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1. Introduction

Geohazards, such as landslides, rock avalanches, debris flow, ground fissures, and
ground subsidence, pose significant threats to people’s lives and property [1]. Recently, ma-
chine learning (ML) has become the predominant approach in geohazard modeling [2–13],
offering advantages, like an excellent generalization ability and accurately describing com-
plex and nonlinear behaviors. However, the utilization of advanced algorithms in deep
learning remains poorly understood in this field [7,8]. Additionally, there are fundamental
challenges associated with ML modeling, including input variable selection, uncertainty
quantification, and hyperparameter tuning [3,5–13].

This Special Issue presents original research exploring new frontiers and challenges
in applying ML for the spatial-temporal modeling of geohazards. The topics covered
include geohazard modeling, spatial-temporal prediction, ML, deep and reinforcement
learning, the metaheuristic optimized ML approach, and physics-based and data-driven
hybrid modeling.

2. Overview of Contribution

This Special Issue titled “Machine Learning Modeling for Spatial-Temporal Prediction
of Geohazard” comprises eleven high-quality papers, including one systematic review
article and ten original research articles conducted by researchers from Canada, China, Iran,
Malaysia, Pakistan, and Sweden. These ten research articles can be categorized as follows:
the susceptibility analysis of glacier debris flow and landslides (contributions 1–3), the dis-
placement prediction of reservoir landslides (contributions 4–6), slope stability prediction
and classification (contributions 7–8), building resilience evaluation (contribution 9), and
the prediction of rainfall-induced landslide warning signals (contribution 10). Modern
ML techniques, including metaheuristic optimized ML, deep learning, and automated
ML, have been applied to the spatial-temporal modeling of geohazards in various regions,
such as Kurdistan in Iran, Karakorum Highway in Pakistan, and Chongqing, G318 Linzhi
Section, and the Three Gorges Reservoir area in China.

Geohazard susceptibility mapping is the central theme of this Special Issue (contribu-
tions 1–3). For instance, the susceptibility mapping of glacier debris flows along the G318
Linzhi Section in China was generated using remote sensing imagery and a convolutional-
neural-network-based image segmentation model, DeepLabv3+ (contribution 1). In the
context of landslide susceptibility mapping, a deep learning model that combines extreme
machine learning, a deep belief network, back propagation, and a genetic algorithm has
been proposed and validated in Kamyaran in the Kurdistan Province, Iran (contribution
2). The proposed deep learning models achieved satisfactory performances, with values
exceeding 0.90 (contributions 1 and 2), underscoring the effectiveness of deep learning in

Sensors 2023, 23, 9262. https://doi.org/10.3390/s23229262 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23229262
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8408-2821
https://orcid.org/0000-0001-5930-199X
https://doi.org/10.3390/s23229262
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23229262?type=check_update&version=2


Sensors 2023, 23, 9262 2 of 4

geohazard susceptibility mapping. In the research conducted by Hussain et al. (contri-
bution 3), landslide susceptibility mapping was compared using random forest, extreme
gradient boosting, k-nearest neighbor, and naive Bayes in a case study along Karakorum
Highway in Northern Pakistan.

Another significant focus of this Special Issue is the prediction of reservoir landslide
displacements. Due to seasonal rainfall and periodic reservoir fluctuations, the deforma-
tions of reservoir landslide are characterized by a step-like behavior. Innovative approaches
based on the decomposition and ensemble principle have been introduced to predict
displacements in the cases of the Shiliushubao (contribution 4), Baijiabao (contribution
5), and Baishuihe landslides (contribution 6). These approaches incorporate mode de-
composition, input variable selection, individual prediction, and ensemble prediction to
achieve a satisfactory performance, nearly optimizing the goodness of fit. Decomposition
techniques, such as complete ensemble empirical mode decomposition (contributions 4
and 5) and variational mode decomposition (contribution 6), are utilized to break down
cumulative displacement into trend, periodic, and random components. Methods like
edit distance for real sequence (contribution 4), gray relational analysis, and association
rule mining (contribution 6) have been proposed for the selection of input variables. For
individual prediction, various methods, including metaheuristic optimized support vector
regression (contribution 4), back propagation neural networks (contribution 6), and gated
recurrent unit deep learning (contribution 5), are employed to predict the decomposed
displacements, which are then aggregated into a final ensemble prediction. In particular,
Zhang et al. (contribution 4) evaluate the performance of hyperparameter tuning using
metaheuristic techniques, such as the bat algorithm, grey wolf optimization, dragonfly al-
gorithm, whale optimization algorithm, grasshopper optimization algorithm, and sparrow
search algorithm. The abovementioned works (contributions 4–6) contribute significantly
to the field of model decomposition, input variable selection, and hyperparameter tuning.

Slope stability prediction and classification (contributions 7 and 8) represent another
prominent theme in this Special Issue. Wu et al. (contribution 7) developed a stability
prediction model for slope with predetermined shear planes with Box–Jenkins’ modeling
approach using a mechanical-informed dataset. For the first time, an automated ML model
for slope stability classification has been developed with minimal human intervention
by Ma et al. (contribution 8). The AuotML model provides an attractive alternative to
traditional ML practice, especially for early-stage researchers with limited expertise in ML.

In the work by Zhang et al. (contribution 9), an ML-based model for assessing the
resilience of buildings was developed and evaluated in Banan District, a typical moun-
tainous city in Chongqing, China. Furthermore, Zhang et al. (contribution 10) proposed a
hybrid model that combines an attention-based temporal convolutional neural network
with entropy weight methods for predicting rainfall-induced landslide warning signals.

Additionally, in a review article entitled “Scientometric Analysis of Artificial Intelli-
gence (AI) for Geohazard Research”, Jiang et al. (contribution 11) conducted a scientometric
review of artificial intelligence for geohazard research based on thousands of records from
the Web of Science core collection. This analysis identified and visualized the most pro-
ductive researchers, institutions, and emerging research topics using animated maps, and
it also provided recommendations for future directions. This scientometric review holds
promise in offering a comprehensive and objective overview of publication characteristics
and emerging trends for researchers in the field.

3. Conclusions

This Special Issue provides a forum for presenting original research that delves into
novel frontiers and confronts challenges in utilizing ML for geohazard susceptibility map-
ping, geohazard prediction, slope stability prediction, building resilience evaluation, and
landslide early warning systems. Within these domains, advanced ML techniques, includ-
ing deep learning, metaheuristic optimized ML, ensemble learning, and AutoML, have
been introduced. We anticipate that these innovative techniques and approaches will be
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valuable contributions that are warmly received by both researchers and practitioners in
the field.
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