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Abstract: Real-world gait analysis can aid in clinical assessments and influence related interventions,
free from the restrictions of a laboratory setting. Using individual accelerometers, we aimed to use a
simple machine learning method to quantify the performance of the discrimination between three self-
selected cyclical locomotion types using accelerometers placed at frequently referenced attachment
locations. Thirty-five participants walked along a 10 m walkway at three different speeds. Triaxial
accelerometers were attached to the sacrum, thighs and shanks. Slabs of magnitude, three-second-long
accelerometer data were transformed into two-dimensional Fourier spectra. Principal component
analysis was undertaken for data reduction and feature selection, followed by discriminant function
analysis for classification. Accuracy was quantified by calculating scalar accounting for the distances
between the three centroids and the scatter of each category’s cloud. The algorithm could successfully
discriminate between gait modalities with 91% accuracy at the sacrum, 90% at the shanks and 87% at
the thighs. Modalities were discriminated with high accuracy in all three sensor locations, where the
most accurate location was the sacrum. Future research will focus on optimising the data processing
of information from sensor locations that are advantageous for practical reasons, e.g., shank for
prosthetic and orthotic devices.

Keywords: machine learning; accelerometer; wearable sensors; gait; principal component analysis;
discriminant function analysis

1. Introduction

A person’s gait can be a biomarker of global health status and aids in diagnosing
pathologies and pathological progression [1–6]. The ability to vary gait speed can char-
acterise functional impairment and predict the risk of falling [7–10]. Before recent devel-
opments in wearable sensor technology, gait analyses were traditionally conducted using
motion capture technology in a laboratory [11].

Wearable sensors enable real-world gait assessment and are a more ecologically valid
tool for characterising potential gait impairments. Developments in wearable technology
and machine learning algorithms have facilitated a shift in gait evaluation into real-world
scenarios, successfully identifying cyclical activities, e.g., running [12–14], negotiating
stairs [15,16], and walking over differing terrains [13].

Wearable sensors can be attached to different locations on the human body. Choosing
appropriate sites for attachment requires careful consideration. Sensors must be placed
in a comfortable and realistic area for the user to wear that will not be affected by unde-
sirable external factors, such as clothing articles or the knocking of body parts. Previous
studies have explored attaching wearable sensors at the chest [17,18], wrist [12], hip [19,20],
waist [21–23], thigh [4,24], shank [4] and foot [5,15,25]. The lower back is a frequently
chosen attachment sites for collecting acceleration signals [1,26–28]. Attachment sites at the
bottom of the back can produce success rates higher than 87% when classifying Parkinson’s
disease [1], 94% when predicting age differences between participants [27] and 97% when
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predicting participants running speeds [26]. This location’s high success is likely due to the
centre of mass dynamics at the lower back being the most representative of whole-body
movement. Combining sensor data in a multi-sensor approach is also possible: placing
several sensors on the body to combine raw acceleration or gyroscopic signals can, however,
provide enhanced information on activity type and duration [6,29–34]. Using too many
sensors can cause issues with participant engagement, particularly during a longer-term
assessment, whether due to adhesion discomfort, faulty sensors, or general aesthetics.
The sensor location makes for a sensitive consideration in pathological populations, for
example, where recommended attachment locations may be in irritable or sensitive body
parts. Ideally, the detection of gait modalities using wearable technology needs to use the
fewest number of sensors attached at locations that will not impede the wearer’s comfort.
If sensors located at the lower extremity (e.g., shanks) can accurately identify and discrimi-
nate gait, sensors can be attached to or integrated into external devices, such as orthoses or
prosthetics, which would likely boost wearer conformity when collecting long-term data.

Previous research [15] has used inertial measurement units (IMUs), which can addi-
tionally incorporate gyroscopic information with raw acceleration data [18,22]. Gait speed
and stride position have been estimated from IMUs located in footwear [35]; however,
the utilisation of IMUs presents potential challenges for various reasons. IMUs provide
more complex data due to their ability to measure not only linear acceleration (unlike
accelerometers) but also angular velocity and orientation, providing additional data pro-
cessing steps. Moreover, they are equipped with more substantial and weighty hardware,
which could negatively impact long-term user adherence. Consequently, opting for a single
accelerometer can provide clinicians and researchers a pathway for gait evaluation that
enables longer recordings, entails lighter computational demands, and potentially enhances
user compliance with device wear.

Previous research reports the success rate of different machine-learning-based algorithms
using wearable sensors to identify various gait activities and modalities [15,18,21,22,31,32].
Although some of this research reported success rates above 99% [15], no study has quanti-
tatively explored the ability of the algorithm to discriminate between gait modalities using
a single lower extremity accelerometer. Multiple machine learning models can be used for
activity recognition; models must be selected based on factors such as size, dimensionality,
and, in particular, what goals are required from a dataset. Algorithms such as support vector
machines (SVMs), hidden Markov models, and neural networks have reported success rates of
80–95% in activity recognition, including identifying terrains [27], falls [31], gait types [13,14]
and other activities of daily living [36,37]. Although the success rate is one of the more critical
conclusions, the outcome is binary, unable to provide the quality of a sensor’s ability to dis-
criminate more than two gait modalities. Quantifying discrimination quality allows clinicians
and researchers to make an informed decision on the best sensor attachment location. It also
opens up the scope to modify and optimise algorithm performance, potentially allowing sites
previously considered as ‘poor’ attachment locations to provide better performance outcomes
and, consequently, better information for different treatment outcomes.

Using a single accelerometer potentially located on the lower limb to identify different
gait modalities would allow for further developments in integration into an assistive
device. Accelerometers are lightweight in design and are able to take long recordings for
long-term assessments. Quantifying the success of how well the accelerometer can detect
what gait modalities a person is executing would allow parameters in the algorithm to be
optimised for further activity modalities to be identified in the future. The present study
therefore aimed to quantify the performance of a simple machine learning algorithm in
the discrimination of three gait modalities: self-selected slow, self-selected normal, and
self-selected fast walking, using data from a single wearable sensor, attached to a range of
commonly used physical attachment sites.
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2. Methods
2.1. Participants

All recruited participants (N = 35, 19♂10 ♀, 27.4 ± 26.5 years, 1.74 ± 0.8 m, 71.5 ± 11.3 kg)
were 18 and older and had no current musculoskeletal injury and no unresolved cardiovascular
disease. Participants arrived wearing either shorts or skin-tight lycra leggings and trainers.
The study was conducted in accordance with the Declaration of Helsinki, and approved by
the Institutional Human Ethics Committee of Nottingham Trent University (protocol code 595
28 October 2020).

2.2. Study Design

Participants completed 3 × 120 m flat overground (12 m walkway) walking trials
under three experimental walking conditions (Figure 1), being instructed to walk at their
perceived slow, normal (faster than slow) and fast (faster than normal) paces. Walking
conditions were randomised between participants using a random number generator and
separated by one-minute periods of quiet standing.
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Figure 1. Diagram showing the experimental set-up and sensor attachment locations on the participants.

2.3. Instrumentation

Experimenters fitted participants with five independent triaxial accelerometers (Ax-
ivity AX6, York, UK) (100 Hz sampling rate, 8 g maximum acceleration). Sensors were
adhered to the skin with double-sided adhesive tape at the sacrum and roughly the mid-
point of the lateral thigh and lateral shank for both the right and left leg and were configured
to log accelerations on three orthogonal planes (X, Y, Z).

2.4. Machine Learning Algorithm
2.4.1. Pre-Processing

The magnitude of the acceleration vector for the time course of the raw acceleration
signal was used. Linear interpolation was applied to synchronise each sensor to the same
timestamp as sensors exhibited a slight drift in sampling frequency when preset at 100 Hz.

Two-dimensional Fourier transform analysis (2DFT) [38] was used to analyse the
acceleration signals during the experimental conditions (Figure 2). Signal features were
selected from the acceleration signal from ten 3 s long known periods of walking per
experimental condition (ten normal walking, ten slow walking, ten fast walking). A feature
length of three seconds was selected as this is long enough to encompass at least one gait
cycle, irrespective of gait speed. A temporal resolution of 0.3 s was chosen, dictating the
time duration of the data on which one frequency spectrum is calculated. An overlapping
factor of two was applied to the segmentation of the time-domain data, resulting in adjacent
segments sharing 50% of their data points, enhancing the capture of transient frequency
features during the 2DFT analysis (Figure 3). The 2DFT was applied to each selected three-
second time slot, providing the features for analysis entirely within a frequency domain
representation; this gives a feature that remains constant irrespective of the phasing of the
analysis window. The 2DFT was then stretched into an array, representing acceleration
amplitude at specific frequency components in the form of a two-dimensional spectrum.
The individual 2DFT arrays from each segment were then stacked to create a larger 2DFT
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matrix (ten 2DFT per experimental condition). The 2DFT image revealed the fundamental
frequency and associated harmonics observed from the acceleration signal, as well as
providing a visualisation of their repeated spectral signatures within a signal [39]. Visual
inspection of the series of 2DFTs allowed experimenters to check for any user error when
selecting from known periods of walking, ensuring corners or periods of acceleration and
deceleration were omitted from analysis (Figure 4).
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Figure 2. (a) Time course of a raw acceleration signal during a fast walking condition, showing
six peaks in acceleration amplitude across the three-second period. (b) Spectrogram of the acceleration
signal during a fast walking condition highlights six periods of large frequency bandwidth over three
seconds. (c) Two-dimensional Fourier transform image of the fast walking, highlighting the spectrum
of a repeated signal around two times per second.
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Figure 3. (a) Time course of a raw acceleration signal during a fast walking condition showing six
periods of peak amplitudes over three seconds. (b) A two–dimensional Fourier transform (2DFT)
image of the fast walking waveform, highlighting a repeating waveform occurring more than two
times per second. (c) Same as ‘a’ for normal walking, showing six periods of peak amplitudes over
three seconds. (d) Same as ‘b’ for normal walking, with a decreased observed frequency of the spectral
repetition highlighting a repeated waveform occurring roughly two times per second. (e) Same as ’a’
for slow walking, showing five periods of peak amplitudes over three seconds. (f) Same as ‘b’ for
slow walking, with a decreased observed frequency of the spectral repetition highlighting a repeated
waveform occurring, highlighting a repeating waveform occurring under two times per second.
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Figure 4. (a) Raw acceleration–time curves for one individual’s trial for sensors at the sacrum. The
superimposed rectangular selections show three experimental conditions: normal, slow and fast
walking. (b) A zoomed-in sacrum acceleration–time curve for fast walking. This shows the ten
bouts of straight-line walking and the deceleration phases where the participant turned. These turns
were dismissed from the analysis. (c) A stacked series of two-dimensional Fourier transform images
displaying three experimental conditions. The superimposed rectangular selections show three
experimental conditions: normal, slow and fast walking. Ten two-dimensional Fourier transform
images were stacked per condition, which are three seconds in length, resulting in 10 spectra contain-
ing information on a three-second signal per experimental condition. Dark red indicates a higher
acceleration magnitude, and dark blue indicates a lower magnitude. (d) A higher density series
of two-dimensional Fourier transform images highlighting three separate experimental conditions.
The superimposed rectangular selections show three experimental conditions: normal, slow and
fast walking. Initial two-dimensional Fourier transform spectra are scanned temporally in time
increments of 0.1 s over a period of one second, providing spectra for each experimental condition
(100 × 3 s spectra per experimental condition).

A higher-density matrix of two-dimensional Fourier transform features was then also
computed. Taking the initial, lower-temporal-density 2DFT signals, the 2DFT spectra were
calculated in time increments of 0.1 s over a period of one second. The high-density scan
provided 100 (10 features multiplied by 10, 0.1 s increments) high-density features for each
experimental condition (300 spectra in total). By calculating both high- and low-density
2DFT, users are provided with a broad overview of the frequency content within the low-
density scan, allowing the training of the computer for the gaits discrimination, and the
additional high-density matrix provides a tool to calculate the extent of the deviations that
the feature is exhibiting within one particular gait condition.

A training database for each participant and each sensor was created consisting of
the high-density 2DFT (300 spectra in total, 100 spectra per condition, each containing
3 s-long extracts of the experimental conditions) to search the database for components that
exhibited high variation and to allow their clustering. A simple machine learning algorithm
consisting of principal component analysis (PCA) and discriminant function analysis (DFA)
was executed on each training database. To run the PCA analysis for each experimental
condition, PC scores (a set of scores transforming dependent variables of a multivariate
database to a smaller set of principal components [40]) were attributed independently for
each training database of each participant. PC scores were calculated to the 80th percentile
for each variable, accounting for 80% of the total variance for each gait modality, participant,
and sensor. As PC scores are ordered in decreasing variance, they differ from participant to
participant as variance in each data set is not the same; hence, we chose a fraction of 80% of
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the total variance, meaning PC scores taken forward were not necessarily the same across
each participant, sensor or condition.

Discriminant function analysis, also known as linear discriminant analysis, was used
in two dimensions to further cluster the newly reduced data dimensionality by identifying
discriminating features between the three experimental conditions. DFA is a supervised
training method that achieves maximum discrimination between given conditions [40].

2.4.2. Discrimination Quantification

Once DFA was applied, DF scores 1 and 2 were plotted on the X and Y axes, re-
spectively (Figure 4). The discrimination quality was then quantified and estimated by
computing a discrimination criterion score, using a ratio of the product of the centroid
distances between the three clusters to the product of the standard deviations of each
cluster, as a large distance between centroids combined with a low standard deviation per
condition represents strong discriminatory performance using DFA. The discrimination
criterion was defined as follows:

Discrimination criterion =

(
Dist_1 × Dist_2 × Dist_3

Scatter_01 × Scatter_02 × Scatter_03

)
,

where dist_1 is the distance between fast and normal cloud centroids, Dist_2 is the distance
between fast and slow cloud centroids, and Dist_3 is the distance between normal and slow
cloud centroids. Scatter_01, Scatter_02 and Scatter_03 are estimated by calculating standard
deviations of the distance of each DF score to the centroid for each experimental condition
(Figure 5).
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Figure 5. Discriminant function scores show three activities clustered separately. Crite-
rion scores were further calculated using the following equation: Discrimination criterion =(

Dist_1×Dist_2×Dist_3
Scatter_01×Scatter_02×Scatter_03

)
. (a) Shows successful discrimination with a criterion score larger

than 500, cloud centroids exhibit large separation between one another, and the cluster standard
deviations are relatively small. (b) Shows unsuccessful discrimination with a criterion score smaller
than 500, two experimental condition cloud centroids in close proximity (normal and fast walking),
and relatively large cluster standard deviations.

To assess whether discrimination between the three locomotion modes was success-
ful or unsuccessful, experimenters visually inspected the overlapping of the clouds for
different experimental conditions. Severely overlapping conditions (Figure 5) resulted in
the discrimination being deemed unsuccessful. Inspection of the clouds revealed that a
discrimination criterion value of greater than 500 results in clouds exhibiting zero over-
lap between walking conditions. Clouds exhibit some overlap between conditions when
the criterion score is smaller than 500; therefore, a success criterion threshold of 500 was
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selected. Successful and unsuccessful discrimination attempts were recorded for all five
sensors (lower back, left and right thigh segments, and left and right shank segments),
providing each sensor location with a total number of successful discriminations between
the three experimental conditions.

3. Results

The results show that the algorithm could successfully discriminate between locomo-
tion types, with 91% of outcomes being successful in the sacrum, with a mean criterion of
7009, a combined success rate of 87% with a mean criterion score of 4943 in the left and right
thigh segments and 90% success rate and mean criterion of 6212 in the shank segments
(Figure 6). Figure 6 also highlights the individual criterion scores of each participant for
each sensor location. Visual inspection highlights that the sacrum had more participants
exhibiting a higher criterion value.
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Figure 6. Criterion scores for all participants (rearranged left-right from lowest to highest) for
(a) sacrum, (b) left thigh, (c) right thigh, (d) left shank and (e) right shank sensors. (f) Highlights
mean criterion scores for all sensors.

4. Discussion

The present study aimed to quantify the performance of a machine learning algorithm
in the discrimination of three gait modalities: self-selected slow, self-selected normal,
and self-selected fast walking, using data from wearable sensors attached to a range of
commonly used physical attachment sites. Results showed that applying a combined
unsupervised PCA and supervised DFA algorithm to a two-dimensional Fourier transform,
alongside a ratio calculation, led to successfully quantifying the discrimination quality of
self-selected slow, normal and fast gait modalities, with the sacrum and shanks exhibiting
the strongest discrimination, followed by the thighs.

The successful application of the two-dimensional Fourier transform highlights that
it is a valuable tool for gait analysis using accelerometer data when subtle changes to
locomotor patterns are executed. The 2DFT enabled us to extract comprehensive frequency
information from acceleration signals during normal, slow and fast walking conditions
(Figure 3). When viewed as stacked arrays, the series of 2DFT showed apparent differences
in gait frequencies, providing the machine learning tool with unique information on
acceleration signals and allowing for successful discrimination. Previous work [39,41]
using 2DFT to highlight the variation in frequency harmonics demonstrates that 2DFT is
highly suited to discriminating between different spectral signatures [39]. Gait signatures
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in healthy populations provide the 2DFT with highly similar features with each step
due to their cyclical nature. These repeatable features allow the 2DFT to successfully
identify different locomotor activity patterns when either slowing or increasing their gait
speed, resulting in successful discrimination when simple machine learning methods are
applied. Being able to differentiate between gait speeds is important as gait speed is often
used as a biomarker for health, more broadly health and wellbeing [42], pathological
progression [43,44], and rehabilitation [45].

Machine learning algorithms can be used to identify activities of daily living. When
using wearable sensors, the input is raw acceleration, and features are chosen for the
algorithm to try and detect the activities. The algorithm used in this paper uses discriminant
function plots and a ratio calculation to consistently report how well the different gait
modalities have been discriminated. Knowledge of the quality of discrimination will aid
future optimisation processes, providing users with a quantifiable method when optimising
algorithmic parameters.

Quantification can also allow clinicians to make informed decisions on the attachment
location. Understanding that one attachment area yields greater activity discrimination
quality will enable researchers to add to the field, potentially narrowing down on when or
what causes discrimination failure, whether due to hardware error, location attachment
point error, or an error related to the activity type and failure with recognition. If the issue
was due to errors in discriminating between activity types, the discriminant function plots
allow users to identify which activities are causing the discrimination to fail with a visual
inspection of which clusters exhibit overlapping features on the scatterplots.

The machine learning algorithm used in this study shows that one sensor is adequate
for identifying cyclical locomotor tasks when placed on the lower extremity. Several
previous studies have opted to fuse wearable sensor data, combining the data from multiple
attachment sites to provide information on locomotion [29,30]. Although these methods
have worked in classifying locomotor tasks, the fusion of numerous sensors makes data
collection more costly due to the requirement of more sensors. It also adds unnecessary
additional steps to the processing efforts. The present study shows that using one sensor at
the sacrum or on the shanks can yield success rates greater than 90%, giving researchers and
clinicians the scope to collect data at one location using one sensor. This may be particularly
meaningful for research into patients with particular pathologies whereby individuals use
lower limb assistive technology such as prosthetic or orthotic devices. Sensors could be
placed on the devices on the lower extremity, minimising skin contact with the sensor and
potentially increasing participant adherence, especially in longer-term data collection.

Another strength of the present study is that only triaxial accelerations are needed for
data processing. Previous works aiming to identify or discriminate between activities have
successfully used IMUs [4,13–16,18,22,25–28,32], which requires a greater computational
load, leading to shorter battery life. Results from this study are particularly relevant to
those who want to measure locomotion in a real-world setting for a prolonged period. As
locomotion and gait speed is used as a marker for and can be used to inform prescribing
assistive devices [46], knowledge of how an individual changes through locomotion types
over several weeks has the potential to alter clinical practices and prescriptions. In addition,
the ability to use one sensor in a minimum of three attachment locations allows clinicians
and patients to work together to find an area that is the most comfortable for the user.

One limitation associated with the current study is that it does not explore the under-
lying mechanisms in cases where discrimination was not possible. Investigating causes for
failure to discriminate could be performed in the future to further advance this method-
ological approach. Future work could also address the limitation that the current study
used a strictly healthy cohort. Follow-up research would need to apply the methodology to
pathological populations to assess whether the same results are seen. Additionally, future
works could utilise the current algorithm to assess different real-world activities, such as
running, slope walking or stair negotiation, adding to the depth of understanding of how
people interact with their environment in the real world.
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5. Conclusions

The present work presents a novel method of discriminating between locomotion types
using a single accelerometer at different attachment locations. The algorithm combines
data reduction, feature selection and classification methods to cluster three locomotor tasks.
The study also quantifies the quality of the discrimination between clusters, allowing users
to see what or where the algorithm works most successfully. The creation of a machine
learning algorithm sensitive enough to identify signals as sensitive as different walking
speeds opens up the ability to identify further cyclical activities of daily living. The ability
to identify how well the algorithm discriminates between gait modalities allows future
users to modify and seek to optimise the algorithm dependent on the research question.
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