensors [10], piezoelectric
transducers [11], non-contact vibration sensors [12], accelerometers [13], etc. Different time
scales can be considered for diagnosis, also in (near) real-time, hence useful for emergency
operations [14] and also in combination with early warning systems [15,16]. Sometimes
static analyses have been exploited, for example with parameter identification to identify
damages in frame structures [17] or stiffness separation method on truss structures [18].
Vibrational analysis (in particular, operational modal analysis coupled with proper signal
processing techniques [19]) can depict the dynamical performance of a structure and reflects
eventual changes due to disrupting events [20] (e.g., earthquakes [21]) or deterioration
processes (e.g., contaminants penetration). In fact, in case of damage, the dynamic response
of the structure is different with respect to the undamaged status [22]. Mass, stiffness, and
damping values are altered, reflecting in changes in terms of modal parameters (i.e., natural
frequency and loss factor) as well as of mode shapes and related modal curvatures [23–25]
(also known as rotational modes [26]), which are the second derivative of mode shapes, usu-
ally computed according to the central difference approximation method [22]. Sometimes,
the flexibility matrix has also been considered for damage identification purposes, being
more effective at low frequency with respect to the stiffness matrix [25]. Modal curvatures
are generally more affected by singularities concerning the corresponding mode shapes; in
fact, the curvature is related to the structure stiffness, which in turn varies with the presence
of cracks (i.e., local damages [27]). Therefore, the local stiffness reduction due to the forma-
tion of a crack makes the curvature lose continuity [28]. Impact tests have been extensively
exploited in the literature for damage identification in concrete structures [29]; however,
a significant number of issues can occur in experimental conditions, making it difficult
to estimate the second derivative of mode shapes with high accuracy [30], especially in
noisy environments, where dedicated processing techniques are needed [31]. Moreover,
while on concrete plain structures, the damage can be considered as a concentrated defect,
in reinforced concrete elements the intrinsic heterogeneity leads to non-linear behaviours,
which cause diffuse cracking phenomena, possibly masking the effect of singularities. This
behaviour is also enhanced by the quasi-static nature of the applied loads (e.g., monotonic
or cycling loading). A common approach to analyze this type of damage is the evaluation
of the natural frequency reduction, which appears very evident in the initial cracking phase
(up to 25–55% in the yield state [32,33]). Its measurement appears quite straightforward,
hence this method can be widely exploited for damage localization [34]. Moreover, adding
virtual mass to a structure can be effective in the enhancement of sensitivity toward dam-
ages [35]. On the other hand, damping ratios are challenging to measure, being not so
regular [36] and consequently not commonly exploited for damage identification.

Several studies consider numerical models to discuss the relationship between the
presence of damages and the related changes in modal parameters. In fact, since the infor-
mation related to the intact structure is frequently unavailable and many approaches are
based on a comparison with this time, numerical models can fill this gap. However, there
are inevitable simplifications in the modelling procedures, not suffering from noise and dis-
turbing sources, differently from experimental cases. Indeed, to effectively deal with noisy
data typical of experimental campaigns, different routes can be pursued [28]: (i) design an
optimal sampling in order to reduce errors when computing modal curvatures [37]; (ii) ex-
ploit suitable filtering techniques (e.g., Laplacian scheme [38] or Teager energy operator
and wavelets [39]); (iii) use effective post processing techniques (e.g., fuzzy logic [40,41]).

Moreover, many studies in the literature define damage-related indices to investi-
gate the structural health status of a structure concisely. Meruane et al. [42] developed a
mathematical framework for damage detection in steel-concrete composites subjected to
impact tests: they studied the changes in stiffness due to damage occurrence and evaluated
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the correlation with the initial condition through the modal assurance criterion (MAC).
A damage index based on curvatures (i.e., the absolute difference in curvature between
damaged and intact structures) was synthesized to depict the distribution of damages. In
fact, sharp changes in modal curvatures are caused by structural damage. Indeed, the abso-
lute difference in terms of modal curvatures between damaged and undamaged states is
quite widely exploited in the literature [43]; Pranno et al. [22] defined a Curvature Damage
Factor (CDF), averaging the differences in modal curvatures considering a certain number
of mode shapes in damaged/undamaged configurations; also in this case, a simulation-
based damage detection approach was proposed to evaluate the stiffness degradation
with progressive damage occurrence. They also underlined the relevance of the inverse
eigenvalue sensitivity method [44] for identifying damages through variations in terms
of natural vibration frequencies. Jahangir et al. [45] proposed different damage indices
based on single, double, and triple damage scenarios represented in a numerical model;
they calculated the energy associated with the wavelet coefficients through the Shannon
entropy and defined two indices able to localize the damage and assess its severity. Indeed,
wavelets have been demonstrated to be sensitive to the presence of damages (e.g., Haar
and Gabor wavelets for crack detection [46]) and represent a powerful tool to be exploited
in this context, along with numerical methods. Masciotta and Pellegrini [47] proposed an
index based on the imaginary component of mode shapes in different damage conditions;
in particular, they considered the difference in the imaginary part (normalized with respect
to the initial average imaginary content) and multiplied it by the ratio between natural
frequency in damaged and undamaged conditions, evidencing the higher sensitivity to
damage occurrence with respect to the real component. Bayissa et al. [48] exploited con-
tinuous wavelet transform (CWT) to derive the energy distribution in the time-frequency
domain and transform the wavelet coefficients into damage identification parameters.

Some studies investigated also the damage severity, which can be related to the
energy of wavelet coefficients computed in correspondence with the diverse degrees of
freedom (DOFs) [45]. Moreover, Jahangir et al. [49] evidenced that wavelets are efficient in
eliminating noise that could contaminate curvatures and prevent correct damage detection
through singularity identification. Starting from the details signal provided by the wavelet
analysis, they also proposed a normalized damage index to be computed for each DOF,
to localize the damage according to a specific threshold. The use of wavelets can be
necessary to highlight discontinuities also in the presence of relatively small damages,
which could be easily masked by noise; however, wavelets also inherit global fluctuations,
therefore sometimes they are not sufficient. In those cases, the Teager energy operator
can be exploited to intensify local singularities while removing global trend fluctuations;
Sha et al. [50] exploited this approach and proposed a damage index based on data fusion of
multiple mode shapes analysed through wavelets and Teager energy operator techniques.

Also, the variability of modal parameters must be considered; indeed, both environ-
mental and material-intrinsic factors can make natural vibration frequency change and
this needs to be distinguished from variations caused by a damage occurrence. Anasta-
sopoulos et al. [51] found the same sensitivity of natural frequency towards damage and
temperature; Maes et al. [52] proposed to use of the Principal Component Analysis (PCA)
to remove the variations due to natural factors when validating vibration-based SHM on a
retrofitted railway bridge. In general, repeatability tests should be performed to evaluate
the robustness of a specific method.

The information deriving from a modal analysis could also represent an added value to
be exploited in AI-based techniques for SHM [53,54]. Indeed, SHM-related data processing
can provide multi-domain information supporting decision-making strategies [55] and
really making a difference, even more through the exploitation of machine learning (ML)
algorithms, especially the unsupervised ones, not requiring fully labelled data [55], or deep
learning approaches [56]. However, for this aim great amounts of data are needed for
proper model training and this goes beyond the scope of this work.

This manuscript aims at:
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• Evaluating the changes in terms of modal parameters of scaled concrete beams sub-
jected to loading tests leading to cracking phenomena.

• Analyzing the modal curvatures also through continuous wavelet transform.
• Proposing damage indices considering both the curvature change and the CWT-

based analysis.
• Evaluating the sensitivity of the results with respect to data processing parameters.

Scaled concrete beams were manufactured with a self-sensing mix design; loading tests
were performed at different levels by using a mechanical press. After each loading phase,
an impact test was performed to assess the dynamic behaviour of the concrete elements.
Modal analysis was conducted, and modal curvatures were analyzed, also exploiting CWT.
Finally, different damage indices were proposed.

The paper is organised as follows: Section 2 describes the materials and methods
employed in the study, starting with the description of the concrete specimens and their
mix design and the load tests performed. Then, the techniques adopted for modal analysis
and modal curvature computation are reported, together with the definition of damage-
related indices. Hence, the methods for sensitivity analysis towards processing parameters
are detailed. The results are reported and discussed in Section 3. Finally, the authors draw
the conclusions in Section 4, where also possible future developments are depicted.

2. Materials and Methods

Concrete specimens were manufactured according to the mix design reported in
Table 1; the water/cement (w/c) ratio was equal to 0.50 by mass and the workability
class was S5 assessed through the slump Abrams cone. It is worth noting that the selec-
tion (and dosages) of conductive carbon-based additions, namely recycled carbon fibres
(RCF) and biochar (BCH), was made according to the findings of a previous study [9]
(furthermore, the developed mix-design and the related measurement system have already
been patented—“Eco-compatible and self-sensing mortar and concrete compositions for
manufacturing reinforced and non-reinforced constructive elements, related construction
element and methods for the realization of self-monitorable building structures”, patent
n. 102020000022024); these materials enhance the self-sensing capabilities of cement-based
elements, but the related analysis goes beyond the scope of this paper.

Table 1. Mix-design of concrete specimens.

Cement
[kg/m3]

Water
[kg/m3] Air [%] Sand

[kg/m3]
Intermediate

Gravel [kg/m3]
Coarse Gravel

[kg/m3] RCF [kg/m3] BCH [kg/m3]

470.0 235.0 2.5 795.0 321.0 476.0 0.9 10.0

A concrete mixer was used for casting and the following steps were accomplished:

- Mixing of sand and intermediate/coarse gravels (2 min).
- Addition of cement and further mixing (2 min).
- Addition of BCH and further mixing (7 min).
- Addition of RCF and further mixing (2 min).
- Water addition and further mixing (10 min).
- Pouring of fresh mix in moulds.

A total of 12 prismatic (10 cm × 10 cm × 50 cm) specimens were cast; they were
reinforced with a corrugated stainless-steel rebar placed in the middle. Prismatic specimens
were divided as follows:

- n. 6 sensorized specimens: sensors for the measurement of electrical impedance and
free corrosion potential were embedded in the specimens for SHM purposes (both
beyond the scope of this article, but very important to continuously monitor the health
status of the material). Plastic tubes were employed for easing the cable routing; they
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require particular attention since they inevitably contribute to the determination of
the element dynamic behaviour. The layout of the specimens is reported in Figure 1.

- n. 6 non-sensorized specimens: these were manufactured to evaluate the effect of
the embedded sensors on the dynamic behaviour of the elements (rigidity should be
affected by sensors, representing discontinuities in the material) and the consequent
modal parameters. Half of them were dedicated to the assessment of flexural strength
according to the EN 12390-5 standard [57]; the obtained value was relevant for the
design of the loading tests to be performed on the concrete beams.
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Figure 1. Layout of the sensorized concrete specimens: (a) Design; (b) Mold for casting phase.

After the standard curing period (i.e., 28 days) in environmental conditions, stainless-
steel washers were installed with a bicomponent resin to serve as bases for the positioning of
accelerometers for the vibrational analysis. Hence, the specimens were subjected to loading
tests. Increasing load levels were determined depending on the mechanical resistance
preliminarily measured on dedicated specimens.

The loading tests were executed through a mechanical press (Zwick Roell, maximum
load: 600 kN, Figure 2). The concrete specimen was positioned on two pins (i.e., pinned
conditions) at 30 cm from each other (i.e., 10 cm from the beam ends); the load was applied
on the specimen centre, with a velocity of 0.1 mm/min. Three different loads were applied
(and the corresponding test times were named as reported hereafter), namely:

• 90% of the fracture load assessed on dedicated specimens (t1).
• Fracture load (i.e., the load at which the first crack forms), specific for the specimen

under test (t2).
• The load at which the crack aperture is approximately 1 mm (t3).
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The initial time, when the specimen was intact, was called t0.
At t0 and after each load trial, a vibrational analysis was performed; an impact hammer

(PCB 086 B04, PCB Piezotronics, Depew, NY, USA) was employed to excite the structure
(force given in −z direction, see Figure 3), hence the structural response was measured
through accelerometers (measuring on z direction) positioned along the specimen mid-line;
20 DOFs were considered, with an interaxle spacing of 2.5 cm from each other (Figure 3).
The DOF #10 can be considered the driving point, given that the energy path from the
excitation point is short enough (<5 mm, according to the sensor dimensions).
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Figure 3. Specimen configuration for the impact test.

A total of 5 accelerometers (PCB 352C33, PCB Piezotronics) were employed; hence,
5 simultaneous responses were measured, and then the accelerometers were positioned
in the consequent measurement points. Four measurements were performed to cover
the whole specimen, as reported in Figure 4. The input force was used as a trigger, to
record the transient and the damped dynamical response. Each acquisition lasted 0.25 s;
the frequency range considered was 0–4096 Hz, i.e., sampling frequency equal to 8192 Hz
and 1024 spectral lines (with a frequency resolution of 4 Hz); 5 repeated acquisitions were
performed on each measurement point and the average was computed to increase the
Signal-to-Noise Ratio (SNR). The LMS SCADAS Mobile (Siemens, Munich, Germany) was
exploited as an acquisition system; the connection configuration is reported in Figure 5.
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2.1. Modal Analysis, Modal Curvatures Computation, and Damage Indices Definition

The modal analysis was conducted through the LMS SCADAS Mobile proprietary
software, i.e., the Simcenter Testlab Impact testing module. In particular, the acceleration
signals were analysed in relation to the force given by the impact hammer (measured
through the embedded load cell) to obtain the Frequency Response Functions (FRFs),
which in turn allow to compute the modal parameters of the structural element, hence
representing an important tool for damage identification [58].

Data processing allows to visualisation of the vibration distribution on the specimen
under test, hence it is possible to identify the areas most subjected to vibration or with
discontinuities that could be related to the presence of damages (but also to the presence
of embedded sensors). Observing the response signal in the time domain, it is possible
to notice an amplification of the excitation when the frequency is close to the structure
natural frequency (in correspondence with which the amplitude is maximum). Indeed, the
FRF behaves like a filter related to the input force: it amplifies the force at the resonance
frequency, whereas it decreases it at antiresonance. Modal shapes can be identified for
the different resonance frequencies; the complexity of vibrational modes increases with
frequency. It is worth underlining that no displacements are present at nodal lines, and
this can be detrimental if we want to exploit vibrational analysis to detect damages close to
nodal lines.

Mode shapes are derived through experimental modal analysis based on interpolation
methods. In particular, the FRF in terms of acceleration, i.e., the Inertance, was considered.
The vibration maps are obtained from the FRFs evaluated as estimators in the frequency
domain, according to (1):

H1(ω) =
S f v(ω)

S f f (ω)
(1)

where:

• S f v(ω) is the cross-spectrum between the vibration acceleration (i.e., accelerometer
signal) and the force (i.e., load cell signal).

• S f f (ω) is the auto-spectrum of the input force.

The vibrations map is obtained by plotting the amplitude of the H1 function in corre-
spondence with the structure resonances. The Polymax algorithm was used for this aim; it
estimates the modal parameters in the frequency domain depending on the interpolation
of FRFs through fractional polynomial functions.

Hence, diverse strategies were implemented for the comparison between intact and
damaged conditions.
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At first, changes in terms of both natural vibration frequency (fn) and loss factor (η)
were computed, as reported in (2) and (3), respectively.

∆ fn =
(

f td
n − f t0

n

)
/ f t0

n × 100 (2)

where:

• f t0
n is the natural frequency at t0 (intact specimen).

• f td
n is the natural frequency at different test times (damaged specimen, i.e., t1, t2,

and t3).

∆η =
(

ηtd − ηt0
)

/ηt0 × 100 (3)

where:

• ηt0 is the loss factor at t0 (intact specimen).
• ηtd is the loss factor at different test times (damaged specimen, i.e., t1, t2, and t3).

Also, the MAC between mode shapes was evaluated at each test time (tj) related to
damaged element with respect to t0 (i.e., intact element) on the same specimen and for the
same mode. Indeed, the MAC is expected to decrease with damage occurrence.

The subsequent analyses were performed exclusively on the I mode shape of the
analysed beams (excluding rigid-body and II mode shape); indeed, in practice, the modal
curvature can be computed effectively only for low-order mode shapes [22], given the
limited number of measurement points (i.e., 20 DOFs in the present study).

Modal curvatures (ϕ′′ ) were computed as the second derivative of the related mode
shapes; being the latter complex, also the former will be. However, the main informative
content is in the real part of the signal, as it is possible to verify in the example reported
in Figure 6.
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Given the noise typical of experimental data, plus the discrete measurement points,
at first, data were oversampled (i.e., the number of points in the signal was increased,
with an oversampling factor of ×5 used to increase the original sample rate) in order to
have more points on for the computation of modal curvature (since experimental data
are acquired on discrete points and the error increases with the distance between two
consecutive points [45]). Hence, the central difference method was used to approximate
the second derivative of the mode shape, since this method works well for smooth signals,
as those obtained increasing the number of the points in the signal.
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Then, the cuspid caused by the damage occurrence was evidenced through CWT-
based analysis; curvatures were interpolated considering 200 points and Equation (4) was
used to extract the real part of the mode shape curvature, being the real part of mode shape
more informative [47].

ϕ
′′
comb = |ϕ′′ | × cos(∠ϕ′′ ) (4)

where:

• |ϕ′′ | is the modulus of the modal curvature (ϕ′′ )
• ∠ϕ′′ is the phase of the modal curvature (ϕ′′ )

The continuous wavelet transform essentially makes a convolution of the input signal
with functions derived from a mother wavelet (continuous in both time and frequency
domains) that is scaled and translated in time. In this study the cwt function of MATLAB®

(R2023b) was employed; it uses the Morse wavelet. The symmetry (γ) and the time-
bandwidth product parameters were set at 2 and 2.5, respectively, empirically selecting
them to highlight the curvature formation in the mode shape. The absolute value obtained
from this process can be plotted in function of time and frequency, obtaining the so-called
scalogram. Then, the image was binarized using the global threshold method; hence, a
binary image was created exploiting Otsu’s method [59], which creates a global threshold
minimizing the intraclass variance of black/white pixels subjected to the threshold. Then,
the area of the high-valued pixels was computed, and the values obtained at the different
test times were compared.

Finally, three different damage indices were calculated. DIcurv, as reported in (5), is
the sum of the absolute differences in modal curvature between each test time related to
the damaged specimen with respect to the intact specimen (assessed at t0), where each
difference is normalized with respect to the absolute value of the curvature maximum
value at t0.

DIcurv =
N

∑
i=1

∣∣ϕ′′ tx − ϕ′′ t0
∣∣

max
∣∣ϕ′′ t0∣∣ (5)

where:

• ϕ′′ tx is the modal curvature computed at the tx test time (i.e., t1, t2, and t3).
• ϕ′′ t0 is the modal curvature computed at t0 (intact specimen).

Substantially, this index recalls that proposed by Pranno et al. [22] (i.e., CDF), nor-
malizing it with respect to max

∣∣ϕ′′ t0∣∣. However, in this study, only the I-mode shape
was considered.

A second damage-related index, DICWT, was defined based on CWT-based analysis. At
first, the image obtained from CWT computation was binarized according to an automated
threshold defined according to Otsu’s method [59]. Then, the area of the high CWT
coefficients in the binarized image was computed and the value was normalized with
respect to the area obtained for t0, as reported in (6).

DICWT =
∑N

i=1(pixel = 1)
∣∣∣
tx

∑N
i=1(pixel = 1)

∣∣∣
t0

(6)

While DIcurv is expected to increase with damage, since changes in modal curvature
will be more significant, DICWT should decrease (i.e., smaller high pixel area).

A third damage index, DIglobal, was defined, by combining the previous ones, as
reported in (7).

DIglobal =
DIcurv

DICWT
(7)

This index is expected to increase with damage and its importance since the numerator
should increase while the denominator should decrease with damage occurrence and also
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with increasing severity. In this way, both changes in modal curvatures inferred from
CWT-based analysis are included, making this index more robust.

2.2. Sensitivity Analysis to Data Processing Parameters

A sensitivity analysis was performed to investigate the sensitivity of the results in
terms of damage indices to some data processing parameters, in particular:

• Interpolation smoothing factor.
• Oversampling factor.

The first factor is involved in the cubic spline interpolation employed before the
computation of modal curvature. Indeed, without interpolating the mode shapes the
discontinuity due to the presence of damage would be more evident; on another hand,
the presence of noise in experimental data would provide a bad-quality baseline signal
(i.e., modal curvature related to the intact specimen). Hence, a compromise is needed
between the aim of obtaining good quality data and the desire to clearly detect the damage-
related discontinuity. In fact, the literature states that modal curvature computation is
effective only with smooth signals [45]. Regarding oversampling, the step is needed to
have a lower distance between points, thus reducing the noise due to limited experimental
data [45], which in this way are increased in post-processing by multiplying the original
sample rate by a certain factor.

Therefore, a sensitivity analysis was performed on specimen data (i.e., specimen A)
and the tested values for the two considered variables are reported in Table 2. The effect
of the selection of different processing parameters was evaluated in terms of damage-
related indices.

Table 2. Sensitivity analysis parameters: values considered for smoothing and oversampling factors.

Variable Values

Smoothing factor
0.20
0.40
0.90

Oversampling factor
×2
×5
×10

3. Results and Discussion

The flexural strength measured on the dedicated specimens was equal to 12 kN.
However, due to the intrinsic variability of concrete, the tested beams conveyed different
fracture loads (13.5± 0.89, reported as mean± standard deviation), as illustrated in Table 3.

Table 3. Fracture loads under flexure for each tested specimen.

Specimen Fracture Load [kN]

A 13.1
B 13.1
C 15.2
G 13.8
H 13.5
I 12.3

3.1. Modal Parameters

The results from the modal analysis are reported in terms of natural vibration fre-
quency (Table 4) and loss factor (Table 5) obtained for each test time (i.e., t0, t1, t2, and t3),
and MAC values obtained correlating the mode shapes estimated for the three loading tests
to the mode shapes estimated in the undamaged condition (i.e., t0) on the same specimen
(Table 6).
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Table 4. Natural vibration frequency values for each tested specimen (A, B, C, G, H, and I) at each test
time (t0, t1, t2, and t3) and related percentage variations with respect to undamaged condition (t0).

Specimen Test Time

fn (∆fn [%]) [Hz]

Mode Shape

Rigid-Body I II

A

t0 341 (-) 1487 (-) 3371 (-)
t1 237 (−30.44) 1488 (−0.07) 3383 (−0.35)
t2 218 (−36.12) 796 (−46.47) 3265 (−3.14)
t3 210 (−38.48) 715 (−51.92) 2888 (−14.34)

B

t0 329 (-) 1446 (-) 3273 (-)
t1 294 (−10.64) 1442 (−0.34) 3295 (−0.67)
t2 249 (−24.20) 748 (−48.30) 3172 (−3.09)
t3 258 (−21.64) 481 (−66.73) 2871 (−12.28)

C

t0 343 (-) 1467 (-) 3315 (-)
t1 285 (−16.91) 1462 (−0.33) 3331 (−0.48)
t2 203 (−40.82) 794 (−45.88) 3170 (−4.37)
t3 259 (−24.52) 597 (−59.33) 2884 (−13.00)

G

t0 289 (-) 1519 (-) 3338 (-)
t1 235 (−18.69) 1487 (−2.10) 3330 (−0.26)
t2 199 (−31.04) 767 (−49.50) 2687 (−19.52)
t3 212 (−26.48) 870 (−42.73) 2861 (−14.31)

H

t0 303 (-) 1441 (-) 3280 (-)
t1 159 (−47.47) 1425 (−1.10) 3319 (−1.18)
t2 160 (−47.19) 951 (−33.98) 3127 (−4.66)
t3 181 (−40.36) 786 (−45.41) 2942 (−10.31)

I

t0 300 (-) 1403 (-) 3224 (-)
t1 215 (−28.52) 1412 (−0.63) 3173 (−1.58)
t2 206 (−31.41) 1002 (−28.59) 3142 (−2.54)
t3 175 (−41.79) 708 (−49.55) 2829 (−12.25)

Table 5. Loss factor (η) values for each tested specimen (A, B, C, G, H, and I) at each test time (t0, t1,
t2, and t3) and related percentage variations (∆η) with respect to undamaged condition (t0).

Specimen Test Time

η (∆η [%]) [%]

Mode Shape

Rigid-Body I II

A

t0 10.76 * (-) 1.70 (-) 0.69 (-)
t1 2.48 (−76.99 *) 1.15 (−32.35 *) 0.86 (24.35)
t2 3.99 (−62.96 *) 3.69 (117.09) 1.17 (69.42)
t3 12.35 (14.80) 3.98 (134.12) 2.23 (223.37)

B

t0 9.45 (-) 1.98 (-) 0.70 (-)
t1 10.31 (9.05) 2.67 (35.35) 0.95 (34.86)
t2 17.45 (84.57) 9.23 (367.19) 1.42 (102.19)
t3 20.85 (120.52) 11.44 (479.27) 2.25 (219.69)

C

t0 5.56 (-) 2.03 (-) 0.91 (-)
t1 6.15 (10.55) 2.27 (11.97) 1.41 (54.93)
t2 10.40 (87.05) 6.30 (210.58) 2.54 (179.82)
t3 11.36 (104.25) 9.14 (350.61) 4.11 (353.01)

G

t0 9.34 (-) 1.59 (-) 0.78 (-)
t1 9.34 (0.00) 2.00 (26.14) 0.78 (0.00)
t2 14.75 (57.96) 7.76 (389.43) 2.22 (186.60)
t3 19.12 (104.79) 9.56 (502.87) 3.05 (293.02)
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Table 5. Cont.

Specimen Test Time

η (∆η [%]) [%]

Mode Shape

Rigid-Body I II

H

t0 1.16 * (-) 1.46 * (-) 1.01 (-)
t1 0.22 (−81.45 *) 0.84 (−42.12 *) 1.55 (52.82)
t2 0.85 (−26.72) 1.73 (18.82) 2.67 (163.97)
t3 2.38 (105.33) 3.11 (113.36) 2.30 (127.47)

I

t0 9.87 (-) 1.79 (-) 1.17 (-)
t1 10.31 (4.51) 2.68 (49.76) 1.99 (70.08)
t2 15.23 (54.29) 3.45 (92.79) 2.05 (75.21)
t3 16.56 (67.78) 7.90 (341.55) 2.95 (152.13)

* Outliers.

Table 6. MAC values for each tested specimen (A, B, C, G, H and I) considering different test times
(i.e., t1, t2, and t3) with respect to t0 (i.e., undamaged conditions).

Specimen Test Time

MAC [%]

Mode Shape

Rigid-Body I II

A

t0 93.81 90.97 29.19
t1 93.14 78.19 59.84
t2 87.50 72.85 57.59
t3 98.63 98.63 89.64

B

t0 94.44 64.21 84.20
t1 85.31 66.86 89.10
t2 97.47 99.67 82.71
t3 93.60 50.40 86.58

C

t0 92.14 60.88 82.65
t1 97.13 99.31 84.85
t2 84.74 64.44 34.35
t3 94.96 74.40 83.07

G

t0 46.34 99.36 81.35
t1 50.94 80.74 72.58
t2 72.75 64.52 75.62
t3 94.78 99.41 57.18

H

t0 97.81 76.38 75.40
t1 95.61 65.20 66.77
t2 93.81 90.97 29.19
t3 93.14 78.19 59.84

I

t0 87.50 72.85 57.59
t1 98.63 98.63 89.64
t2 94.44 64.21 84.20
t3 85.31 66.86 89.10

At first, the FRFs obtained in terms of Inertance were analysed to identify the low-
frequency modes; in this range rigid-body mode, I, and II mode shapes were identified,
as reported in Figure 7 for t0 test time (undamaged specimens). It is possible to notice a
certain variability in the dynamic behaviour of the tested specimens. If the natural vibration
frequency of the I mode shape is considered (I is the most evident one), a variability of
approximately 100 Hz can be evidenced. Hence, if a variation of that order is observed, it
cannot be attributed to external factors (e.g., damage occurrence), since it falls within the
specimen variability range. No significant differences can be evidenced between sensorized
(i.e., A, B, and C) and not-sensorized (i.e., G, H, and I) specimens.
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Figure 7. Sum FRFs obtained on the different specimens at t0 (intact beams). The three blue bands in-
dicate the three considered mode shapes, namely rigid-body mode shape (left), I mode shape (centre),
and II mode shape (right). The circular markers are related to their natural vibration frequencies.

Changes caused by cracking phenomena (Figure 8) are more easily visible in the I mode
shape, whose natural vibration frequency is reduced by (42.12 ± 7.91)% at t2 (first crack
formation) and practically halved at t3, with a decrease of (52.61 ± 8.20)%. It is possible
to recognize a cuspid in the mode shape (Figure 9), highlighting the presence of damage
in the specimen mid-line. This feature can be further evidenced through the computation
of modal curvature, as reported in Section 3.2. Concerning the II mode shape, it is worth
noting that at t0 its natural vibration frequency was probably at higher frequencies; then,
with the occurrence of cracks, the natural frequency decreased, re-entering the observed
frequency band (i.e., 4096 Hz). However, that mode presents a nodal line in correspondence
with the beam mid-line, hence the damage is hardly identifiable. For this reason, the
remaining part of the damage-identification procedure was focused on the I mode shape.
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Figure 9. Example of I mode shape with cuspid formation due to crack (t2 and t3 test times)—
specimen A.

Being the vibrational tests conducted after the load removal, it should be stressed
that the differences in results at t2 and t3 could be not always very evident since the crack
partially re-closes before the impact test execution.

Regarding the first crack formation (i.e., t2), changes in the natural vibration frequency
(Figure 8) are equal to (–42.12 ± 7.91)% for the I mode shape; this is also visible from the
Sum FRFs (Figure 10). When the crack aperture is widened until approximately 1 mm, the
changes achieve (−52.61 ± 8.20)%; in particular, it can be noticed that the natural vibration
frequency passes from a mean value of 1461 Hz (±37 Hz) at t0 to 843 Hz (±97 Hz) at t2
and to 693 Hz (±126 Hz) at t3. However, the results are not consistent among all the tested
specimens, since vibrational tests were performed after having removed the external load,
so the crack has the possibility of partially closing, as mentioned above. Even if beyond the
scope of this paper, it is worth underlining that the crack aperture was assessed through
a previous measurement procedure based on vision techniques [60] and the measured
values were in the range of 0.3–0.6 mm; this confirms the partial crack closure after the load
removal. Furthermore, being the structure reinforced, the damage is diffused.
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Concerning the loss factor (Table 4), given the presence of the crack and therefore
the enhancement of the vibration loss through the propagation into the fracture itself,
it is possible to observe an increasing trend with test times (Figure 11). In particular, η
value passes from (7.69 ± 3.35)% at t0 to (13.77 ± 6.11)% at t3 for rigid-body shape, from
(1.76 ± 0.20)% at t0 to (7.52 ± 3.01)% at t3 for I mode shape, and from (0.88 ± 0.17)% at t0
to (2.82 ± 0.67)% at t3 for II mode shape. However, it is worth noting the high variability
among specimens, but this is in line with what is expected, also from the literature [36].
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Analysing the MAC values (Table 6), a decrease in correlation at tx with respect to t0
test time (i.e., same specimen in undamaged conditions) is expected over test times, since
the formation of cracks makes the mode shapes change. Indeed, this behaviour is well
evident only for the I mode shape, since both rigid-body shape and II mode shape show
compatible values, for example, at t1 and t2. It is a different matter for the comparison
between t2 and t3, given that the analyses were performed after having removed the
load, which let the crack partially close, as mentioned above. The mean trends and their
variability are reported in Figure 12.
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Since the modification is more evident for the I mode shape (e.g., the rigid-body
shape proves to be insensitive to damages, showing no deflection), the successive analyses
(regarding both modal curvatures and CWT-base analyses) were focused on it; indeed, if
the mode shapes are observed, at t3 it is clear that the beams are broken and vibrate as two
quasi-separate objects and this behaviour partially shows at t2 (Figure 9).

3.2. Modal Curvatures and CWT-Based Analysis

The computation of modal curvatures allows to highlight of the cuspid formation in
correspondence with the damage; it is worth underlining that the main crack forms in the
specimen centerline, hence the damage is hardly identifiable from mode shapes presenting
a nodal line in this area (e.g., II mode shape). This further justifies the choice of performing
this analysis only on I mode shape (excluding rigid-body mode).

An example of the modal curvature computation, referred to as specimen A, is re-
ported in Figure 13; the preliminary smoothing of the mode shape (through a cubic spline
interpolation with a smoothing factor of 0.4) allows to obtain a less noisy curvature. The
comparison among curvatures obtained at different test times is reported in Figure 14
(where curvatures are interpolated with a factor of 100, hence 2000 points are obtained);
the cuspid appears with the crack formation at t2 and the morphology is clearly distin-
guishable from t0 (i.e., undamaged conditions). The application of CWT makes its objective
identification easily feasible, as can be observed in Figure 15; indeed, the binarization of
the image (Figure 16) leads to the definition of an area shape immediately referring to the
cuspid and, hence, to the damage occurrence.
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Figure 13. Modal curvature computation for I mode shape: mode shape (raw and smoothed) (top),
and modal curvature (bottom)—(Specimen A, test time: t3).

3.3. Damage Related Indices

As a synthetic way to identify and represent the damaged status of a cement-based
structural element, the authors evaluated different indices, namely DIcurv, DICWT, and
DIglobal (see Section 3 for details). The results obtained on all the tested specimens for each
test time are reported in Table 7 and are summarized in Figure 17; it can be observed that
the values obtained for t2 and t3 test times fall in compatible measurement ranges, meaning
that the two conditions cannot be distinguished. This is probably linked to the fact that
the vibrational analyses were performed after the load removal, letting the crack partially
close. On the contrary, there is a significant variation between the indices obtained at t1
(i.e., 90% of fracture load) and the values after damage occurrence (i.e., at t2 and t3). The first
crack formation (i.e., t2) can be promptly detected, signalling an alteration of the dynamic
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behaviour of the element; this proves that the proposed assessment strategy is effective
and adequately sensitive to the occurrence of damage. Hence, the results confirm the
possibility of discriminating between intact (i.e., t1) and damaged (i.e., t2 and t3) conditions,
but further investigations are needed to distinguish among different levels of damage
(e.g., between t2—crack formation—and t3—crack aperture of 1 mm—conditions).
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Table 7. Damage-related indices for each tested specimen (A, B, C, G, H, and I) at each test time (t1,
t2, and t3).

Specimen Test Time
Damage Indices

DIcurv DICWT DIglobal

A
t1 4.98 1.01 4.94
t2 8.74 0.83 10.53
t3 8.66 0.82 10.59

B
t1 3.93 1.17 3.36
t2 7.49 0.89 8.44
t3 7.82 0.90 8.69

C
t1 2.61 0.96 2.73
t2 8.35 0.81 10.33
t3 8.90 1.00 * 8.92 *

G
t1 2.13 0.87 2.44
t2 6.03 * 0.82 7.37 *
t3 5.03 0.85 * 5.93

H
t1 3.61 1.08 3.36
t2 7.07 0.92 7.65
t3 9.13 0.90 10.16

I
t1 3.64 1.17 3.10
t2 6.57 0.86 * 7.65 *
t3 7.49 0.89 8.44

* Outliers.

3.4. Sensitivity Analysis

The results in terms of the sensitivity of damage-related indices to data processing
variables, namely smoothing factor, and oversampling factor, are reported in Table 8. It
is worth noting that the sensitivity analysis has been performed separately on the two
variables. It is possible to observe that the change of smoothing factor has a significant effect
on all the damage-related indices (in case of DIcurv, with an almost constant sensitivity,
varying in the range of 2.2–2.6 depending on the test time, as it can be deduced from
Table 8); when it is halved (passing from 0.4 to 0.2), DIcurv decreases of approximately
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26%, DICWT increases of about 16%, and DIglobal decreases of about 36% at t3 test time. The
DICWT index trend is no longer monotonically decreasing as expected since the smoothing
operation is too aggressive and the cuspid is no more identifiable. On the other hand,
considering the softest smoothing operation (i.e., smoothing factor equal to 0.9), it is
possible to notice that this is not sufficient to obtain a good quality baseline curvature at
t0 (Figure 18). The damage is no longer identifiable through none of the indices (their
trends are opposed compared to the expected ones)—even if considering only t3 test time
the cuspid would be more evident (but at the expense of signal quality, especially at t0).
Therefore, a smoothing factor equal to 0.40 can be considered adequate for our purposes (a
comparison can be observed in Figure 19). Concerning the oversampling factor, its effect
is slightly on DICWT and, hence, DIglobal indices. No significant changes can be evidenced,
hence a ×5 oversampling factor can be considered a good compromise to have a good
quality signal and limited computational load at the same time.
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Table 8. Results of sensitivity analysis.

Variable Values Test Time
Damage Indices

DIcurv DICWT DIglobal

Smoothing factor
(with oversampling

factor ×5)

0.20
t1 2.88 1.01 2.85
t2 6.82 0.94 7.29
t3 6.39 0.95 6.75

0.40
t1 4.98 1.01 4.94
t2 8.74 0.83 10.53
t3 8.66 0.82 10.59

0.90
t1 8.09 0.61 13.22
t2 11.26 1.01 11.17
t3 11.36 1.28 8.68

Oversampling factor
(with smoothing

factor 0.4)

×2
t1 4.98 1.02 4.85
t2 8.74 0.85 10.34
t3 8.66 0.81 10.69

×5
t1 4.98 1.01 4.94
t2 8.74 0.83 10.53
t3 8.66 0.82 10.59

×10
t1 4.98 1.01 4.92
t2 8.74 0.84 10.44
t3 8.66 0.82 10.51
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4. Conclusions

The experimental modal analysis performed in this study allowed us to identify the
crack formation in the tested scaled concrete beams; in particular, the damage occurrence
causes (i) a decrease in natural vibration frequency and (ii) an increase of the loss factor
(since the element rigidity decreases). Moreover, a decrease in terms of MAC between
the mode shapes estimated for damaged samples and the mode shapes estimated for the
corresponding undamaged samples can be observed with the damage occurrence, due to
the change of the mode shapes morphology. The variations of both modal parameters and
mode shapes can be highlighted through the computation of the related modal curvatures
(after proper signal pre-processing to enhance SNR, considering the sensitivity of results
towards data processing parameters, in particular, smoothing factor); moreover, specific
processing techniques, namely CWT, can help in objectively identifying the formation of
discontinuities (e.g., cuspid) in the modal curvatures, which are characteristic of the induced
damage. Finally, synthetic damage indices can be used to provide a global indication of the
health status of a cement-based element or structure.

In practical in-field applications, if the measurements at t0 (undamaged conditions) are
not available, a validated numerical model could provide the baseline modal parameters
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of the structure. For example, a comparison between the experimental curvature and the
theoretical one (numerically obtained) could be carried out to evaluate the presence of
possible damages in the structure. Indeed, the diagnostic methods based on a comparison
with baseline data are less tricky, whereas analysing only experimental curvatures may
require more complex computational methods to identify eventual damages. Specific
thresholds should be considered since they are problem-dependent values. Moreover, it is
worth underlining the importance of data quality, since noisy data hinder the computation
of reliable modal curvatures; smoothing techniques can be applied before deriving the
signal to this aim, but this could mask also the discontinuities linked to the damage occur-
rence. Hence, a good compromise between the use of filtering and smoothing techniques to
enhance SNR and the need to preserve damage-related discontinuities should be pursued.
Nevertheless, data processing techniques are pivotal when dealing with experimental data,
which are inevitably affected by noise and are more demanding compared to numeric
results derived from synthetic models. Data processing parameters related to smoothing
and oversampling techniques enhancing the signal quality can influence the final results
(as evidenced by the sensitivity analysis performed in this work), hence they should be
properly selected. Moreover, it is important to stress the fact that the considered frequency
band directly influences the mode shapes that can be investigated, which will be inevitably
less than those observable in the case of numerical models.

Finally, in the future more indices (possibly inferred from multidomain signals) could
be combined to increase the method sensitivity to damages, also thanks to data fusion
techniques. In addition, the suitability of the method for regular structural monitoring
could be evaluated; in this context the use of Laser Doppler Vibrometry (LDV) could be
evaluated for in-field applications, to enable the vibrational analysis even in operating
conditions and in (near) real-time (e.g., during the application of a load). In this way, the
proposed strategy could become a monitoring technique, without the limits of single (or at
most periodic) inspections.
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