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Abstract: Monocular panoramic depth estimation has various applications in robotics and au-
tonomous driving due to its ability to perceive the entire field of view. However, panoramic depth
estimation faces two significant challenges: global context capturing and distortion awareness. In this
paper, we propose a new framework for panoramic depth estimation that can simultaneously address
panoramic distortion and extract global context information, thereby improving the performance of
panoramic depth estimation. Specifically, we introduce an attention mechanism into the multi-scale
dilated convolution and adaptively adjust the receptive field size between different spatial positions,
designing the adaptive attention dilated convolution module, which effectively perceives distortion.
At the same time, we design the global scene understanding module to integrate global context
information into the feature maps generated using the feature extractor. Finally, we trained and
evaluated our model on three benchmark datasets which contains the virtual and real-world RGB-D
panorama datasets. The experimental results show that the proposed method achieves competitive
performance, comparable to existing techniques in both quantitative and qualitative evaluations.
Furthermore, our method has fewer parameters and more flexibility, making it a scalable solution in
mobile AR.

Keywords: panoramic depth estimation; dilated convolution; global average pooling; pixel-wise attention

1. Introduction

Depth estimation is a crucial task in the field of computer vision that involves predict-
ing the depth information of pixel-wise in an image. With the increasing popularity of 360°
cameras, monocular panoramic depth estimation has become widely utilized in various
fields such as robot navigation, autonomous driving, virtual/augmented reality [1,2], and
more, due to its capability of providing a comprehensive view of the scene. As a result, it
serves as the foundation for scene understanding and object detection in these applications.

With the widespread application of deep learning in computer vision, convolutional
neural networks (CNNs) have become a primary method for processing image depth
estimation. However, early studies [3,4] have shown that using depth neural networks
trained on perspective images directly on panorama images results in inferior performance.
This is because panorama images experience geometric distortion, which makes panoramic
depth estimation a challenging research topic. In particular, omnidirectional images contain
360° FoV environmental information, making them more complex than near-field-of-view
(NFoV) images. Panorama images are typically represented by expanding a sphere into a
360°× 180° equirectangular projection (ERP). Due to the varying spatial sampling rate with
latitude, distortion increases from the equator to the polar regions. Therefore, traditional
CNNs may struggle to perform accurate depth estimation in distorted areas.

In recent years, researchers have made attempts to tackle distortion by creating con-
volution kernels that are specifically designed for this purpose [3–6]. However, the fixed
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sampling positions of CNNs can restrict their ability to extract features effectively. Addi-
tionally, some studies [7–10] have utilized projection–fusion to decrease distortion, but
this method often leads to overlapping projection regions between different projections,
resulting in unnecessary computational overheads.

Another challenge in monocular panoramic depth estimation is the lack of global con-
sistency in convolutional neural networks. Although current CNN-based methods aim to
address distortion, their fixed receptive field limits their ability to perceive global informa-
tion in panorama images. One approach to preserving global information is SliceNet [11],
which uses a slice representation that directly utilizes the characteristics of the equirectan-
gular projection of indoor scenes, without the need for distortion-aware convolution and
transformation. However, SliceNet sacrifices detailed information when reconstructing
the depth map. Other methods [12–15] use multi-scale dilated convolutions to gather
multi-scale global information, while ACDNet [16] enhances the receptive field in equirect-
angular projection using adaptively combined dilated convolution and incorporating an
adaptive channel-wise fusion module to capture contextual information. However, embed-
ding multi-scale dilated convolutions in the encoder ResNet50 may diminish its feature
extraction ability.

To overcome the above-mentioned limitations, we propose an efficient and effective
lightweight network for monocular panoramic depth estimation, called E2LNet. Our frame-
work addresses both the distortion problem and the lack of global contextual information,
leading to better performance. E2L Net uses the U-Net [17] architecture and incorporates
an adaptive attention dilated convolution module at the skip connections.This module
introduces an adaptive pixel-wise attention that enables the network to learn dependencies
between different positions and adjust the receptive field size dynamically. Additionally, we
designed a global scene understanding module that captures global contextual information.
Unlike [16], our module is added at the bottleneck of the network and does not affect the
feature extraction capability of the encoder, making it easier to replace existing excellent
backbone networks.

In summary, our contributions are as follows:

• We propose an efficient framework, E2LNet, for monocular panoramic depth estimation
that can simultaneously address distortion and extract global contextual information;

• We design the adaptive attention dilated convolution module to be added at the skip
connections, enabling distortion perception at different scales without disrupting the
internal structure of the encoder and preserving its feature extraction ability;

• We construct a global scene understanding module by utilizing multi-scale dilated
convolutions, which effectively capture comprehensive global information;

• We conduct panoramic depth evaluation experiments on both virtual and real-world
RGB-D panorama datasets, and our proposed model achieves results comparable to
existing methods.

The rest of this paper is organized as follows. Section 2 reviews the related work
on monocular panoramic depth estimation as well as attention mechanisms and dilation
convolutions. Section 3 describes our proposed E2LNet model approach. Section 4 discusses
the experimental results, including quantitative, qualitative, and complexity analysis.
Finally, Section 5 provides a summary of the paper.

2. Related Work

In this section, we reviewed the research overview of panoramic depth estima-
tion. We also provided a brief introduction to the application of attention mechanisms and
dilated convolutions in CNNs.

2.1. Monocular Panoramic Depth Estimation

Depth estimation from perspective images is a well-known problem, and significant
progress has been made in the past decade using deep-learning-based monocular perspec-
tive depth estimation [18]. As perspective images have a limited field-of-view, panorama
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images contain more global spatial information, and using panorama images for depth
estimation can lead to better 3D scene reconstruction and understanding. With the increas-
ing popularity of 360° cameras, monocular panoramic depth estimation has been widely
applied in VR, AR, autonomous driving, and other fields. However, directly applying the
deep learning methods used for perspective images to panoramic images with distortion
issues is not feasible [3].

In recent years, several methods have been proposed to address distortion issues
in monocular panoramic depth estimation. One approach is to use special convolution
operations [3–6]. Tateno et al. [4] introduced a deformable convolution filtering method
for dense prediction tasks, which allows training a CNN with regular convolution and
perspective images, and then transferring the weights to another network with the same
architecture that can perform deformable convolution to solve distortions in ERP images.
However, their approach neglects the panoramic wide field-of-view, leading to prominent
artifacts. Cheng et al. [19] proposed an omnidirectional depth expansion convolutional
neural network, which embeds a spherical feature transformation layer at the end of the
feature encoding layer to resample the neighborhood of each pixel in the omnidirectional
coordinate to the projection coordinate, reducing the difficulty of feature learning. They also
appended a deformable convolution spatial propagation network at the end of the feature
decoding layer, significantly improving visual quality. Another method to reduce distor-
tion is through projection–fusion [7–10]. Wang et al. [7] proposed a dual projection–fusion
method called BiFuse, which extracts and fuses features through two neural network
branches for equirectangular projection and cube projection, respectively. The equirect-
angular branch provides a complete field-of-view, while the cube mapping avoids local
distortion. A spherical padding is used to alleviate the discontinuity at the boundary of
the cube projection. BiFuse++ [9] combines dual projection–fusion with self-supervised
learning of scenes to further improve BiFuse’s performance. To reduce the complexity of the
BiFuse model, UniFuse [8] only feeds the cube mapping features into the equirectangular
features at the decoding stage.

To extract global context information of panoramas, some transformer-based methods
are used to estimate globally consistent depth maps [10,20,21]. PanoFormer [20] reshapes
the self-attention module with the learnable token flow to adapt panoramas. GLPan-
oDepth [10] utilizes a cubemap vision transformer (CViT) and a CNN to extract global
and local features, respectively. Different features are progressive, combined by a gated
fusion module. PCFormer [21] adopts channel attention and spatial attention to enhance
global and local features. These methods utilize attention mechanisms to selectively focus
on important regions and learn more effective global representations.

Additionally, several panoramic depth estimation methods have been proposed that
use different strategies. For example, Zioulis et al. [22] utilized a depth-image-based
rendering (DIBR) technique to merge panorama images with their corresponding depth
maps to create new synthesized views that simulate translational (vertical or horizontal)
camera motion. They also proposed a self-supervised scheme that minimizes depth-based
photometric error instead of depth itself. Similarly, Zeng et al. [23] used coarse depth and
semantic predictions to perform layout depth prediction. They then used the estimated
layout depth map to recover the 3D layout and refine the depth estimation. Jin et al. [24]
leveraged the correlation between depth and geometry of 360° indoor images. They
represented the geometry structure of indoor scenes as a set of corners, boundaries, and
planes, and used the geometry structure and regularizer for depth estimation. Furthermore,
Zhou et al. [25] proposed a robust panoramic depth estimation network called PADENet.
They combined the fundamental envelope loss and window-based loss to improve the loss
of PADENet.

Due to the intricate nature of indoor scene structures, the existing methods for
panoramic depth estimation often rely on constructing complex and computationally
heavy networks. In contrast, our proposed approach introduces an efficient and effective
lightweight network for panoramic depth estimation.



Sensors 2023, 23, 9218 4 of 16

2.2. Dilated Convolution

Dilated convolution is a widely used technique in convolutional neural networks to
increase the receptive field without adding more parameters. Dilated convolution first
appeared in semantic segmentation [26] and significantly improved the performance of
segmentation. It has been increasingly applied to depth estimation tasks [15,27–30] in
recent years, such as in DORN [27], which is a deep depth-ordered regression network.
DORN proposed a multi-scale feature learner that utilizes three dilated convolution lay-
ers with large kernel size, a 1× 1 convolution layer, and a full-image encoder to capture
global context information. Tian et al. [28] designed the continues layers with prime di-
lation rate, allowing features to propagate from input to output without skipping any
pixels while maintaining the original resolution. Another example is the attention-based
contextual aggregation network designed by Chen et al. [12]. This network uses dilated
convolutions and an attention model to capture contextual information for each pixel.
Although the multi-branch network structure can reduce the speed of network operation,
it improves the accuracy and generalization of depth estimation. Recently, some depth esti-
mation tasks [16,31,32] have aggregated multi-scale contextual information by introducing
ASPP [33].

Dilated convolution has been applied to panoramic depth estimation tasks, for ex-
ample, OmniDepth [3] is a network that utilizes this technique. It is a fully convolutional
encoder–decoder network that increases the receptive field and adapts to the distortions
of ERP images with different sizes of rectangular convolutions. However, OmniDepth’s
limitation lies in its use of only two down-sampling operations, which leads to a restricted
receptive field. As a result, it fails to extract a sufficient amount of contextual information.
To address this, Zhuang et al. [16] proposed a new framework that combines dilated convo-
lution with different dilation rates to increase the receptive field while reducing distortion.
In addition to depth estimation tasks, dilated convolution has also been applied in other
panoramic vision tasks [34,35].

Overall, the use of dilated convolution has shown promising results in various
panoramic depth estimation vision tasks. Furthermore, the combination of different di-
lation rates and contextual information can further improve performance in real-world
scenarios [36–38]. Therefore, inspired by [27], we propose a new scene understanding mod-
ule that utilizes global pooling and multi-scale dilated convolution operations to capture
global contextual information in panoramas.

2.3. Pixel-Attention Model

The attention mechanism [39] is a crucial concept in computer vision and has been
widely used to process computer vision tasks. In recent years, several methods have been
proposed to incorporate attention mechanisms into computer vision models. For instance,
the SE attention mechanism [40] (squeeze-and-excitation network), utilizes an additional
neural network to automatically learn the importance of each channel in the feature map. It
assigns a weight value to each feature based on its importance, allowing the neural network
to focus on the most relevant feature channels. The CBAM attention mechanism [41]
(convolutional block attention module) combines channel attention and spatial attention to
learn the importance weights for each channel and capture the importance of each position
in the feature map. In panorama image processing, many related works [12,14,15,42–44]
have utilized attention mechanisms. Chen et al. [12] utilized self-attention mechanisms to
acquire pixel-level contextual information and combined it with image-level contextual
information for monocular depth estimation. Zhao et al. [42] introduced a learnable
attention mechanism that learns binary decision variables through the Gumbel–Max trick in
a differentiable training framework. Jiao et al. [14] novel attention mechanism which allows
to robustly fuse features derived from multiple scales as well as to integrate structured
information. Chen et al. [45] proposed generating attention weights for each pixel in the
semantic segmentation task. Pixel-level attention is a soft attention model that can help the
model focus on important pixels in the image. Inspired by [16], we introduce pixel-wise
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attention to action on the features extracted by multi-scale extended convolution to better
perceive the distortion of panorama images. Our experiments show that the pixel-wise
attention mechanism allows the model to selectively focus on certain pixels, which is
particularly useful for distortion perception of panoramic images.

3. Proposed Algorithm
3.1. Network Architecture

The central concept of our proposed approach is to tackle both the distortion in
panorama images and the extraction of global contextual information in a single, unified
method. Figure 1 provides an overview of the proposed E2LNet architecture, which
is based on an encoder–decoder framework with skip connections. The E2LNet main
introduce two modules: (1) An adaptive attentional dilated convolution (AADC) module
with distortion awareness. By introducing a pixel-wise attention mechanism that enables
adaptive adjustment of receptive fields for channels and spatial positions, the ability to
perceive panoramic distortions is enhanced. This allows for a more effective handling
of distortions in panoramic images, improving the accuracy of depth estimation. (2) A
global scene understanding module (GSUM) for global context extraction. Given the
expansive field of view in panorama images, global information plays a crucial role in
achieving accurate depth estimation. The incorporation of global context information
into the feature extraction process aids the model in gaining a deeper understanding of
the overall scene context and structure, bolstering the robustness of panoramic depth
estimation. The integration of these two modules can greatly improve the performance of
panoramic depth estimation.

Figure 1. The network architecture of our E2LNet. Our E2LNet architecture consists of an encoder–
decoder. The ResNet network is utilized to extract multi-scale local features, and a GSUM module is
employed to extract global information. Adaptive attentional dilated convolutions are used at the
skip connections to reduce image distortion. The feature maps processed by GSUM and AADC are
concatenated and passed through the decoder to generate depth features at different scales, which
are then used for depth estimation.

In the encoder part of the model, ResNet34 [46] is utilized for feature extraction.
Compared to other neural networks, ResNet34 has a shallower network structure and
fewer parameters. Despite this, it has comparable accuracy to deeper networks in many
tasks.Given the input panoramic color image, the encoder uses the residual structure of
ResNet34 to extract multi-scale feature maps. We collect multi-scale feature maps obtained
from the residual blocks of ResNet34 with are denoted as F1, F2, F3 and F4.The spatial sizes
of the multi-scale feature maps are H

4 ×
W
4 × C, H

8 ×
W
8 × 2C, H

16 ×
W
16 × 4C, H

32 ×
W
32 × 8C,

where the value of C is 64.
In the decoder part of our proposed E2LNet, we utilize the PixelShuffler [47] to

progressively up-sample the feature maps and aggregate the feature maps generated by
the encoder at different scales. This allows us to effectively capture and integrate multi-
scale features while maintaining computational efficiency. To capture global information
while considering computational costs, we introduce a GSUM module to the bottleneck.
The GSUM module allows us to extract global context information while minimizing the
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impact on the overall model complexity. We will provide a more detailed explanation
of this module in Section 3.3. To further perceive multi-scale distortion, we perform an
adaptive attentional dilated convolution operation on the multi-scale features obtained
by the encoder. The AADC operation helps us better perceive and handle distortion in
panorama images. Through skip connections, the distortion-aware feature maps obtained
by the AADC operation are concatenated with the up-sampled feature maps in the decoder
with the same number of channels. This allows us to effectively integrate multi-scale
features with distortion-aware information. We will provide a detailed explanation of the
AADC module in Section 3.2.

3.2. Adaptively Attention Dilated Convolution

The idea for the AADC module, which utilizes the pixel-wise attention, inspired
by ACDNet [16]. As depicted in Figure 2a, ACDNet incorporates an adaptive dilated
convolution module within the encoder that replaces the standard convolution with a
residual structure. After passing the input features through multi-scale dilated convolu-
tions, four feature maps are obtained. These feature maps are then concatenated to form
feature map Fi. Following this, global average pooling and fully connected operations are
applied, and Softmax is used to generate attention weights wi. These attention weights are
multiplied with the input features to obtain the fused feature F′i . We designed a module as
shown in Figure 2b. We noticed that the attention output dimension for channel attention
is 1× 1× C, for spatial attention is H ×W × 1, and for pixel attention is H ×W × C. De-
spite the increased number of parameters, we can obtain both channel and spatial attention
simultaneously. Different from the adaptive channel-wise fusion (ACF) method in ACDNet,
we introduced the adaptive pixel-wise fusion (APF) module to aggregate the feature maps
and obtain different attention regions in the receptive field along the channel and spatial
positions. Additionally, we placed the AADC module between the encoder and decoder,
without compromising the encoder’s feature extraction ability.

Figure 2. (a) The dilated convolution layer of ACDNet. (b) The proposed adaptive attention dilated
convolution layer in this paper. Rn in the figure means the n-th choice of the four dilation rate settings.

To more comprehensively extract distortion-aware feature maps, the AADC module
we designed combines pixel-wise attention and multi-scale dilated convolution operations,
as shown in Figure 2b, and the feature fusion process is as follows:

Fk
i = AdaptiveDilatedConv(Fi), k = 1, 2, 3, 4 (1)

wi = PixelwiseAttention(Fi) (2)

F′i = wi � Addtion
(

Fk
i

)
(3)

where
⊙

is element-wise product and models the cross-relationships between features
from two branches. The AADC module contains two branches. Firstly, given the input
feature Fi, a set of dilated convolutions with different dilation rates (kernel size 3× 3,
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dilation rates 1× 1, 1× 2, 1× 4, 2× 1) are used in parallel to extract features from the
input feature, and then combined by addition. Then, the APF module integrates pixel
features with the feature map. Specifically, the pixel features are first normalized to the
range of 0–1 by a 1× 1 convolution and the Sigmoid function to obtain pixel-wise attention
weights wi. The feature map Fk

i after adaptive dilated convolutions is then multiplied with
the pixel-wise attention weights wi to obtain the final fusion feature F′i with distortion
awareness.

3.3. Globle Scene Understandng

Our GSUM module is inspired by [27] and is designed to efficiently capture global
context information with minimal computational resources. It is composed of three parallel
components, as illustrated in Figure 3.

(a)

(b)

Figure 3. (a) The GSUM module structure; (b) the global average pooling structure.

In the GAP module, we efficiently extract global information with fewer parameters.
To address the issue of local ambiguity in depth estimation [48], we perform global average
pooling on the input feature map F4 to obtain a feature vector. We then use a 1× 1 convolu-
tional layer to allow channel-wise information interaction, and finally, we use replication
operations to obtain the full feature map from the feature vector. We use a 1× 1 convo-
lutional layer to facilitate channel-wise information interaction. We utilize a multi-scale
adaptive dilated convolution module to extract features by increasing the receptive field
at different scales. We use four dilated convolutions with different dilation rates of 1× 1,
1× 2, 1× 4 and 2× 1, and a kernel size of 3× 3 for feature extraction. This is because, in
panorama images, horizontal distortion near the extreme point is greater than the vertical
distortion. Through the above operations, each position in the input feature map can
understand the image in the same way. After connecting the feature maps generated by
the three above components, we apply a 1× 1 convolution operation to obtain the output
feature map F̂4, which enables a comprehensive understanding of the input image.
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3.4. Training Loss

Following previous works on panoramic depth estimation [7,8], we utilize the robust
BerHu loss [49] as the objective function to supervise the training process of the network,
which is formulated as follows.

L(d, g) =

{
|d− g|, |d− g| ≤ c

(d−g)2+c2

2c , |d− g| > c
(4)

where d is the predicted depth and g is the ground truth depth. The threshold c is set to
20% of the maximal absolute error of the current batch in every gradient descent step as
in [49], that is

c =
1
5

max
i

(|di − gi|) (5)

where i indexes all pixels over each image in a batch.

4. Experiments

In this section, we first introduce our experimental setting, including the datasets,
training details and evaluation metrics. Second, we provide the qualitative and quantitative
comparisons of the proposed method with state-of-the-art approaches. Then, we conduct
the ablation experiments to validate the effectiveness of our network structure. Finally, we
test the complexity of our model.

4.1. Experimental Settings

Datasets: Our experiments are carried out on three real-world and synthetic datasets,
namely Matterport3D [50], Stanford2D3D [51], and PanoSUNCG [52]. Both Matterport3D
and Stanford2D3D are captured by RGB-D cameras in real-world scenes, and they contain
10,800 and over 2000 panoramas and corresponding depth maps, respectively. Similar to
many recent methods [7,8], we use their official splitting and resize the resolution of RGB
images and depth maps into 512 × 1024. Because Matterport3D is missing the top and
bottom depth values and Stanford2D3D is missing the ceiling and floor pixels in the RGB
images, which results in inaccurate depth predictions for these regions, we utilize binary
masks to filter out the depth values predicted for these regions. PanoSUNCG is rendered
with synthetic scenes, and it contains 103 scenes and over 25,000 RGB-D panorama images
of 512 × 1024 resolution. Follow the official training and testing splits, 80 scenes are used
for training and 23 scenes for testing. As with the works [9], all RGB-D panorama images
are resized to 256× 512 resolution during training and testing. Besides, these three datasets
are publicly available on their official websites.

Training details: We use the PyTorch framework [53] to implement our network.
All experiments are conducted on an Intel Xeon(R) CPU processor, 128 GB RAM, and
an NVIDIA GeForce RTX 3090 GPU with 24 GB memory. The ResNet34 encoder of the
network is initialized with the weights pre-trained on ImageNet [54], and the remaining
layers are initialized uniformly. The Adam optimizer [55] is used in our experiments with
default parameters β1 = 0.9, β2 = 0.999, the initial learning rate is set to 0.0001, and the
batch size is set to 8. The total training epochs are set to 100 for real-world datasets and
30 for synthetic datasets. Since the real-world dataset is smaller than the synthetic datasets,
more training epochs are required to produce a desirable result. To decrease the possibility
of network over-fitting, we use several basic data augmentations during training, such as
random color adjustment, left–right flip, and yaw rotation.

Evaluation metrics: We use the standard metrics for evaluation as in previous works [7]
and adopt the following quantitative evaluation metrics in our experiments:

• Mean relative error (MRE):
1
N ∑

|d− g|
g

(6)
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• Mean absolute error (MAE):
1
N ∑ |d− g| (7)

• Root mean square error (RMSE): √
1
N ∑(d− g)2 (8)

• Root mean squared log error (RMSE log):√
1
N ∑(log d− log g)2 (9)

• Accuracy with threshold t:

max
(

d
g

,
g
d

)
= δ < t

(
t ∈

[
1.25, 1.252, 1.253

])
(10)

where d is the predicted depth, g is the ground truth depth, and N is the number of valid
depth value in the ground truth depth. The lower the error metrics are, the better; the
higher the accuracy metrics are, the better.

4.2. Comparison Results

In this section, we conduct a comparison between our method and four existing
approaches: Bifuse [7], UniFuse [8], BiFuse++ [9], and ACDNet [16]. We present the
quantitative results in Table 1, while Figures 4–6 showcase the qualitative results for the
three benchmark datasets.
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Input RGB BiFuse++ ACDNet  Ours  Ground Truth

Figure 4. Qualitative comparison with the state-of-the-art methods on Matterport3D dataset. The first
column is the input RGB image, the second one is the depth estimated by BiFuse++ [9], the third one is
the depth estimated by ACDNet [16], the fourth one is the depth estimated by our method, and the
last one is the ground truth depth map. Dark pixels are missing depth in the ground truth depth maps.
The residual map is the error map between the predicted depth map and the ground truth depth map.
Zoom in for best view.
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Input RGB BiFuse++ ACDNet  Ours  Ground Truth
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Figure 5. Qualitative comparison with the state-of-the-art methods on Stanford2D3D dataset. It can
be observed that BiFuse++ tends to introduce artifacts or lose certain objects, while ACDNet generates
depth maps with a certain degree of blurriness. Zoom in for best view.
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Figure 6. Qualitative comparison with the state-of-the-art methods on PanoSUNCG dataset. The first
column is the input RGB image, the second one is the depth estimated by UniFuse [8], the third one
is the depth estimated by BiFuse++ [9], the fourth one is the depth estimated by our method and the
last one is the ground truth depth map. Pink pixels indicate larger depth values. The residual map is
the error map between the predicted depth map and the ground truth depth map. It can be observed
that UniFuse often produces incorrect depth estimates, while BiFuse++ leads to the loss of depth
details for small objects. Zoom in for best view.

Quantitative results: In this section, we compare our method with Bifuse [7], Uni-
Fuse [8], BiFuse++ [9], and ACDNet [16] on the three mentioned datasets. The quantitative
results are presented in Table 1. Across all three datasets, our method consistently outper-
forms the other approaches in the majority of the numerical metrics. Although our method
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shows slightly lower numerical values in metrics such as RMSE, δ < 1.252, and δ < 1.253

compared to the state-of-the-art approaches; this can be attributed to the lower parameter
count in our model. However, our method consistently outperforms the state-of-the-art
algorithms in the most stringent accuracy metric, δ < 1.25. Specifically, on the real-world
datasets, Matterport3D and Stanford2D3D, our method achieves improvements of 0.68%
and 0.22% respectively over the state-of-the-art approaches. Unfortunately, due to the
unavailability of the synthetic dataset PanoSUNCG for comparison with ACDNet, we com-
pared our method with other advanced algorithms on that dataset. Remarkably, our method
surpasses the state-of-the-art BiFuse++ by 1.31% in the strictest accuracy metric, δ < 1.25,
while also reducing the RMSE error by 0.0181 compared to the leading algorithm. These
evaluation results demonstrate that our method achieves enhanced strict accuracy while
simultaneously reducing the parameter count. We have also presented the convergence
curves for training loss and δ < 1.25 accuracy, RMSE, and MAE on the validation set, as
shown in Figure 7. The Stanford2D3D dataset, with its rendered depth information, offers
higher precision and is relatively easier to learn from. However, its limited size, consisting
of just over 2000 images, results in lower evaluation accuracy. Conversely, the PanoSUNCG
dataset is a virtual dataset that is more easily learnable and provides higher evaluation
accuracy. Figure 7a,b illustrates the rapid convergence of our model to a high precision
level, demonstrating that there is no over-fitting in terms of accuracy and error on the
validation set.

Table 1. Quantitative comparison with the state-of-the-art methods on three benchmark datasets. ↓
indicates that lower is better; ↑ indicates that higher is better. The best results are in bold.

Datasets Methods
Error Metric ↓ Accuracy Metric ↑

MRE MAE RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Matterport3D

BiFuse [7] 0.2048 0.3470 0.6259 0.1134 0.8452 0.9319 0.9632
UniFuse [8] - 0.2814 0.4941 0.0701 0.8897 0.9623 0.9831
BiFuse++ [9] 0.1424 0.2842 0.5190 0.0862 0.8790 0.9517 0.9772
ACDNet [16] - 0.2670 0.4629 0.0646 0.9000 0.9678 0.9876

Ours 0.0958 0.2610 0.4661 0.0649 0.9068 0.9652 0.9856

Stanford2D3D

BiFuse [7] 0.1209 0.2343 0.4142 0.0787 0.8660 0.9580 0.9860
UniFuse [8] - 0.2082 0.3691 0.0721 0.8711 0.9664 0.9882
BiFuse++ [9] 0.1117 0.2173 0.3720 0.0727 0.8783 0.9649 0.9884
ACDNet [16] - 0.1870 0.3410 0.0664 0.8872 0.9704 0.9895

Ours 0.1094 0.1815 0.3420 0.0673 0.8890 0.9614 0.9866

PanoSUNCG

BiFuse [7] 0.0592 0.0789 0.2596 0.0443 0.9590 0.9823 0.9907
UniFuse [8] - 0.0765 0.2802 0.0416 0.9655 0.9846 0.9912
BiFuse++ [9] 0.0524 0.0688 0.2477 0.0414 0.9630 0.9835 0.9911

Ours 0.0343 0.0484 0.1871 0.0318 0.9761 0.9892 0.9941

Qualitative results: In Figures 4 and 5, we present a qualitative comparison of our
method with BiFuse++ and ACDNet on real-world datasets, including Matterport3D and
Stanford2D3D. Upon observation, we find that BiFuse++ tends to introduce artifacts or lose
certain objects, while ACDNet generates depth maps with a certain degree of blurriness.
In contrast, our method exhibits a superior ability to accurately reconstruct these objects,
thanks to its advanced distortion awareness and capability to capture global information.
In Figure 6, we conduct a qualitative comparison of our method with UniFuse and BiFuse++
on the synthetic dataset, PanoSUNCG. Our findings reveal that UniFuse often produces
erroneous depth estimates, as evident from the incorrect estimation of carpet depth in
the first row. On the other hand, BiFuse++ tends to result in the loss of depth details for
small objects. Comparatively, our method produces depth estimates that closely align with
the ground truth. Additionally, We represent the residual map as the absolute difference
between the predicted depth and the ground truth. To enhance the visual clarity, we have
applied an inversion to the residual map. Following the previous approach, it is important
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to note that we did not perform scale calibration during the measurements. Consequently,
there may be a slight discrepancy between our estimated scale and the true scale. The error
map further illustrates the offset between the estimated depth map and the ground truth
depth map across the entire depth range.

(a) (b)

(c) (d)

Figure 7. Convergence performance of model. (a) The convergence curve for training loss. (b) shows
the convergence curve for δ < 1.25 accuracy on the validation set. (c) The convergence curve for
validation RMSE. (d) The convergence curve for validation MAE.

4.3. Ablation Study

We conducted a series of ablation experiments on the Matterport3D dataset to assess
the effectiveness of our proposed model. Table 2 presents the results of these experiments,
which involved different configurations of network modules. Specifically, we compared the
performance of four models across various metrics, with the baseline model representing a
UNet architecture using only ResNet34 as the encoder.

Table 2. Ablation studies about different components on Matterport3D dataset. ↓ indicates that lower
is better; ↑ indicates that higher is better.

Modules
Error Metric ↓ Accuracy Metric ↑

MRE MAE RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Baseline 0.1151 0.2996 0.5039 0.0750 0.8712 0.9565 0.9815
Baseline + GSUM 0.1018 0.2681 0.4731 0.0732 0.8978 0.9641 0.9843
Baseline + GSUM + ACDCs 0.0981 0.2658 0.4709 0.0664 0.9027 0.9647 0.9848
Baseline + GSUM + AADCs 0.0958 0.2310 0.4661 0.0649 0.9068 0.9652 0.9856

Firstly, we examined the efficacy of the global scene understanding module. This
module employed global average pooling to capture pixel-level features from the feature
maps, enabling better extraction of global information.
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Secondly, we evaluated the effectiveness of the adaptive attentional dilated convolu-
tion module. Our proposed AADC module outperformed ACDNet [16], which replaces
the residual structure of conventional convolutions with adaptive combination dilated
convolutions. The AADC module achieved higher accuracy and lower error rates. Among
all the models tested, the one incorporating both the GSUM and AADC modules demon-
strated the best performance in terms of the strictest accuracy metric. This finding further
emphasizes the significance of GSUM and AADC in enhancing the model’s performance.

4.4. Complexity Comparison

In Table 3, we assessed the complexity of our model compared to previous panoramic
depth estimation models. The approach using BiFuse [8] with dual projection–fusion
slightly increases the parameter count, consuming 4003 M of GPU memory. Moreover,
the dual projection–fusion requires multiple projection transformations, leading to longer
inference times for depth map estimation. By simplifying and improving the decoder [7,9],
the model’s complexity reduced significantly, resulting in a substantial increase in the infer-
ence frame rate. ACDNet [16] incorporates the adaptively combined dilated convolution
into ResNet50, resulting in 87.0 M parameters. Our model achieves similar performance to
ACDNet but with only half the number of parameters and a more than three-fold increase
in frame rate. These findings indicate that our model is suitable for deployment in mobile
applications. Currently, the overall accuracy of scene depth calculation is approaching
or surpassing 90%, greatly facilitating and encouraging further research in the field of
scene understanding.

Table 3. Performance comparison.

Approaches Parameters GPU mem. GFLOPs FPS

BiFuse [7] 253.1 M 4003 M 682.86 1
UniFuse [8] 30.26 M 1221 M 62.58 33
BiFuse++ [9] 53.19 M 1907 M 87.42 28
ACDNet [16] 87.0 M 2378 M 194.54 11

Ours 38.88 M 1739 M 54.27 37

5. Conclusions

In this paper, we present a highly efficient and compact network for monocular
panoramic depth estimation. Our network employs multi-scale dilated convolutions to en-
hance the receptive field and reduce distortion, while effectively capturing global features
through pixel-wise attention. We have also devised a global scene understanding module
that efficiently acquires global information using global average pooling operations, requir-
ing minimal computational resources. Extensive experiments validate the effectiveness of
our proposed model. The final model achieves comparable performance to state-of-the-art
methods on three different real and synthetic datasets. Additionally, we demonstrate that
our model exhibits lower complexity compared to alternative approaches. Moreover, our
designed modules can be easily integrated into the bottleneck of the network, enabling
convenient replacement of other high-quality backbone networks.
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