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Abstract: In general, a multiple robotic manipulator system (MRMS) with uncertainties can be
considered a composition system with a robotic manipulator subsystem (RMS) and a communication
strength subsystem (CSS), and both subsystems are coupled to each other. In this paper, a new
position tracking control scheme is proposed for the MRMS while considering the communication
strength dynamics between robotic manipulators. The control scheme designed in this paper consists
of two parts: the first part is to design the control protocol in the RMS, and the second part is to
design the coupling relationship in the CSS. Through these two parts, we can achieve the position
tracking of an MRMS. Firstly, the dynamical mathematical model of the RMS and CSS in the MRMS is
constructed, and the corresponding assumptions are given. Then, the corresponding stability analysis
is proposed, which provides the basis for a theoretical understanding of the underlying problem.
Finally, an illustrative example is presented to verify the effectiveness of the proposed control scheme.

Keywords: multiple robotic manipulator systems; robotic manipulator subsystem; communication
strength subsystem; position tracking control

1. Introduction

There has been increasing demand for multiple robotic manipulator systems (MRMSs)
employed in modern manufacturing processes, such as assembling, transporting, painting,
welding, and so on [1–4]. These applications require great manipulability and maneuver-
ability; most of them cannot be achieved using a single robotic manipulator subsystem.
In these situations, the utilization of multiple robotic manipulator systems is an effective
choice [5–10].

From the perspective of a composition system, the MRMS with uncertainties can
be considered a composition system with a robotic manipulator subsystem (RMS) and a
communication strength subsystem (CSS), and both subsystems are coupled to each other.
It is worth noting that the existing studies on MRMSs mainly focus on synchronization
and consensus [11–15] for the RMS, while the communication strength between robotic
manipulators plays only a secondary role. For example, in the work [12], Sun proposed
adaptive controllers and a parameter estimator employing coupling control to achieve the
position synchronization of multiple motion axes. In the work [16], a distributed synchro-
nization control scheme was proposed for a group of MRMSs with model uncertainties
subject to time-varying communication delays. In the work [17], a T-S(Takagi–Sugeno)
adaptive tracking algorithm control based on the small gain theorem was proposed for an
uncertain MRMS. In the work [18], a novel adaptive control scheme for an MRMS with a
time-varying parameter was proposed based on the radial basis function neural network.
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From the perspective of the composition system, the dynamical behavior of an RMS can
be affected by the dynamical behavior of a CSS in the MRMS, and vice versa. However,
in the works [11–18], the communication strength between robotic manipulators was not
considered as a subsystem to be studied. In other words, it has been rare to study the
dynamics of a CSS that is considered a subsystem with dynamic behavior. In summary,
how to design a tracking control protocol for the RMS and a coupling matrix function for
the CSS while considering the uncertainties in MRMSs is an interesting and challenging
issue for the position tracking of MRMSs.

Inspired by the literature [19–22], the dynamical model of an RMS is shown math-
ematically as the vector differential equation with the second derivative term due to
using Newton’s law of motion. Furthermore, the dynamical model of a CSS is shown
mathematically as the vector differential equation with outgoing communication strength
characteristics. In recent years, there have been a number of studies [20–23] on complex
dynamic networks in which vector differential equations have been used to model the
dynamics of the outgoing links. For example, in [21], the concept of outgoing links was
introduced using the idea of ego networks, and the dynamics of the outgoing links were
modeled using vector differential equations. In the RMS considered in this paper, each
robotic manipulator can be regarded as a node, and the information communication be-
tween robotic manipulators can be regarded as the outgoing link. Inspired by this, vector
differential equations are considered in modeling the dynamics of the CSS. To sum up,
the motivation of this study is to develop a new tracking control protocol for an RMS and
coupling matrix function for a CSS such that the position of an MRMS can be tracked on
the desired joint position trajectory.

Compared to the literature [12–18,21,22], the main contributions and innovations of
this paper include the following three points.

(i) The dynamical model of an RMS is described using a vector differential equation with
the second derivative term and interconnected term due to Newton’s law of motion;
the model is more general.

(ii) A vector differential equation is used to model the dynamics of CSS, and there are few
studies considering the variation of the strength of communication between multiple
robotic manipulators in the existing literature.

(iii) The position tracking for an MRMS is achieved by employing the position tracking
control protocol for the RMS and the coupling matrix function for the CSS designed
in this paper, which has been rarely reported in existing studies.

This paper is organized as follows. In Section 2, the dynamical models of an MRMS
with an RMS and CSS are presented, and the corresponding assumptions are given. In
Section 3, the control goal of this paper is put forward, and the corresponding control
protocol and the coupling matrix function are synthesized. In Section 4, the effectiveness of
the result obtained in this paper is verified via MATLAB numerical simulation for the N
continuous two-links robotic manipulator. Finally, the conclusions of this work and the
future directions are discussed in Section 5.

Notations: diag(b1, b2, · · · , bn) denotes a diagonal matrix with b1, b2, · · · , bn as diago-
nal elements; ‖·‖ denotes the Euclidean norm of vector “·” or the Frobenius norm of matrix
“·”; Rn denotes an n-dimensional Euclidean space; Rn×m denotes n × m real matrices;
randn(1) denotes the generation of a random number with a standard normal distribution;
rand(a, b) denotes the generation of a matrix of size a× b, where each element is a random
number in the interval [0, 1].

2. Model Description and Control Design

Consider the uncertain multiple robotic manipulator systems (MRMSs) consisting of
N robotic manipulators with the second derivative term, pij(t) ∈ R, denoting the commu-
nication strength of the ith robotic manipulator pointing to the jth robotic manipulator. If
pij(t) = pji(t), then the multiple robotic manipulators system is undirected, in which pii(t)
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denotes the communication strength of the self-link and i, j ∈ {1, 2, ..., N}. The dynamical
equation of the ith robotic manipulator subsystem (RMS) is represented as follows.

Di(zi)z̈i + Ci(zi, żi)żi + Gi(zi) + εi(zi, żi) = τi − σ
N

∑
j=1

pij(t)Γhj(z), (1)

where zi = (zi1, zi2, ..., zin)
T ∈ Rn and żi = (żi1, żi2, ..., żin)

T ∈ Rn denote the joint angu-
lar position vector and the velocity vector of the ith robotic manipulator, respectively;
z̈i = (z̈i1, z̈i2, ..., z̈in)

T ∈ Rn denotes the acceleration vector of the ith robotic manipulator;
z = (zT

1 , zT
2 , ..., zT

N)
T ∈ RnN denotes the overall position vector of the RMS; σ > 0 is the com-

mon coupling strength of the ith RMS; Di(zi) ∈ Rn×n, Ci(zi, żi) ∈ Rn×n, and Gi(zi) ∈ Rn

denote the inertia matrix, the Coriolis and centrifugal torque matrix, and the gravitational
force vector, respectively; εi(zi, żi) ∈ Rn denotes the appropriate dimensioned uncertain

vector of the ith robotic manipulator; and τi ∈ Rn and
N
∑

j=1
pij(t)Γhj(z) denote the designable

control protocol of ith robotic manipulator and the determined communication protocol
between the RMS and the CSS, respectively, in which Γ = diag(b1, b2, ..., bn) ∈ Rn×n is
the diagonal matrix with the constants b1, b2, ..., bn and hj(z) ∈ Rn is the inner coupling
vector function.

Remark 1. From the perspective of the composition system [24–26], the determined communication

protocol
N
∑

j=1
pij(t)Γhj(z) in Equation (1) can be described as the coupled communication strength

between the ith robotic manipulator and its adjacent robotic manipulator, in which pij(t) is used to
describe the information communication strength of the ith robotic manipulator pointing to the jth
robotic manipulator for i, j ∈ {1, 2, ..., N}.

From the perspective of engineering applications, Equation (1) describes the dynamics
of the ith RMS, in which pij(t) denotes the communication strength of the ith robotic
manipulator pointing to the jth robotic manipulator. In other words, the dynamical change
of pij(t) influences the position information of the ith RMS. Inspired by the literature [21,22],
pij(t) is dynamically changing according to the following dynamical equation.

dpij(t)
dt

= ∑N
k=1 ai

jk pik(t) + ∑n
ρ=1 θi

jρ(zi)
(
ziρ(t) + żiρ(t)

)
, (2)

where Ai = (ai
jk)N×N ∈ RN×N , Θi(zi) =

(
θi

jρ(zi)
)

N×n
∈ RN×n, i, j, k ∈ {1, 2, ..., N}, and

ρ ∈ {1, 2, ..., n}.

Remark 2. Equation (2) consists mainly of the linear part ai
jk pik(t) and the compensation part

θi
jρ(zi)

(
ziρ(t) + żiρ(t)

)
, in which i, j, k ∈ {1, 2, ..., N} and ρ ∈ {1, 2, ..., n}. Equation (2) can be

explained graphically as follows.

In Figure 1, for a concise representation, each node denotes a robotic manipulator
in the MRMS. It can be observed from Figure 1 that the communication strength pij(t)
(which denotes the communication strength of the ith robotic manipulator pointing to
the jth robotic manipulator) is regarded as being affected directly by pik(t) (with the help
of the pkj(t)), θi

jρ(zi), ai
jk, ziρ, and żiρ. In other words, the communication strength pij(t)

is regarded as the linear operation of pik(t), ziρ, and żiρ for all i, j, k ∈ {1, 2, ..., N} and
ρ ∈ {1, 2, ..., n}.
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Figure 1. The schematic diagram of pij(t) influenced by pik(t), ziρ(t) and żiρ(t) in Equation (2).

Definition 1 ([21,22]). Pi(t) =
(

pi1(t) pi2(t) ... piN(t)
)T ∈ RN is called the outgoing

communication strength vector for the ith robotic manipulator, respectively, i ∈ {1, 2, ..., N}.

Remark 3. pij represents the intensity of information transmission between the ith robotic ma-
nipulator and the jth robotic manipulator, and Pi, which is composed of all pij, j ∈ {1, 2, ..., N},
represents the strength of the information communication between the ith robotic manipulator
and all other robotic manipulators. Then, all Pi, i ∈ {1, 2, ..., Nm} consist of the communication
strength subsystem (CSS).

Note that Hi(z) =
(

h1(z) h2(z) ... hN(z)
)
∈ Rn×N , and then, Equation (1) can

be formulated as

Di(zi)z̈i + Ci(zi, żi)żi + Gi(zi) + εi(zi, żi) = τi − σΓHi(z)Pi(t). (3)

Assumption 1. For Equation (3), Di(zi), Ci(zi, żi) are known matrices, and Gi(zi) is a known
vector, in which Di(zi) is a symmetric, bounded invertible matrix for all zi ∈ Rn. Moreover, Hi(z)
is a known and bounded matrix, and the uncertain vector εi(zi, żi) satisfies ‖εi(zi, żi)‖ ≤ ω(t),
where ω(t) represents the known positive function and ‖∗‖ represents the Euclidean norm of vector
or matrix.

Assumption 2. For Equation (3), the position zi ∈ Rn and the velocity żi ∈ Rn of the ith robotic
manipulator are available.

Remark 4. In Equation (3), the outgoing communication strength vector Pi(t) ∈ RN denotes
the overall communication strength set of the ith robotic manipulator pointing to the other robotic
manipulator. In addition, Assumption 2 is mainly enlightened by some practical engineering
systems. For example, in multiple robotic manipulator systems [12–16,27–29], zi ∈ Rn and
żi ∈ Rn represent the position vector of the ith robotic manipulator and the velocity vector of the ith
robotic manipulator, respectively. Their state variables, such as the angle of each joint and the speed
of each joint movement, can be measured by sensors.

From the perspective of the outgoing communication strength vector, Equation (2) can
be rewritten as follows.

Ṗi(t) = AiPi(t) + Θi(zi)(zi(t) + żi(t)), (4)
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in which Ai ∈ RN×N denotes the appropriate dimensioned constant matrix and Θi(zi) ∈ RN×n

denotes the coupling matrix function between the CSS and RMS, where i ∈ {1, 2, ..., N}.

Assumption 3. For Equation (4), the Ai is a Hurwitz matrix for all i ∈ {1, 2, ..., N}.

It is noted from Assumption 3 that all eigenvalues of Ai are located in the left half-
plane. From the Lyapunov theory, it can be observed that there exist positive definite
matrices Mi ∈ RN×N and Qi ∈ RN×N , which satisfy the following Lyapunov Equation (5),
i ∈ {1, 2, ..., N}.

AT
i Mi + Mi Ai = −Qi. (5)

Remark 5. (i) For Equation (4), Θi(zi) ∈ RN×n denotes the coupling matrix function between
the RMS and CSS and needs to be designed. (ii) Equation (4) is largely enlightened by the literature
[21,22], which represents the dynamical properties of the links relationship (communication strength)
between nodes (robotic manipulators) in the complex dynamical network, where Pi(t) ∈ RN

denotes the outgoing link vector (outgoing communication strength vector) of the ith node (robotic
manipulator) for all i ∈ {1, 2, ..., N}.

3. The Design of Tracking Control Protocol and Coupling Matrix Function

We introduce zd
i = zd

i (t) ∈ Rn and Pd
i = Pd

i (t) ∈ RN , which are the desired
joint position trajectory of the ith robotic manipulator and the desired communication
strength trajectory of the ith CSS, respectively. In addition, zd

i (t) ∈ Rn and its derivatives
żd

i (t) ∈ Rn, z̈d
i (t) ∈ Rn are all bounded and smooth. Note that ei(t) = zi(t)− zd

i (t) and
Ei(t) = Pi(t)− Pd

i (t) denote the position tracking error of the ith robotic manipulator and
the communication strength error of the ith CSS, respectively, where i ∈ {1, 2, ..., N}.

Control goal. Consider the MRMS with RMS (3) and CSS (4). Design the control
protocol τi for RMS (3) and the coupling matrix function Θi(zi) ∈ RN×n for CSS (4) such

that ei(t) = zi(t)− zd
i (t)

t→+∞−−−−→ 0 holds, which means that the multiple robotic manipulator
system achieves position tracking. Meanwhile, the outgoing communication strength vector
Pi = Pi(t) ∈ RN is bounded. In order to achieve the above control goal, the following
control scheme is obtained.

τi = Di(zi){z̈d
i (t)− ėi(t)− ei(t) + ηi}+ Ci(zi, żi)żi(t) + Gi(zi) + σΓHi(z)Pd

i (t), (6)

ηi = −
∥∥∥D−1

i (zi)
∥∥∥ω(t)s̃ign(ėi(t) + ei(t)), (7)

Θi(zi) = βσM−1
i D−1

i (zi)ΓHi(z), (8)

where In ∈ Rn×n denotes the nth order identity matrix and β > 0 denotes an adjustable positive

parameter, where i ∈ {1, 2, ..., N}. s̃ign(ėi(t) + ei(t)) =

{ ėi(t)+ei(t)
‖ėT

i (t)+eT
i (t)‖

, ėi(t) + ei(t) 6= 0

0, ėi(t) + ei(t) = 0
,

and it is seen that
(
ėT

i (t) + eT
i (t)

)
· s̃ign(ėi(t) + ei(t)) =

∥∥ėT
i (t) + eT

i (t)
∥∥ holds.

In addition, in order to assist the RMS in achieving positional tracking, an auxil-
iary communication strength Pd

i (t) ∈ RN is introduced, and the dynamical equation of
Pd

i (t) ∈ RN can be described as follows

Ṗd
i (t) = AiPd

i (t) + Θi(zi)
(

zd
i (t) + żd

i (t)
)

. (9)

Remark 6. (i) For Equation (8), since Mi is the positive definite matrix and Di(zi) is a symmetric,
bounded invertible matrix, that is, the inverse of matrices Mi and Di(zi) is bounded, β, σ, Γ,
and Hi(z) are bounded. It can be concluded that the coupling matrix function Θi(zi) is bounded,
where i ∈ {1, 2, ..., N}. (ii) In Equation (9), because zd

i (t), żd
i (t), and Θi(zi) are bounded, that
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is, Θi(zi)
(

zd
i (t) + żd

i (t)
)

is bounded, and Ai is a Hurwitz matrix, it follows that the desired

communication strength trajectory Pd
i (t) is bounded, where i ∈ {1, 2, ..., N}. (iii) The control

protocols (6) and (7) and the coupling matrix function (8) constitute the control scheme of this paper,
where the control protocols (6) and (7) are designed in the RMS and the coupling relation (8) is
designed in the CSS. The combined action of these two parts makes the position of the ith robotic
manipulator track along the desired joint position trajectory, while the communication strength
between robotic manipulators is bounded, where i ∈ {1, 2, ..., N}. (iv) In designing the control
scheme, the information that can be used is the state information of the multiple robotic manipulators,
such as the position, speed, acceleration of the multiple robotic manipulators, and some information
that is known in the system. It is worth noting that we cannot utilize the communication strength
information because the position and speed of the robotic manipulators can be measured via suitable
sensors, whereas the strength of the communication between the robotic manipulators is difficult
to be accurately measured using suitable sensors. Therefore, because of cost, technical limitations,
and other factors, the strength of communication between robotic manipulators cannot be accurately
obtained in this paper, and consequently, the information on communication strength pi cannot be
used in the control scheme.

From Ei(t) = Pi(t)− Pd
i (t), Equations (3), (4) and (9), and the control protocol (6), the

position tracking error and the communication strength error equations for the RMS (3)
and CSS (4) can be obtained as follows:

ëi(t) + ėi(t) + ei(t) + σD−1
i (zi)ΓHi(z)Ei(t) + D−1

i (zi)εi(zi, żi) = ηi. (10)

Ėi(t) = AiPi(t) + Θi(zi)[zi(t) + żi(t)]− Ṗd
i (t)

= Ai(Pi(t)− Pd
i (t)) + Θi(zi)[zi(t)− zd

i (t) + żi(t)− żd
i (t)]

= AiEi(t) + Θi(zi)[ėi(t) + ei(t)]. (11)

Theorem 1. Consider the MRMS with RMS (3) and CSS (4). If Assumptions 1–3 are satisfied,
the control protocols τi and ηi are designed, and the coupling matrix function Θi(zi) is synthesized;
the position tracking error ei(t) is asymptotically stable and the outgoing communication strength
vector Pi = Pi(t) ∈ RN is bounded for all i ∈ {1, 2, ..., N}.

Proof of Theorem. Consider the positive definite function Vi(t) = Vi[ei(t), ėi(t), Ei(t)] =

β ∑N
i=1
(
eT

i (t), ėT
i (t)

)[ 2In In
In In

](
ei(t)
ėi(t)

)
+ ∑N

i=1 ET
i (t)MiEi(t), where since

[
2In In
In In

]
and Mi are positive definite matrices, it is clear that Vi(t) is positive definite. To facilitate
the subsequent derivation, it can be written in the vector form as follows:

Vi(t) = β ∑N
i=1

(
eT

i (t), ėT
i (t)

)[ 2In In
In In

](
ei(t)
ėi(t)

)
+ ∑N

i=1 ET
i (t)MiEi(t)

= 2β ∑N
i=1 eT

i (t)ei(t) + β ∑N
i=1 ėT

i (t)ėi(t)

+ 2β ∑N
i=1 eT

i (t)ėi(t) + ∑N
i=1 ET

i (t)MiEi(t). (12)

Differentiating Vi(t) with respect to time yields

V̇i(t) = 4β ∑N
i=1 eT

i (t)ėi(t) + 2β ∑N
i=1 ėT

i (t)ëi(t) + 2β ∑N
i=1 ėT

i (t)ėi(t)

+ 2β ∑N
i=1 eT

i (t)ëi(t) + 2 ∑N
i=1 ET

i (t)Mi Ėi(t)

= 4β ∑N
i=1 eT

i (t)ėi(t) + 2β ∑N
i=1

(
ėT

i (t) + eT
i (t)

)
ëi(t)

+ 2β ∑N
i=1 ėT

i (t)ėi(t) + 2 ∑N
i=1 ET

i (t)Mi Ėi(t) (13)
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According to Equations (10) and (11), Equation (13) can be derived as

V̇i(t) = 2β ∑N
i=1

(
ėT

i (t) + eT
i (t)

)[
ηi − ėi(t)− ei(t)− σD−1

i (zi)ΓHi(z)Ei(t)− D−1
i (zi)εi(zi, żi)

]
+ 4β ∑N

i=1 eT
i (t)ėi(t) + 2β ∑N

i=1 ėT
i (t)ėi(t)

+ 2 ∑N
i=1 ET

i (t)Mi{AiEi(t) + Θi(zi)[ėi(t) + ei(t)]}

= 4β ∑N
i=1 eT

i (t)ėi(t)− 2β ∑N
i=1

(
ėT

i (t) + eT
i (t)

)
(ėi(t) + ei(t)) + 2β ∑N

i=1 ėT
i (t)ėi(t)

+ 2β ∑N
i=1

(
ėT

i (t) + eT
i (t)

)[
ηi − σD−1

i (zi)ΓHi(z)Ei(t)− D−1
i (zi)εi(zi, żi)

]
+ 2 ∑N

i=1 ET
i (t)Mi AiEi(t) + 2 ∑N

i=1 ET
i (t)MiΘi(zi)[ėi(t) + ei(t)]

According to Equation (5), it can be further obtained that

V̇i(t) = 2β ∑N
i=1

(
ėT

i (t) + eT
i (t)

)[
ηi − σD−1

i (zi)ΓHi(z)Ei(t)− D−1
i (zi)εi(zi, żi)

]
− 2β ∑N

i=1 eT
i (t)ei(t)−∑N

i=1 ET
i (t)QiEi(t) + 2 ∑N

i=1 ET
i (t)MiΘi(zi)[ėi(t) + ei(t)]

= −2β ∑N
i=1 eT

i (t)ei(t)−∑N
i=1 ET

i (t)QiEi(t)

+ 2β ∑N
i=1

(
ėT

i (t) + eT
i (t)

)[
ηi − D−1

i (zi)εi(zi, żi)
]

− 2βσ ∑N
i=1 ET

i (t)D−1
i (zi)ΓHi(z)[ėi(t) + ei(t)]

+ 2 ∑N
i=1 ET

i (t)MiΘi(zi)[ėi(t) + ei(t)]

= −2β ∑N
i=1 eT

i (t)ei(t)−∑N
i=1 ET

i (t)QiEi(t)

+ 2β ∑N
i=1

(
ėT

i (t) + eT
i (t)

)[
ηi − D−1

i (zi)εi(zi, żi)
]

− 2 ∑N
i=1 ET

i (t)
{

βσD−1
i (zi)ΓHi(z)−MiΘi(zi)

}
[ėi(t) + ei(t)]. (14)

Then, by substituting the control protocol (6) and the coupling matrix function (8)
into Equation (14) and taking into consideration Assumption 1, the following expression
is achieved:

V̇i(t) = −2β ∑N
i=1 eT

i (t)ei(t)−∑N
i=1 ET

i (t)QiEi(t)

+ 2β ∑N
i=1

(
ėT

i (t) + eT
i (t)

)[
ηi − D−1

i (zi)εi(zi, żi)
]

≤ −2β ∑N
i=1 eT

i (t)ei(t)−∑N
i=1 ET

i (t)QiEi(t)

+ 2β ∑N
i=1

∥∥∥ėT
i (t) + eT

i (t)
∥∥∥∥∥∥D−1

i (zi)
∥∥∥ω(t) + 2β ∑N

i=1

(
ėT

i (t) + eT
i (t)

)
ηi

= −2β ∑N
i=1 eT

i (t)ei(t)−∑N
i=1 ET

i (t)QiEi(t)

+ 2β ∑N
i=1

∥∥∥ėT
i (t) + eT

i (t)
∥∥∥∥∥∥D−1

i (zi)
∥∥∥ω(t)

− 2β ∑N
i=1

(
ėT

i (t) + eT
i (t)

)∥∥∥D−1
i (zi)

∥∥∥ω(t)s̃ign(ėi(t) + ei(t))

= −2β ∑N
i=1 eT

i (t)ei(t)−∑N
i=1 ET

i (t)QiEi(t) ≤ 0. (15)

Remark 7. From inequality (15), it can be seen that V̇(t) is negative semi-definite about ei(t),
ėi(t), and Ei(t). In other words, the error systems ei(t), ėi(t), and Ei(t) are stable; that is, ei(t),
ėi(t), and Ei(t) are bounded. By using Barbalat’s lemma [30–32], one can see thatthe position
tracking error ei(t) = zi(t) − zd

i (t)
t→+∞−−−−→ 0 holds and the velocity vector żi ∈ Rn and the

outgoing communication strength vector Pi = Pi(t) ∈ RN are bounded for all i ∈ {1, 2, ..., N}



Sensors 2023, 23, 9275 8 of 14

Remark 8. The following procedures for applying Theorem 1 are summarized to achieve the position
tracking control for the RMSs.

Step 1. Give the desired joint position trajectory zd
i (t) ∈ Rn , its derivatives żd

i (t) ∈ Rn,
z̈d

i (t) ∈ Rn for RMS (3), the desired communication strength trajectory Pd
i (t) ∈ RN for

CSS (4) for all i ∈ {1, 2, ..., N}, and their initial state values.
Step 2. Determine the known matrices Di(zi), Ci(zi, żi), the known vector Gi(zi), the

common coupling strength σ, the diagonal matrix Γ, the inner coupling matrix Hi(z), the
known positive function ω(t), and the adjustable positive parameter β.

Step 3. Determine the positive definite matrices Mi by solving the Lyapunov Equation (5).
Step 4. Determine the designed control protocols (6) and (7) and the coupling matrix

function (8) by substituting in the above parameters. At this point, Theorem 1 is realized;

that is, ei(t) = zi(t) − zd
i (t)

t→+∞−−−−→ 0 holds, and the outgoing communication strength
vector Pi = Pi(t) ∈ RN is bounded for all i ∈ {1, 2, ..., N}.

4. Illustrative Example

In this section, we test our proposed control scheme on the position tracking control
of N two-link (n = 2) robotic manipulators with uncertainties in [33] via simulation experi-
ments, in which the dynamics model of each isolate robotic manipulator (see Figure 2) in
joint space can be expressed as

Di(zi)z̈i + Ci(zi, żi)żi + Gi(zi) + εi(zi, żi) = τi (16)

where zi = (zi1, zi2)
T ∈ R2 and żi = (żi1, żi2)

T ∈ R2 denote the position vector of the
ith robot arm as well as the velocity vector, respectively, zi1 denotes the angular position
of the first robot arm, and zi2 denotes the angular position of the second robot arm. In
this paper, the main consideration is the position tracking problem of the two-link robotic
manipulators, so the dynamics of zi is the main concern of this paper.

The internal connection relation term can be described as a given communication
protocol. Inspired by the literature [21], we consider the given communication transmission

protocol as
N
∑

j=1
pij(t)Γhj(z) in this paper. Then, Equation (16) can be rewritten in the form

of Equation (1) in this paper, as follows:

Di(zi)z̈i + Ci(zi, żi)żi + Gi(zi) + εi(zi, żi) = τi + σ
N

∑
j=1

pij(t)Γhj(z), (17)

In addition, the dynamics of the communication strength pij(t), i, j ∈ {1, 2, ..., N}, be-
tween the two-link robotic manipulators is shown below, which is the same as Equation (4).

Ṗi(t) = AiPi(t) + Θi(zi)(zi(t) + żi(t)) (18)

In Figure 2, mi1 and mi2 denote the masses of the first arm and the second arm for the
ith robotic manipulator, respectively. di1 and di2 denote the lengths of the first arm and the
second arm for the ith robotic manipulator, respectively. τi1 and τi2 denote the torque on
the first arm and the second arm for the ith robotic manipulator, respectively. zi1 and zi2
denote the positions of the first arm and the second arm for the ith robotic manipulator,
where i ∈ {1, 2, ..., N}.

Note that P(t) = [PT
1 (t), PT

2 (t), ..., PT
N(t)]

T ∈ RN2
, e(t) = [eT

1 (t), eT
2 (t), ..., eT

N(t)]
T ∈

RnN, E(t) = [ET
1 (t), ET

2 (t), ..., ET
N(t)]

T ∈ RN2
, and Pd(t) = [(Pd

1 (t))
T , (Pd

2 (t))
T , ..., (Pd

1 (t))
T ]T

∈ RN2
.

The numerical parameters of the ith two-link robotic manipulator are selected ac-
cording to the following steps, which are derived from the numerical simulation example
in [33].
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Figure 2. The mechanical model of ith two-link robotic manipulator.

(i) The inertia matrix Di(zi), the Coriolis and centripetal force matrix Ci(zi, żi), and the
gravitational force vector Gi(zi) can be described as

Di(zi) =

[
mi1d2

i1 + mi2(d2
i1 + d2

i2 + 2di1di2 cos zi2) mi2d2
i2 + mi2di1di2 cos zi2

mi2d2
i2 + mi2di1di2 cos zi2 mi2d2

i2

]
,

Ci(zi, żi) =

[
−2mi2di1di2 sin zi2żi2 −2mi1di1di2 sin zi2żi2

mi2di1di2 sin zi2żi1 0

]
,

Gi(zi) =

[
mi2di2g cos(zi1 + zi2) + (mi1 + mi2)di1g cos(zi1)

mi2di2g cos(zi1 + zi2)

]
.

Moreover, the uncertain function εi(zi, żi) can be described as

εi(zi, żi) =

[
0.5sign(ėi1)[0.1 + exp(−|ėi1|)]

sign(ėi2)[0.1 + exp(−|ėi2|)]

]
+

[
γi
γi

]
,

where γi = randn(1) is a random number to reflect the uncertainty of the function εi(zi, żi)
and Γ = diag(b1, b2) ∈ R2×2 and hj = [cos(xj1), sin(xj2)]

T ∈ R2, respectively, in which
bs = randn(1),i, j ∈ {1, 2, ..., N}, s ∈ {1, 2} and randn(1) denotes the generation of a
random number with a standard normal distribution.

(ii) The initial states of z(0) ∈ RnN and P(0) ∈ RN2
are generated by the functions

rand(nN, 1) rad and rand(N2, 1) rad in MATLAB, respectively. rand(a, b) denotes the
generation of a matrix of size a× b, where each element is a random number in the interval
[0, 1]. The desired joint position trajectory zd

i (t) ∈ Rn are zd
i (t) = [sin(2πt), cos(2πt)]T ,

and the desired communication strength trajectory Pd
i (t) ∈ RN is given by Equation (9).

(iii) In order to generate the Hurwitz matrix Ai, let ωi = −rand(1)(ωi 6= 0) be a
randomly generated negative number and Wi ∈ RN×N be a stochastically produced N-
order invertible symmetric matrix in MATLAB. It can be concluded that the Hurwitz matrix
Ai = Widiag{w1, w2, ..., wN}W−1

i .
(iv) Let Qi = φIN ∈ RN×N , in which φ = 5rand(1) and IN denotes the N order

identity matrix, which is substituted into the Lyapunov equation, Equation (5), to obtain
the positive definite matrix Mi ∈ RN×N , i ∈ {1, 2, ..., N}.

In the simulations, the model parameters of the two-link robotic manipulator are
N = 30, mi1 = 10 kg, mi2 = 2 kg, di1 = 1.1 m, di2 = 0.8 m, g = 9.8 m/s2, σ = 5.7, and
β = 5 randn(1). Finally, the model parameters and the matrices obtained from the above
steps are substituted into the position tracking control protocols τi (6) and ηi (7) and
the coupling matrix function Θi(zi) (8) designed in this paper. In addition, in order to
demonstrate the advantages of the position tracking control scheme synthesized in this



Sensors 2023, 23, 9275 10 of 14

paper, we introduce an experiment comparing the position tracking proposed in [33–35]

with ours. For simplicity, let ‖e(t)‖ =
√

N
∑

i=1
‖ei(t)‖2 be the total position tracking error of

the RMS in the MRMS. The simulation results are shown in Figures 3–6.

Figure 3. (a) The state curves of position for RMS under the control scheme from [33]; (b) the state
curves of position for RMS under the control scheme from [34]; (c) the state curves of position for
RMS under the control scheme from [35]; (d) the state curves of position for RMS under the control
scheme from this paper.

Figure 4. (a) The position error curves of RMS under the control scheme from [33]; (b) the position
error curves of RMS under the control scheme from [34]; (c) the position error curves of RMS under
the control scheme from [35]; (d) the position error curves of RMS under the control scheme from
this paper.
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Figure 5. The response curves of ‖e(t)‖ with the control scheme in [33–35] and this paper.

Figure 6. The response curves of the desired communication strength trajectory Pd for CSS.

The following analytical results can be derived from the simulation results in Figures 3–6.
(i) As shown in Figure 3, the differently colored curves show the state of the joint

angular position of the 30 robotic manipulators. It can be seen that the control scheme
in [33–35] cannot make the joint angle positions of the RMS track the desired trajectory.
That is to say, the control scheme in [33–35] leads to larger errors of position tracking for
the RMS, but the control scheme in this paper can make the position state vector of the
MRMS track the desired joint position trajectory quickly.

(ii) Figures 4 and 5 illustrate that the results of the position tracking control scheme for
the RMS in this paper are comparative with the ones in [33–35]. It is clear from Figure 4
that the position tracking control error of the RMS converges asymptotically to zero by
using the control scheme in this paper. Nevertheless, the position tracking control error of
the RMS does not tend to zero when employing the control scheme in [33–35]. Moreover,
the fast convergence speed of the position tracking control error of RMS in this paper is
faster than the ones in [33–35]. Above all, it can be seen that when realizing the position
tracking control of the RMS, the control scheme of this paper is more appropriate than the
ones in [33–35].

(iii) It is clear from Figure 6 that the desired communication strength trajectory Pd is
bounded and does not converge asymptotically to zero, which means that the eventual
MRMS structure is shown as all the RMSs are not isolated when the position tracking of
the RMS happens.

5. Conclusions

Position tracking control of the RMS has been achieved for a class of uncertain MRMSs
with communication strength dynamics by employing the designed tracking control proto-
col of the RMS and the coupling matrix function of the CSS in this paper. Compared to the
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existing results about the position tracking of the RMS, the advantages of this paper are
that the MRMS with uncertainties can be considered as the composition system with the
RMS and the CSS, and both subsystems are coupled to each other. Moreover, the dynamical
model of the RMS is shown mathematically as a vector differential equation with the
second derivative term for the more suitable applications in engineering practice. From the
number simulation results, it can be seen that the control scheme designed in this paper can
effectively control the state of the RMS and CSS to track the given reference trajectories. In
the future, the velocity tracking problem and the double-tracking of position and velocity
for MRMS will be considered by designing a new control scheme under communication
topology constrained bit rates [36,37] or attacks [38,39].
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