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Abstract: The escalating global water usage and the increasing strain on major cities due to water
shortages highlights the critical need for efficient water management practices. In water-stressed
regions worldwide, significant water wastage is primarily attributed to leakages, inefficient use, and
aging infrastructure. Undetected water leakages in buildings’ pipelines contribute to the water waste
problem. To address this issue, an effective water leak detection method is required. In this paper,
we explore the application of edge computing in smart buildings to enhance water management.
By integrating sensors and embedded Machine Learning models, known as TinyML, smart water
management systems can collect real-time data, analyze it, and make accurate decisions for efficient
water utilization. The transition to TinyML enables faster and more cost-effective local decision-
making, reducing the dependence on centralized entities. In this work, we propose a solution
that can be adapted for effective leakage detection in real-world scenarios with minimum human
intervention using TinyML. We follow an approach that is similar to a typical machine learning
lifecycle in production, spanning stages including data collection, training, hyperparameter tuning,
offline evaluation and model optimization for on-device resource efficiency before deployment. In
this work, we considered an existing water leakage acoustic dataset for polyvinyl chloride pipelines.
To prepare the acoustic data for analysis, we performed preprocessing to transform it into scalograms.
We devised a water leak detection method by applying transfer learning to five distinct Convolutional
Neural Network (CNN) variants, which are namely EfficientNet, ResNet, AlexNet, MobileNet V1,
and MobileNet V2. The CNN models were found to be able to detect leakages where a maximum
testing accuracy, recall, precision, and F1 score of 97.45%, 98.57%, 96.70%, and 97.63%, respectively,
were observed using the EfficientNet model. To enable seamless deployment on the Arduino Nano
33 BLE edge device, the EfficientNet model is compressed using quantization resulting in a low
inference time of 1932 ms, a peak RAM usage of 255.3 kilobytes, and a flash usage requirement of
merely 48.7 kilobytes.

Keywords: CNN; EfficientNet; TinyML; accelerometer; acoustic data; scalogram; deep learning

1. Introduction

The presence of water is the distinguishing factor that allows Earth to harbor life.
Recent studies show that global water usage is predicted to surge by 55% and almost
a quarter of major cities worldwide are already grappling with some degree of water
strain [1]. A lack of safe drinking water is one of the consequences of water shortages.
Nearly 2.2 billion individuals globally are struggling to drink safe water [1].

In an attempt to deal with the alarming situation of water worldwide, different
initiatives have been proposed and deployed. We can cite, for example, water restrictions,
re-purposing water for non-potable use, and awareness campaigns.

However, one of the major problems faced by water management institutions world-
wide is the high amounts of drinkable water that are wasted because of leaking pipes in the
distribution networks [2]. Water wastage is caused by various factors, those that are related
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to human behavior, and those that are linked to the state and the quality of the pipes in
distribution networks. Indeed, pipe flaws can lead to substantial losses of quality water and
wasted energy in purification processes [3]. Morocco, representing a typical example from
the Global South countries struggling with water scarcity, faces significant water wastage
primarily due to leakages. According to a 2019 report by the World Bank, Morocco’s water
supply experiences a loss of approximately 40% due to leaks, inefficient use and aging
infrastructure [4]. This is a significant amount of water wastage that highlights the need for
more efficient water management practices. Water leakages in buildings’ pipelines are a
common and costly problem that can cause a wide range of issues. Leaks can be caused
by a variety of factors such as age, wear and tear, corrosion, damage from external factors
(temperature and humidity), poor installation, or the pipeline’s quality. They can occur in
any part of the pipeline system, from the main water line to individual fixtures, and can
result in significant water waste, increased water bills, structural damage, mold growth,
and other related problems. The early detection and repair of leaks is crucial to minimize
damage and avoid costly repairs.

Among the solutions to mitigate water stress is to improve water efficiency by reducing
the quantity of non-revenue water. To this end, various techniques for leakage detection
in buildings’ pipelines have been developed, ranging from visual inspection to advanced
technologies such as cameras, acoustic, pressure, acceleration, and flow sensors. In this
context, it is critical to identify the most effective and efficient methods to detect leaks.

In this work, we propose a solution for automatic water leakage detection to showcase
a form of technical intelligence in smart buildings. The objective of intelligent buildings is to
operate autonomously, possessing the ability to learn, forecast, and adapt without the need
for user intervention or awareness. Sensors and monitors can rapidly and automatically
adjust parameters such as room temperatures, lighting, shading, and the consumption
of energy and water [5]. The application of information and communication technology,
specifically through sensors and Machine Learning (ML) techniques, enhances the quality
of life for occupants within these smart buildings, especially in urban settings. Smart cities
should have buildings with smart water management technology to monitor, use and
reuse water resources in a more efficient and sustainable way. At the heart of smart water
management systems, we usually find technologies such as: (i) sensors to collect live data,
with reporting capabilities to a master system, (ii) artificial intelligence and ML models
to analyze vast amounts of data and identify patterns that would be difficult for human
beings to determine easily, and (iii) intelligent controllers capable of making some local
decision making.

Despite the improvements brought using traditional IoT systems and the different
ML techniques, these systems suffer from serious drawbacks. Traditionally, IoT systems
depended on offloading massive amounts of real-time sensor data to the cloud. Data is then
processed to make required decisions, and reply to the appropriate nodes. However, this
configuration faced major challenges, including high communication and processing loads
as a significant delay which does not serve the needs of real time applications. Further-
more, data privacy problems developed when third-party companies became engaged in
communication, storage, and decision-making processes. TinyML has emerged as a viable
option to effectively address these challenges through the convergence of tiny intelligent
devices and ML technologies [6,7]. TinyML is a specialized subset of edge computing [8,9]
which enhances intelligence on resource-constrained edge devices, with limited processing
power and memory, such as sensors and IoT objects. This enables devices to perform AI
tasks locally, often with very low power consumption, without relying on cloud-based
processing. As a result, the central entity’s work is drastically decreased or in certain
circumstances abolished completely, with just periodic updates of metadata information
required for supervision purposes.

This work delves deeper into smart water leak detection using TinyML, which would
permit the refinement of water utilities by detecting leaks and tracking water distribution
within a building.
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Detecting water leaks with ML requires the usage of various sorts of data in order to
effectively detect and locate probable leaks. Several data sources and approaches may be
used in this process to detect and prevent leaks effectively [10]. Among these, sensors’ data
play a pivotal role. Water distribution systems are equipped with numerous sensors that
capture real-time data such as water flow rates, pressure levels, and vibrations. ML systems
can discover abnormalities and trends that indicate anomalies by monitoring these metrics.
A quick decrease in pressure or an unusual rise in flow rate, for instance, might indicate a
possible leak. Acoustic data is another useful data source [10]. Water leaks frequently make
distinct noises that may be detected by sophisticated acoustic sensors or even by analyzing
audio recordings. ML algorithms that have been taught to recognize certain leak-related
sound patterns can be used to detect leaks automatically. By leveraging these diverse data
sources and employing ML algorithms, water utilities can improve their ability to detect
leaks promptly.

The aim of our work is to develop TinyML models that are capable of detecting water
leakage in pipes using acoustic data. In this study, we focus on deep learning models,
especially Convolutional Neural Networks (CNNs). CNNs are employed to detect water
leakages by utilizing the sensory input of a water distribution network. CNNs analyze the
regional similarities in sensor inputs, detecting leaks by identifying deviations in sensor
readings caused by changes in flow, pressure, or vibration. The CNN models effectively
capture these differences and use them to pinpoint the presence of leaks within the water
distribution network.

We also apply quantization on the different models to identify the best performing
and efficient model for a low-cost device which is Arduino Nano 33 BLE (https://store.
arduino.cc/products/arduino-nano-33-ble (accessed on 1 October 2023)).

The subsequent sections of this paper are structured as follows: Section 2 investigates
the related work, presenting previous research addressing the same issue. In Section 3,
we detail the materials and methods deployed for conducting our experiments. Section 4
presents the empirical results and discusses the outcomes derived from the experiments.
Lastly, Section 5 highlights some conclusions and directions for future work.

2. Related Works

Numerous studies have tackled the use of machine learning or deep learning based
CNN architectures to discern patterns and detect irregularities within water and wastewater
pipeline systems.

For example, Fang et al. [11] present a CNN-based method for identifying numer-
ous leakage spots. The CNN model collects important features from past leakage data
and applies them to real-time data to detect whether there is a leak. A simulated water
distribution system experimental platform was constructed within the AnhuWe Province
Key Laboratory of Intelligent Building and Building Energy Saving. The platform spans
200 m2, with pipe sections measuring 400 m in length and featuring pipe diameters rang-
ing from 30 cm to 50 cm. A total of 21 water pressure sensors were strategically placed
throughout the platform. They were able to collect a dataset that contains non-leakage
data and four types of pipe network pressure data under the conditions of single-point
leakages, two-point leakages, and three-point leakages. The experimental findings show
great detection accuracies, with 99.63%, 98.58%, and 95.25% accuracy attained for one, two,
and three leakage spots employing 21 sensors, respectively. When the number of sensors
is reduced to eight, the accuracies for one, two, and three leakage points drop to 96.43%,
94.88%, and 91.56%, respectively.

In Kang et al. [12], the authors conducted non-invasive measurement of the leakage
signals using piezoelectric accelerometers (PCB-393B31). These accelerometers possess
the ability to objectively measure vibrations and translate them into acceleration levels.
Furthermore, the authors introduced a local search technique based on graphs to locate
leaks. Their approach, however, was not completely tuned for categorizing 1-D signals. It
required feature extraction from the recorded signal data prior to applying the classification
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layers. Furthermore, the detection range was determined by the clarity and correlation of
acoustic signals, and the issue of mistakes caused by signals with low correlation coefficients
remained unsolved.

In a different study by Cody et al. [13], the authors designed a water system ex-
perimental test bed that is made up of many components, including a full-scale hydrant
and PVC pipes with bends. These pipes are made of grayscale schedule 80 PVC with a
152.4 mm inner diameter, which is extensively used in water distribution networks (WDNs)
in Canada and the United States. The authors used a CNN architecture whose output
is sent into a variational autoencoder (VAE), which tries to recover the original spectro-
gram image. The mean squared error (MSE) between the original image and its recon-
structed counterpart is used to calculate the loss function. This proposed method achieved
an accuracy of 97.2% for detecting a 0.25 L/s leak.

Shukla et al. [14] conducted a study where a CNN model is built using modified
layers of the pre-trained AlexNet network [15]. The purpose of the model is to classify
images based on different scenarios using a dataset of 9000 scalograms images. This was
achieved by considering 25 scenarios, with 12 accelerometers per scenario, 10 samples per
scenario, and three images per sample. The model excels at categorizing images based
on their corresponding leakage scenarios, accurately identifying healthy configurations as
well as various leaky situations with a 95% accuracy rate. Moreover, the average recall,
precision, and F1 score for both validation and testing data are 94% and 95%, respectively.
The findings of the authors indicate that the CNN model effectively detects true positive
labels with a high degree of accuracy.

Coelho et al. [16] introduced an IoT system that has the ability to monitor water
distribution systems and accurately detect and locate water leaks. The proposed solution
uses flow sensors and affordable microcontrollers (ESP32) to collect and process real-time
data. Five different classification algorithms were considered, namely, random forests,
decision trees, neural networks, support vector machines, and XGBoost. A total of 12 tests
were performed for each method in order to find the algorithm with the best accuracy
for implementation of the system. The random forest algorithm consistently achieved the
highest accuracy across various scenarios, making it the preferred choice with an accuracy
of nearly 85%.

Loukatos et al. [17] presented a system that solves the issues of traditional IoT systems.
Using embedded ML on a Raspberry Pi Pico microcontroller board, the authors trained a
neural network to recognize three characteristic kinds of water utilization profiles which are
Normal Use (NU), Water Leak (WL), and Water Waste (WW). The neural network structure
has an input layer with 200 features (window size), two hidden layers, with the first one to
have 20 neurons and the second one 10 neurons, and an output layer with three classes.
Upon evaluating the testing data, the system achieved an accuracy of 77.8% for the NU
category, indicating that it correctly identified Normal Use instances. Similarly, it achieved
a 100% success rate for both the WW and WL categories, accurately identifying Water
Waste and Water Leak scenarios. These performance results led to an expected accuracy of
98.5% for the final model when tested using the quantized (int8) version of the dataset.

The investigation of domestic water leak detection has also been examined through
the analysis of flow data [18]. This research has focused on training a random forest and a
CNN-based model in the cloud. The classification problem addressed in this study revolves
around detecting leak events from non-leak events. They also detect the magnitude of leaks
categorized as small (≤1 L/h), medium-sized (1 to 10 L/h), or large (≥10 L/h). The CNN
model exhibited the best performance with an accuracy, precision, and recall ranging from
92% to 96%. Additionally, the area under the Precision-Recall (PR) and Receiver Operating
Characteristic (ROC) curves consistently achieved high values, ranging between 97% and
99%. A summary of the salient features from the literature review is provided by Table 1.
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Table 1. Related work summary.

Research
Paper Data/Sensors Application

Domain
Model
Deployment

Classification
Problem Model(s) Results

[11]

Pressure data,
JOHNSON
CONTROLS
(P499ABS-401)
sensor

Water
distribution
systems

No specific
target

13 categories
depending on
leakage point and
position

CNN model Accuracy 97.33%

[12]

Accelerometer data,
piezoelectric
accelerometers
(PCB-393B31)

Water
distribution
systems

Backend server Leak, non-leak
conditions

Ensemble
1D-CNN-SVM
model,
graph-based
localization
algorithm

Accuracy
Sensitivity
Specificity
AUC

99.3%,
98.2%,
99.8%,
99.9%

[13] Acoustic signals,
hydrophone sensor

Water
distribution
networks

No specific
target

Leak, non-leak
conditions

CNN with VAE
(Variational
autoencoders)

Accuracy
Precision
Recall

97.2%,
92%,
96%

[14]

Accelerometer data
(available upon
request from
authors)

Infrastructure
monitoring

Offline
sensitivity
analysis–not
applicable

25 scenarios
depending on
leakage flow

CNN adapted
from AlexNet

Average
Accuracy

94–98%
depending
on locations

[16] Water flow data Agriculture IoT, cloud No leaks, micro,
minor, major leaks Random Forest Accuracy 85%

[17] Water flow data Smart
Agriculture Edge Normal Use, Water

Leak, Water Waste

Multi-layer
Perceptron
Neural
Network

Accuracy 98.5%

[18] Water flow data Domestic water Cloud
No leaks, small,
medium and large
leaks

CNN
Accuracy
Precision
Recall

92–96%

The existing literature in the area of water leakage detection systems reveals a no-
ticeable gap in the integration of TinyML methodologies. While prior efforts have been
dedicated to tackling the water leakage challenge, a significant portion of these solutions
has not capitalized on the potential benefits of TinyML approaches. Furthermore, the
few endeavors that do involve TinyML techniques often exhibit limitations, particularly
in terms of the scope and the considered CNN models. We make a contribution by ex-
perimenting with state-of-the-art CNN models, such as ResNets [19], MobileNet [20] and
EfficientNet [21] architectures, for highly accurate and efficient water leakage detection.
Moreover, a distinctive aspect of our work is the attention we devote to the integration
of these models into small-scale devices using TinyML. This two-fold approach not only
broadens the spectrum of the considered ML models but also paves the way for the seamless
incorporation of cutting-edge technology into an efficient real-time operational framework
of water leakage detection.

3. Materials and Methods

In this section, we detail the methodologies employed for the acquisition, prepro-
cessing, and analysis of the data central to our study. Figure 1 provides a comprehensive
visual representation of the approach we undertook to achieve this study. The process
involves several key stages, similar to traditional machine learning projects, with some
additional considerations for the constrained real-time processing requirements of the
embedded device. We preprocess the acoustic leakage data and generate scalogram images.
The different CNN models are trained and optimized. Hyperparameters are tuned on the
validation set, and we perform evaluation using a separate testing test. The chosen model
with the best testing metrics is optimized for on-device resource efficiency. In our research,
we compressed the model using quantization and evaluated the model’s performance
taking into account the device’s real-time hardware and real time constraints. Finally, we
generate the C++ packages to be deployed on the device. The development lifecycle was
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conducted on Edge Impulse (https://edgeimpulse.com/ (accessed on 15 March 2023)),
which is a platform that facilitates training models, tuning hyperparameters, as well as
optimizing the models to run on any edge device.

Figure 1. The systematic approach undertaken to achieve this study.

3.1. Data Acquisition and Preprocessing

In this work, we use an existing dataset curated by Shukla et al. [14], collected using a
small-scale experimental setup, that was built in the Clemson University campus (US), to
collect data on pipeline vibrations. This system made use of accelerometers positioned at
various locations throughout the pipe’s length. The test set included elements that mimic
real-world complexity, including pipes with various diameters, rounded bends, T-joints,
pipes at various heights, and various burial conditions. As shown in Figure 2, acceleration
data were gathered using Bruel and Kjaer (BK) 4507-B-006 accelerometers from a total of
12 locations dispersed throughout the pipeline system. The test setup included two PVC
pipes with diameters of 3 inches (76 mm) and 4 inches (102 mm). The 4-inch (102 mm)
PVC pipeline was only partially covered (shown in Figure 2 by a dotted line); the rest
of the system was left exposed. To make it easier to access the pipe surface and mount
the accelerometers for data collection, wooden boxes were erected on the subterranean.
Within the experimental test bed, the accelerometers were located at an average distance
of 30 inches (762 mm) for the unburied pipeline and 24 inches (610 mm) for the buried
pipeline. The test setup also comprised two leak simulators, one mounted on a PVC pipe
with a diameter of 3 inches (76 mm) and the other on a pipe with a diameter of 4 inches
(102 mm). More detailed information about them and the test setup can be found in [22,23].

As can be seen from Figure 2, accelerometers 1, 2, 3, 4, 5, and 6 detect whether a
leak occurred in the leak simulator number 1, which is located in the unburied section.
Similarly, accelerometers 7, 8, 9, 10, 11, and 12 detect leaks in the leak simulator number 2,
which is located in the buried section. Table 2 shows the recorded flow information for all
25 situations that were acquired from the flowmeter. Each scenario’s acceleration signal
data was recorded once the pipeline system reached a stable flow condition, as shown by
repeatable flow-meter readings. Ten samples of 15-s data were taken for each scenario
in order to guarantee precise readings and remove inadvertent biases or inaccuracies. To
diversify the dataset, the size of leaks and the water flow are changed in each scenario [14].

Our research focuses on detecting whether a pipeline is leaky or not; thus, we pro-
cessed the data in such a way it aligns with our objective by categorizing the data into
two classes which are ‘Leak’ and ‘NonLeak’.

In order to make use of CNN models in the water leak context, the acoustic data should
be converted into scalogram images. A scalogram is a representation of the continuous
wavelet transform’s (CWT) absolute value that demonstrates how a signal varies with
frequency and time [24]. In contrast, the fast Fourier transform (FFT) of the signal, which
splits it into smaller parts, yields a spectrogram. Scalograms break down the signal into
wavelets, whereas spectrograms break it down into infinite-duration sinusoids. The signal
features represented in scalogram images are defined by wavelet parameters. Wavelets are
useful for detecting sudden shifts in the signal by localizing it in both frequency and time,
while scalograms are appropriate for studying low-frequency acceleration signals [24].

https://edgeimpulse.com/
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Figure 2. Schematic layout of the experimental pipeline setup (reprinted, with permission, from [14]
@ 2020 Elsevier).

We were able to generate 1440 ‘NonLeak’ scalograms and 1680 ‘Leak’ scalograms,
resulting in a total of 3120 scalograms. We have successfully achieved the crucial task of
balancing the dataset by using data augmentation techniques, namely random cropping and
noise injection. Random cropping involves randomly cropping a portion of the scalogram
images during training; it helps the model become more robust to variations. As for noise
injection, it makes the model more robust by simulating real-world conditions where data
is often corrupted by various forms of noise. This transformative process has not only
mitigated class imbalance but has also enhanced the generalization of our machine learning
models by reducing overfitting.

Figures 3–14 display the scalogram images of different scenarios of Leak, NonLeak,
buried and unburied sections of the pipeline setup. Comparing the images, it is evident that
the scalogram images of the buried section exhibit less noise and clearer features (indicated
by heavy green spots) compared to the scalogram images of the unburied section. However,
differentiating between scalogram images corresponding to non-leaky (Figures 3–8) and
leaky (Figures 9–14) is challenging.



Sensors 2023, 23, 9210 8 of 17

Table 2. The water leakage data scenarios (reprinted, with permission, from [14] @ 2020 Elsevier).

Scenarios Leak 1 (GPM) Leak 2 (GPM) Flow Rate (GPM)

SC1 0 0 163

SC2 1 0 160.6

SC3 1 1 159.2

SC4 5.28 1 157.7

SC5 14.73 1 156.8

SC6 22.63 1 152.8

SC7 0 1 163.5

SC8 0 5.19 160

SC9 1.04 5.19 159

SC10 1.04 14.08 156

SC11 1.04 23.46 154

SC12 0 23.46 153

SC13 4.73 23.46 152

SC14 13.77 23.46 148

SC15 22.63 23.46 143

SC16 22.63 4.53 150.9

SC17 22.63 13.77 146

SC18 0 13.77 156

SC19 14.4 13.77 149

SC20 14.4 5.66 152

SC21 4.73 5.66 156

SC22 4.73 13.77 152

SC23 4.73 0 158.8

SC24 13.77 0 157

SC25 21.12 0 155

Figure 3. NonLeak|Unburied|Scalogram 1.
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Figure 4. NonLeak|Unburied|Scalogram 7.

Figure 5. NonLeak|Unburied|Scalogram 18.

Figure 6. NonLeak|Buried|Scalogram 1.

Figure 7. NonLeak|Buried|Scalogram 23.
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Figure 8. NonLeak|Buried|Scalogram 25.

Figure 9. Leak|Unburied|Scalogram 5.

Figure 10. Leak|Unburied|Scalogram 17.

Figure 11. Leak|Unburied|Scalogram 23.
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Figure 12. Leak|Buried|Scalogram 6.

Figure 13. Leak|Buried|Scalogram 12.

Figure 14. Leak|Buried|Scalogram 19.

3.2. Water Leak Detection CNN Models

In this work, we used transfer learning to train several CNN models, namely AlexNet,
ResNet, EfficientNet, MobileNet V1, and MobileNet V2. Each of these models possess
distinct architectural characteristics and computational efficiencies, making them valuable
candidates for our research.

AlexNet, developed by Krizhevsky et al. in 2012 [15], is a deep CNN model that
played a pivotal role in revolutionizing image classification tasks. It consists of multiple
convolutional layers, followed by fully connected layers, and employs techniques like
ReLU activation, dropout regularization, and overlapping pooling. AlexNet demonstrated
exceptional performance and significantly outperformed other existing models at the time
of its introduction in spite of its relatively small size (61 million parameters).

ResNet, short for Residual Network, introduced by He et al. in 2015 [19], addressed
the challenge of training extremely deep neural networks. It introduced the concept of
residual connections, allowing the network to learn residual mappings and effectively
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tackle the vanishing gradient problem. By utilizing skip connections, ResNet enabled the
training of deeper networks with improved accuracy and ease of optimization.

EfficientNet [21] aims to optimize both model accuracy and computational efficiency.
The model’s architecture was obtained using a neural architecture search to find a good
trade-off between model size and performance, making it highly efficient for resource-
constrained environments. EfficientNet also employs a compound scaling method to
systematically balance the depth, width, and resolution of the network. These features
make EfficientNet transfer well to achieve state-of-the-art accuracy on several benchmark
datasets, thus, it has become increasingly popular due to its ability to achieve impressive
results with limited computational budgets.

MobileNets, introduced by Howard et al. in 2017 [20], focus on efficient mobile appli-
cations and low-power devices. MobileNets make use of depthwise separable convolutions
to reduce the computational cost while maintaining reasonable accuracy. MobileNet archi-
tectures are well-suited for resource-constrained environments, enabling real-time image
classification on devices with limited processing capabilities. In this research, we used two
versions from this family of models, namely MobileNet V1 [20] and MobileNet V2 [25].

All five models have been pre-trained on the ImageNet dataset—a large-scale collection
of approximately 1.2 million labeled images spanning 1000 different categories—to ensure
a strong foundation in visual recognition and feature extraction. This extensive pre-training
process equips the models with a rich understanding of a wide range of objects, scenes,
and concepts, making them valuable tools for a variety of computer vision tasks.

These model choices reflect a balance between model complexity, resource efficiency,
and historical significance, tailored to the specific requirements and constraints of the water
leak detection project. Moreover, these models have demonstrated their effectiveness not
only in traditional image classification but also in the context of scalogram images.

More details about the architectures of the used models can be found in Table 3.

Table 3. Models’ architecture.

Model Architecture

AlexNet [15]
Convolutional layers with kernel sizes (11 × 11, 5 × 5, 3 × 3), ReLU
activation, and overlapping max pooling, followed by fully connected
layers with dropout and softmax activation for classification.

ResNet [19]

Residual blocks with shortcut connections. Each block consists of
multiple convolutional layers with batch normalization and ReLU
activation. Global average pooling is applied followed by fully
connected layers with softmax activation for classification.

EfficientNet [21]

Compound scaling technique that scales the depth, width, and resolution
of the network. It consists of convolutional layers with efficient
bottleneck structures, swish activation, and batch normalization. Global
average pooling is applied followed by fully connected layers with
softmax activation for classification.

MobileNet V1 [20]

Depthwise separable convolutional layers, which split the standard
convolution into separate depthwise and pointwise convolutions. It
includes ReLU activation, batch normalization, and depthwise and
pointwise convolutional layers. Max pooling is applied, followed by
fully connected layers with softmax activation for classification.

MobileNet V2 [25]

Inverted residual blocks with linear bottlenecks. It employs depthwise
separable convolutions, skip connections, and expansion layers to
improve efficiency. The architecture also incorporates ReLU6 activation,
batch normalization, and global average pooling. Fully connected layers
with softmax activation are used for classification.

We employed transfer learning techniques to leverage pre-existing knowledge in
various domains and transfer it to our leak detection problem by capturing intricate patterns
and representations in the water leak detection dataset. In essence, transfer learning reduces
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the time and computational resources required for model development. Considering that
our dataset is small, as a transfer learning strategy, we froze the downloaded parameters
and we trained only the parameters of the output layer. By strategically freezing the early
layers of the neural network during training, we ensure that the weights and parameters
in those layers remained unchanged, allowing the model to retain the knowledge it had
acquired during its initial training phases.

We used ADAM as optimization algorithm, a technique that seamlessly combines
two crucial optimization strategies [26]: Nesterov momentum, which aids in achieving
better convergence, and adaptive learning rates which help adapting the learning rate for
each parameter. We further employed a mini-batch gradient descent approach to make a
good estimation of the error and the gradients. Our training strategy involved a specific
number of epochs, which were determined by the tuner based on the optimal validation
results, and this was around 50 epochs. To avoid overfitting, the dropout technique is
used by the different models we applied transfer learning on. Furthermore, we used data
augmentation which usually enhances generalization.

To tune the hyperparameters, a total of 15 combinations of the number of epochs,
learning rate, and mini-batch size were tested over all five models. The details of the differ-
ent combinations are listed in Table 4. The goal was to find the optimal hyperparameters
that can improve the training time while improving the classification accuracy.

Table 4. Combinations of hyperparameters.

Cases Epochs Learning Rate Mini-Batch Size

Case 1 10 5 × 10−3 8

Case 2 25 5 × 10−3 8

Case 3 50 5 × 10−3 8

Case 4 10 5 × 10−4 8

Case 5 25 5 × 10−4 8

Case 6 50 5 × 10−4 8

Case 7 10 5 × 10−4 16

Case 8 25 5 × 10−4 16

Case 9 50 5 × 10−4 16

Case 10 10 5 × 10−4 32

Case 11 25 5 × 10−4 32

Case 12 * 50 5 × 10−4 32

Case 13 10 5 × 10−5 32

Case 14 25 5 × 10−5 32

Case 15 50 5 × 10−5 32
* Case showing highest accuraccies.

We evaluated the five models and compared the results. The performance of the
models is evaluated based on accuracy, recall, precision and F1 score metrics [27,28]. The
considered metrics offer a comprehensive assessment of model performance, catering
to different aspects of prediction quality. Accuracy provides a holistic view of correct
classifications, making it a good starting point. However, in many real-world scenarios,
imbalanced datasets or specific business needs require a deeper analysis. Recall is crucial for
identifying the proportion of true leak detection alerts among actual positives, emphasizing
the model’s ability to catch relevant events. Precision complements recall by measuring
the proportion of detected leaks among predicted positives, focusing on minimizing false
positives. The F1 score strikes a balance between precision and recall, making it a reliable
metric when striving for a harmonious trade-off between minimizing false positives and
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false negatives. These metrics together ensure a more nuanced evaluation and guide model
refinement tailored to specific project objectives and constraints.

3.3. Target Deployment

The target device for deployment is an Arduino Nano 33 BLE Sense (Cortex-M4F
64 MHz, Arduino, Somerville, MA, USA), which is characterized by its compact size and
suitability for various applications. With a maximum available RAM of 256 kB and a ROM
of 1024 kB, the device offers limited computational resources. The Arduino Nano 33 BLE is
equipped with five sensors that facilitate diverse data collection capabilities. Particularly
relevant to our study is the acoustic data sensor. The onboard MEMS microphone enables
the acquisition of acoustic signals, allowing for sound analysis and recognition tasks. Addi-
tionally, the integrated digital barometric sensor aids in capturing atmospheric pressure
variations, which can be essential for understanding fluid dynamics and airflow patterns.

State-of-the-art CNN models, while powerful, are often too large to be deployed on a
compact device, such as an Arduino Nano 33 BLE Sense, due to their resource-intensive
nature. To address this challenge, we use post-training quantization offered by the Edge
Impulse platform, a feature to optimize models based on implementations provided by the
Tensorflow Lite Micro library. This approach involves strategically reducing the precision of
a model’s internal representations by converting 32-bit floating-point parameters into lower
precision int8. This helped us to significantly reduce the amount of memory (ROM) the
model requires, making it much more feasible for deployment on a tiny device. Additionally,
this reduction in memory usage results in faster computation, enabling quicker predictions
and responses. In essence, post-training quantization serves as a crucial optimization step
that allows us to retain the core functionality and accuracy of the models while tailoring
them to the constraints of the device’s limited resources.

Considered that the water leak detection models are to be deployed in Arduino Nano
33 BLE Sense, other metrics were taken into consideration, namely the inference time
which is how quickly the models can make predictions, the model’s memory usage and
storage footprint. These factors are crucial because we want to make sure that the models
are efficient enough and can fit and perform smoothly on an Arduino Nano 33 BLE. By
examining their classification metrics, computational efficiency, and suitability for the tiny
device, we were able to make informed decisions regarding the model selection.

To deploy the ML model on the Arduino Nano 33 BLE, we convert our application
into a fully optimized C++ source code that can be integrated as an application on the
device. The customizable library packages contain both the preprocessing block that turns
acoustic data into a scalogram, and the machine learning block for inference; besides all of
the external required libraries, everything is turned into a single package with all available
source code.

4. Results and Discussion

In order to train and validate the CNN models, we used a split of 72%-10%-18%
for training, validation and testing respectively. A 5-fold cross-validation approach is
adopted where different sets of training and validation were randomly selected in each
fold. Through training and evaluation cycles, it became evident that this split guaranteed
a balance between providing the model with a enough and diverse training data and
ensuring a robust assessment of its generalization performance. Table 5 shows the results
of our experiments.

As Table 5 shows, EfficientNet emerged as the model that showed the best results. The
reasons for this outstanding performance were numerous. First of all, EfficientNet’s design
consists of a revolutionary compound scaling technique that uniformly scales the depth,
width, and resolution dimensions, allowing it to outperform other models. Due to this
quality, EfficientNet was able to balance model size and accuracy, providing superior per-
formance. Furthermore, extensive pre-training on massive datasets helps EfficientNet learn
rich and generalized representations. Its effective network block designs and depth-wise
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separable convolutions aid in lowering computational costs while keeping expressive capa-
bility. As a result, EfficientNet’s innovative architectural design and enhanced efficiency
features were crucial in providing maximum performance for our research.

Table 5. Models’ evaluation on validation and testing sets (The best results were made bold).

Model Accuracy Precision Recall F1 Score

AlexNet
validation 98.00% 99.10% 96.97% 98.02%
testing 96.24% 96.70% 95.46% 96.08%

ResNet
validation 99.20% 100.0% 98.43% 99.21%
testing 96.76% 96.70% 96.89% 96.80%

EfficientNet
validation 99.55% 99.10% 100.0% 99.55%
testing 97.45% 96.70% 98.57% 97.63%

MobileNet V1
validation 98.65% 99.00% 98.51% 98.75%
testing 96.24% 96.70% 95.46% 96.08%

MobileNet V2
validation 99.25% 100.0% 98.52% 99.26%
testing 96.76 % 96.70% 96.89% 96.80%

ResNet comes second for several reasons. ResNet’s deep residual connections allow for
effective propagation of gradients, addressing the issue of vanishing gradients and enabling
the network to be trained more deeply. The skip connections in ResNet facilitate the flow of
information, helping the model capture more complex patterns and features. With a deeper
architecture compared to MobileNet and AlexNet, ResNet has a greater capacity to learn
intricate representations, which can lead to improved performance. Although ResNet’s
computational complexity is higher than EfficientNet and MobileNet, its architectural
design and ability to handle deeper networks contribute to its notable performance, placing
it in the second position for accuracy in our study. However, this emphasis on depth alone
does not necessarily guarantee optimal performance. The deeper architecture of ResNet
also leads to higher computational complexity, which may limit its practicality in certain
resource-constrained scenarios.

In light of the constraint of the device considered for deployment, our research has
led us to compress the five models using quantization; however, two of them, namely
EfficientNet and MobileNet V1, fit within the device characteristics range. Table 6 shows
the inference time, ram and flash usage of the developed models.

Among the various models explored, EfficientNet emerged as the optimal choice,
effectively striking a balance between good performance and compatibility with our tiny
device by adhering to its stringent resource limitations.

Table 6. Models’ inference time, peak ram and flash usages.

Model Inference_Time (MS) Peak Ram Usage (KB) Flash Usage (KB)

AlexNet 20,843 132.4 20.7 × 103

ResNet 1958 333.8 640.7

EfficientNet 1932 255.3 48.7

MobileNet V1 3156 253.5 310.8

MobileNet V2 5200 720.8 580.2
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5. Conclusions

This study highlights the significance of developing advanced techniques for leak
detection, especially in the context of water distribution networks and buildings’ pipelines.
The integration of deep learning algorithms, such as the proposed approach utilizing
scalogram images of vibration signals, shows promise in efficiently identifying and locating
leaks. By leveraging TinyML, which combines sensor technology and ML at the network
edges, real-time data collection, analysis, and localized decision-making can be achieved.
This not only enhances the accuracy and efficiency of leak detection but also reduces
reliance on centralized entities.

The experimental results show that EfficientNet underscores our commitment to not
only achieving noteworthy performance but also to ensuring seamless integration into the
tiny device considered for deployment. Its capacity to achieve good performance with
resource-efficient design positions it as the ideal candidate for our deployment objectives,
reaffirming our endeavor to harness cutting-edge technology for practical applications on
constrained hardware.

Moreover, the high recall achieved by the model also guarantees a reduced number of
false alarms. The edge solution can process data locally and filter out noise or false alarms
before sending alerts, reducing the likelihood of unnecessary responses.

This research has culminated in the development of a water leak detection embedded
model. As we move forward, our focus will shift towards the practical implementa-
tion of a water leak detection solution in domestic smart buildings. This step entails
the translation of our findings to seamlessly integrate the embedded ML system into a
real-world environment with hardware and environmental constraints. The deployment
process will encompass rigorous testing, optimization, and fine-tuning to ensure reliability
and effectiveness.
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