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Abstract: Surface urban heat islands (SUHIs) are mostly an urban ecological issue. There is a growing
demand for the quantification of the SUHI effect, and for its optimization to mitigate the increasing
possible hazards caused by SUHI. Satellite-derived land surface temperature (LST) is an important
indicator for quantifying SUHIs with frequent coverage. Current LST data with high spatiotemporal
resolution is still lacking due to no single satellite sensor that can resolve the trade-off between spatial
and temporal resolutions and this greatly limits its applications. To address this issue, we propose
a multiscale geographically weighted regression (MGWR) coupling the comprehensive, flexible,
spatiotemporal data fusion (CFSDAF) method to generate a high-spatiotemporal-resolution LST
dataset. We then analyzed the SUHI intensity (SUHII) in Chengdu City, a typical cloudy and rainy
city in China, from 2002 to 2022. Finally, we selected thirteen potential driving factors of SUHIs
and analyzed the relation between these thirteen influential drivers and SUHIIs. Results show that:
(1) an MGWR outperforms classic methods for downscaling LST, namely geographically weighted
regression (GWR) and thermal image sharpening (TSHARP); (2) compared to classic spatiotemporal
fusion methods, our method produces more accurate predicted LST images (R?, RMSE, AAD values
were in the range of 0.8103 to 0.9476, 1.0601 to 1.4974, 0.8455 to 1.3380); (3) the average summer
daytime SUHII increased form 2.08 °C (suburban area as 50% of the urban area) and 2.32 °C (suburban
area as 100% of the urban area) in 2002 to 4.93 °C and 5.07 °C, respectively, in 2022 over Chengdu
City; and (4) the anthropogenic activity drivers have a higher relative influence on SUHII than other
drivers. Therefore, anthropogenic activity driving factors should be considered with CO, emissions
and land use changes for urban planning to mitigate the SUHI effect.

Keywords: surface urban heat island; land surface temperature; spatiotemporal fusion; spatial
downscaling

1. Introduction

The surface urban heat island (SUHI)—a phenomenon in which the land surface
temperature (LST) tends to be higher in urban center zones than surrounding suburban
surfaces, is usually measured using satellite thermal remote sensing data [1,2]. The SUHI
effect is one of the greatest concerns for its adverse impacts on air and water quality,
energy consumption, and urban dwellers’ health during heat wave events [3]. The SUHI
phenomenon has been observed worldwide, especially in developing countries such as
China [4]. In the summer of 2022, China faced its most severe heatwave in over six
decades [5]. The province of Sichuan, situated in western China experienced record-
breaking temperatures. This exacerbated the challenges faced by urban residents, including
power outages, which were compounded by a widespread drought that severely affected
both food and factory production across the province [6,7]. Consequently, accurately
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quantifying the intensity of the SUHI effect (SUHII) and better understanding the driving
factors has become imperative. These measures not only aid in assessing potential heat-
related risks but also contribute to future city management strategies, guiding governmental
decision-making [8].

LSTs retrieved from satellite thermal infrared (TIR) bands are key indicators for quan-
tifying SUHIs [9]. Satellite remote sensing has supplied effective and unique methods for
acquiring LST data with frequent coverage. However, adverse atmospheric conditions
coupled with long revisit cycles have largely limited satellite-derived LST applications
in urban thermal environments [10]. Especially in the most rainy and cloudy cities in
China, the large missing rate of satellite data is a common and serious problem. For a
single satellite sensor, a tradeoff occurs between spatial and temporal resolution. Thus,
there is a significant requirement to develop a method capable of integrating remotely
sensed data from diverse sensors to produce fine spatiotemporal resolution LSTs for a
better understanding of SUHI dynamics [11]. In the last ten years, numerous methods
for spatiotemporal fusion have been suggested to achieve high-resolution LSTs by com-
bining the high spatial resolution and the high temporal frequency of diverse remote
sensing data sources [12]. The available spatiotemporal data fusion approaches that have
been experimentally tested on LST products are mainly classified into four categories:
weighted function-based [13], unmixing-based [14], learning-based [15], and hybrid meth-
ods [16]. The spatiotemporal fusion technique for LST data offers the opportunity to
further understand the SUHI phenomenon [17,18]. In the present review, the spatial
and temporal adaptive reflectance fusion model (STARFM) [14], the enhanced STARFM
(ESTARFM) method [19], the bilateral filter [9], the spatiotemporal adaptive data fusion
algorithm (SADFAT) [20], and the spatiotemporal integrated temperature fusion model
(STITEM) [21] in the weight function-based category; the pixel-based multi-spatial res-
olution adaptive fusion modeling framework (pMSRAFM) [22] in the unmixing-based
category; the sparse-representation-based spatiotemporal reflectance fusion model (SPS-
FTM) [23] in the learning-based category; and the flexible spatiotemporal data fusion
(FSDAF) method [24] in the hybrid category. Although great progress has been made, most
of these spatiotemporal fusion methods are unable to accurately capture the spatial details
of LSTs, predict abrupt events, and preserve the spatial continuity of LSTs within urban
areas simultaneously [25]. The above methods have their own advantages and limitations.
For example, the weight function-based category has the most methods developed, owing
to high computation efficiency, simple parameters, and strong robustness. However, this
category has weaknesses in the strong temporal variability in LSTs that makes them more
sensitive to model parameters [16], particularly, the size of the moving window, and it is
not feasible in heterogeneous urban areas. FSDAF can simultaneously predict dense time
series LST data owing to its ability to predict abrupt changes and gradual change events,
but also easily causes spatial discontinuity in urban LST data. Shi et al. [26] proposed a
comprehensive flexible spatiotemporal data fusion (CFSDAF) method based on FSDAF
and generated a high-spatiotemporal-resolution LST image, which can preserve the spatial
continuity and spatial details of LST in urban areas. At present, the application of LST in
urban environment studies requires more heat-related information at the urban district
level with high spatial resolution [27]. However, high-resolution LSTs may also be derived
from the Landsat series TIR channels (i.e., Landsat 5, 8, and 9) at about 100 m but remain
far from meeting the needs for improving SUHI monitoring accuracy.

In this study, Chengdu, a typical cloudy and rainy city in southwestern China has been
selected as the study area. Chengdu has very few satellite images that are available for use,
due to the annual average number of 340 days that experience cloudy and rainy weather.
The main purposes of this study were to (1) propose a multiscale geographically weighted
regression (MGWR) coupling CFSDAF method to generate a 30 m spatial resolution and
8 days temporal resolution summer LST dataset from 2002 to 2022, and produce higher
accuracy in urban areas compared to other traditional spatiotemporal fusion methods;
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and (2) perform quantitative analyses to investigate the influence of multiple nature-
anthropogenic driving factors on the summer SUHII in Chengdu City.

2. Data and Methods
2.1. Study Area

Chengdu, the capital city of Sichuan province and the sixth largest city in China
(103°57’ E-104°20" E, 31°15' N-31°41" N), has experienced rapid urbanization in the 21st
century. In 2022, Chengdu’s gross domestic product (GDP) reached 2080 billion US dollars.
The population of the city has exceeded 21.2 million people, 15.4 million of them living in
urban areas. Rapid urbanization induces significant SUHI effects, especially in summer,
which could lead to extreme heat events. From 5 to 24 August 2022, Chengdu experienced
a record months-long heatwave, which exceeded 40 °C on seven days [28]. The long-term
extreme heat phenomenon easily leads to air pollution and public health problems. This
study focuses on an area of 60 km x 54 km in Chengdu, which covers the core urban area,
a smaller suburban area with 50% of the urban area, and a larger suburban area with 100%
of the urban area (Figure 1). One challenging problem for monitoring the summer SUHI
effect in Chengdu is the large rate of missing satellite LST data owing to many cloudy and
rainy days throughout the whole year.
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Figure 1. Location of the study area.

2.2. Data Description and Preprocessing

The proposed MGWR-CFSDAF method mainly needs, at least, a pair of high and
low-spatial-resolution LST data on the prior date and one set of low-spatial-resolution LST
data on the predicted date. In this study, due to limitations of cloudy and rainy weather,
we can only select seventeen Landsat LST and HJ-1B LST data from 2002 to 2022 as the
high spatiotemporal LST data through blending with low-spatial-resolution MODIS LST
data for predicting high-spatiotemporal-resolution LST data. As shown in Figure 2, there
are ten high-spatial-resolution LST images without clouds and seven LST images have a
cloud cover ranging from 0% to 10%.
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Figure 2. The selected high-spatial-resolution LST data for generating and evaluating the predicted
LST results.

(1) Landsat 5/8/9 LST data. The Landsat thermal infrared (TIR) channels have a
minimum 16-day revisit cycle and spatial resolution of about 100 m, as Landsat 5 collects
TIR channel data at 120 m spatial resolution while Landsat 8/9 has two TIR bands at
100 m spatial resolution. Landsat images are available from the U.S. Geological Survey
(http:/ /earthexplorer.usgs.gov/, accessed on 20 January 2023). Radiometric calibration
and atmospheric correction were performed. We retrieved Landsat LST data from Landsat
5 TIR band 6 and Landsat 8/9 TIRS band 10 using a generalized single-channel method.
For details of the generalized single-channel method, please refer to Jimenez-Munoz
and Sobrino [29]. The details of the Landsat, HJ-1B, and MODIS used in this study are
summarized in Table 1.

(2) HJ-1B LST data. The HJ-1B images used in this study are level-2 output products
and were obtained from the China Center for Resources Satellite Data and Application
(https:/ /data.cresda.cn/#/mapSearch/, accessed on 25 January 2023). The spatial resolu-
tion of the HJ-1B TIR band is 300 m with a 4-day revisit cycle [30]. The HJ-1B data were
geometrically corrected using calibrated Landsat 8 images within the study area. The error
was controlled within 0.5 pixels to meet the geometry correction requirements. Then, the
HJ-1B data were radiometrically calibrated using calibration coefficients [31] to convert the
digital number (DN) values of the raw HJ-1B images into satellite radiance images [32].
Finally, the ENVI-FLAASH module was used for atmospheric correction on each HJ-1B
CCD image after radiometric calibration. In this research, LST data were retrieved from the
thermal band IRS4 of the HJ-1B imagery using the single-channel algorithm. For a more
comprehensive description of the single-channel algorithm, please refer to the work of
Duan et al. [33].
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Table 1. The characteristics of inputs Landsat, HJ-1B, MOD11A1 and MOD11A2 LST satellite LST
data of the proposed method.

LST Image Pair on #; (a Prior Date)

Year MOD11A2 on t; (the Prediction Date)
Landsat—MOD11A1 Pair = HJ-1B—MOD11A1 Pair
7-14 April, 9-16 May, 25 May-1 June, 12-19 July, 21-28
2002 25 June / August, 29 August-5 September, 6-13 September
1-8 May, 17-24 May, 25 May-1 June, 18-25 June, 20-27 July,
2006 19 May / 28 July—4 August
2009 / 20 April 17-24 May, 2-9 June, 22-29 September
2011 / 23 August 17-24 May, 1219 July, 5-12 August, 21-28 August, 29
August-5 September
2012 / 27 April 7-14 April, 22-29 April, 12-19 August
. 7-14 April, 15-22 April, 17-24 May, 25 May-1 June, 2-9
2013 / 20 April June, 10-17 June, 13-20 August, 21-28 August
2014 / 28 July 7-14 April, 12-19 July, 20-27 July
2015 / 16 April 15-22 April, 1-8 May, 25 May-1 June, 12-19 July, 20-27 July,
5-12 August
2016 / 16 May 30 April-7 May, 8-15 May, 1-8 June, 11-18 July, 5-12
September
2017 1 May / 28 July—4 August
2018 2 April / 23-30 April, 20-27 July, 21-28 August, 29 August-5
September
7-14 April, 23-30 April, 9-16 May, 2-9 June, 5-12 August,
2019 11 August / 21-28 August, 22-29 September
2022 21 April / 7-14 April, 23-30 April, 4-11 July, 28 July—4 August, 5-12

August, 13-20 August

(3) MODIS LST data. One kilometer spatial resolution Daily Terra MODIS daytime LST
(MOD11A1) data and 8-day Terra MODIS daytime LST (MOD11A2) data were obtained
using the generalized split-window algorithm from the Geospatial Data Cloud (http:
//www.gscloud.cn/, accessed on 28 January 2023). Numerous research findings indicate
that the root mean square error (RMSE) of the MODIS LST data are within 2.0 K and
exhibit high accuracy in major global cities [34]. MODIS LST data were re-projected
to the same coordinate system as Landsat and HJ-1B using MODIS Reprojection Tools
(MRT). Finally, we utilized the quality control band within MOD11A1 and MOD11A2 to
identify pixels affected by cloud contamination, with the purpose of excluding them from
subsequent analysis.

(4) In situ LST. In situ hourly LST data were collected from Chengdu Meteorological
Office’s 7 weather stations distributed across Chengdu City in summer (April to September)
from 2002 to 2022. In situ LSTs were collected based on SI-111 infrared radiometers with an
accuracy of £0.2 K.

(5) Potential driving factors of SUHIL To explore the potential driving factors of SUHII
in Chengdu City, thirteen driving factors were selected in this study and divided into
four types: the satellite precipitation product (PRE), wind speed (WS), relative humidity
(RH), and white sky albedo (WSA) form the climate types; nighttime light index (NLI),
perpendicular impervious surface index (PISI), and PM, 5 form the anthropogenic activity
types; population counts (POP), population density (PD), and gross domestic products
(GDP) form the population shift types; and enhanced vegetation index (EVI), bare-soil
index (BI), and normalized difference water index (NDWI) form the natural land surfaces
types. Table 2 shows the potential driving factors based on available data selected in
this study.
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Table 2. The potential driving factors selected in this study.

Type Name Data Source Description Spatial/Temporal Resolution
The satellite precipitation product http:/ /www.cpc.ncep.noaa.gov/, PRE comes from the satellite precipitation data set 0.25° /30 min
(PRE) [35,36] accessed on 3 February 2023 (CMORPH) [37,38], it can produce global precipitation estimates. ’
ERADS is a climate reanalysis dataset developed by the European
Wind speed (WS) [39,40] https://cds.climate.copernicus.eu/, Centre for M'edlum—Rénge Weather F.Oli:ecaStS (ECMWF) tt PrOVIdeS o
) Relative humidity (RH) [41] accessed on 8 February 2023 comprehensive and high-resolution information about various 0.25° /hourly
Climate atmospheric parameters, including wind speed [42] and
humidity [43] on a global scale.
WSA is measured or estimated from the MCD43A3 dataset [46,47]
. https:/ /search.earthdata.nasa.gov/, and is a parameter that describes the amount of solar radiation
White sky albedo (WSA) [44,45] accessed on 3 February 2023 reflected by the Earth’s surface under overcast or 500 m/16 days
white-sky conditions.
NLI utilizes nighttime light data from satellite observations to
https:/ /ngdc.noaa.gov/, accessed on 1 assess human activities and urbanization during the night. The
March 2023 DMSP-OLS (Defense Meteorological Satellite
Nighttime light index (NLI) [48,49] https: Program—Operational Linescan System) and NPP-VIIRS (National 1000 m/monthly
/ /ladsweb.modaps.eosdis.nasa.gov/, Polar-orbiting Partnership—Visible Infrared Imaging Radiometer
accessed on 25 February 2023 Suite) [50,51] datasets supply the necessary nighttime light data for
NLI calculation.
Anthropogenic PISI is a spectral index used to estimate impervious surfaces, such
activity . . . A ) ; as roads, buildings, and pavements, from the blue band (o) and
Perpendlcu.lar impervious surface https:/ /search.earthdata.nasa.gov/, near-infrared band (p,;,) of the MOD09A1 data. The formula for 500 m/8 days
index (PISI) accessed on 18 February 2023
PISI can be expressed as follows [52,53]:
PISI = 0.8192p;,, — 0.57350,,;-+0.075
ChinaHighPM; 5 is a high-quality dataset in the CHAP series,
iding comprehensive, high-res, long-term ground-level air
PM; 5 https:/ /zenodo.org/records /6398971, provi . . R
[54,55] accessed on 19 February 2023 pollutant data for China. Generated using Al and various data 1000 m/monthly

sources, it captures spatiotemporal air pollution variations, offering
valuable insights into China’s air quality.
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Table 2. Cont.
Type Name Data Source Description Spatial/Temporal Resolution
Population counts (POP) https:/ /hub.worldpop.org/, accessed on The population data we collected are two products of the WorldPop
’ . . . . 1000 m/yearly
- . 11 March 2023 dataset [56]. They describe the residential population where they
Population density (PD) [57,58] actually live
Population shift GDP is collected from the Geographic Data Sharing Infrastructure,
. http:/ /www.gis5g.com/, accessed on global resources data cloud, which indicates the economic status
Gross domestic products (GDP) [59,60] 16 March 2023 within the city. Herein, the GDP density was selected to quantify 1000 m/yearly
surface urban heat island.
https:/ /search.earthdata.nasa.gov/ EVIis derived from the MOD13A3 dataset [63—65], it can be used
Enhanced vegetation index (EVI) [61,62] accessed on 13 March 2023 for a long-term spatiotemporal analysis of vegetation greenness 1000 m/monthly
over the global.
Bl is valuable for detecting and quantifying the amount of exposed
bare soil, aiding in the assessment of land cover changes and other
https:/ / h earthdata.n: ./ soil-related phenomena. It is estimated from the shortwave infrared
Bare-soil index (BI) ps: dsear§1 .;;[11‘ hzoaz.gasa.g(w ! (Pswir)r red (pred)r near-infrared (pnir)r and blue (pblue) bands of the 500 m/8 daYS
N 1land accessed on arc MODO09A1 data. The formula for BI can be expressed as
fatura han follows [66,67]:
surfaces change BI = (Oswir Prea) = (Puir+Poiue))
((pswir+Pred) + (Onir + Pplue))
NDWT is a remote sensing spectral index used to identify and assess
the presence of water bodies in satellite imagery and other remotely
. iff . ] ./ /search h sensed data. It quantifies the relative difference in reflectance
Normalized difference water index https:/ /search.earthdata.nasa.gov/, between the near-infrared (0,,) and green visible light (0green) 500 m/8 days

(NDWI)

accessed on 22 March 2023

bands of the MOD09A1 data. The formula for NDWI can be
expressed as follows [68,69]:

__Pgreen = Pnir
NDWI = Pgreen + Pnir
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2.3. Generating High-Spatiotemporal-Resolution LST for SUHI Monitoring

In this study, in order to generate the 30 m spatial resolution and 8-day temporal
resolution summer LST dataset from 2002 to 2022, a multiscale geographically weighted
regression MGWR coupling CFSDAF method was proposed. The implementation consists
of testing the proposed method part and monitoring the summer daytime SUHI part
(Figure 3). If the performance of the first part is better, we can conduct the next part.

Part 1: testing the proposed method
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Figure 3. Flowchart of testing the proposed method and monitoring daytime SUHL

In the first part (testing the proposed method), both downscaled high-spatial-resolution
LST data using the MGWR model and MOD11A1 data captured on 20 April 2013, 16 April
2015, 2 April 2018, and 21 April 2022 were used as the base time (1) for the proposed
method. While the other MOD11A1 data captured on 21 May 2013, 10 July 2015, 5 June
2018, and 7 May 2022 were used as the prediction time (#2) input base data for predicting
the high-spatial-resolution LST at {2. In the following part, we call LST directly from
MODIS, HJ-1B, Landsat as “observed LST”, and LST derived from the proposed method of
other spatiotemporal fusion methods as “predicted LST”. The coefficient of determination
(R?), the RMSE and the absolute average difference (AAD), were computed between the
predicted LST images and the observed LST images to validate the accuracy of the predicted
LST data.

In the second part (monitoring summer daytime SUHI from 2002 to 2022), we selected
thirteen pairs of downscaled LST with 30 m spatial resolution and MOD11A1 data with
1000 m spatial resolution during the same period as the input base LST data at 1 (Table 1).



Sensors 2023, 23, 9206

9 of 25

Afterwards, MOD11A2 at {2 was used to fuse the predicted LST datasets with a temporal
resolution of 8 days and 30 m spatial resolution. Finally, the predicted summer daytime LSTs
were averaged and used to monitor the summer SUHI from 2002 to 2022 in Chengdu City.

2.3.1. Downscaling LST Using MGWR

Classical geographically weighted regression (GWR) as a downscaling method cannot
capture the spatial non-stationary relationship between LSTs and environmental vari-
ables [70]. Unlike GWR, MGWR can build a nonstationary relationship between LSTs and
multiple environmental variables [71]. MGWR is introduced to analyze the scale differences
in normalized vegetation index (NDVI), digital elevation model (DEM), slope, and aspect
on the spatial pattern of LSTs. The MGWR model was employed to downscale LST changes
from low-resolution LST data to high-resolution LST data. The mathematical expression of
the MGWR is as follows [72]:

Y; = Bowo (i, vi) + Z,,n:l Bowj (1i,01) Xij + € €))

where Y; is the predicted values of dependent variable (LST in our case) andi=1,2,3, ...,
n; and By is a the intercept at optimal bandwidth. X;; represents the jth predictor variable
with spatially varying regression coefficient (By,;) over spatial locations (y;, v;). The error
term in the model is represented by ¢;.

(1) LST retrieval from Landsat 5, Landsat 8, Landsat 9 and HJ-1B were aggregated to
the spatial resolution of 1000 m. NDVI, DEM, slope, and aspect were extracted at a 30 m
spatial resolution based on the Landsat imagery, HJ-1B imagery, and other auxiliary data,
whereas these environmental variables were aggregated to the spatial resolution 100 m,
120 m, 300 m, and 1000 m, respectively.

(2) MGWR was used to establish a nonstationary relationship between LST1¢go, and
NDVlygoo as well as DEM;gg0, Slopeigoo, and Aspectiggp, which can be expressed as

LST1000 = f (NDVI100, DEMigg0, Slope; oo, Aspect; o) (2)

where LSTqq is the LST estimated by the scale conversion function at 1000 m spatial
resolution scale; NDVI;g99, DEMjgg9, Slopeigoo, and Aspectjggo are environmental vari-
ables at 1000 m spatial resolution; f(.) is the MGWR converts the auxiliary variables to
simulate LST.

(3) Influenced by soil moisture and other physical parameters, it is difficult to fully
reflect the spatial heterogeneity of LST, which is manifested as LST residual information at
low-spatial-resolution scales:

ALSTs = LSTs — LSTg (©)]

where ALST; is the LST transformation residual at 1000 m spatial resolution; LST; is the
LST data estimated by the MGWR; and LST; is the LST at a 1000 m spatial resolution.
Assuming that the residuals are uniformly spatially distributed, we further interpolated
the transformed residuals to a resolution of 120 m (Landsat 5 LST), 100 m (Landsat 8/9
LST), and 300 m (HJ-1B LST) using ordinary kriging interpolation [51].

(4) f(.) established at low-spatial-resolution scales is still applicable to other spatial
resolutions according to the constant relational scale’ principle. Combined with the trans-
formed residuals after spatial interpolation, the LST data downscaled to a 100 m, 120 m,
and 300 m spatial resolution, which is

LST100 = f(NDVIloo, DEMlo(), Slopeloo, ASpeCthO) + ALS Tsl (4)
LST130 = f(NDVIj50, DEMyy0, Slope; y, Aspect;,) + ALSTs (5)

LST3g9 = f(NDVI300, DEM3, Slope300, Aspect300) + ALSTgs (6)



Sensors 2023, 23, 9206

10 of 25

where LSTg9, LST129, and LST3gg are the downscaled LST data at a spatial resolution of
100 m, 120 m, and 300 m, I‘eSPECtiVGIY. NDVIlO(), NDVIuo, NDVI300, DEMlOOr DEMlzo,
DEMz3q, Slope,,, Slope,,, Slopes,, Aspect,y,, Aspect;,,, and Aspect,,, are the 100 m,
120 m, and 300 m, respectively, environmental variables after spatial aggregation; and
ALSTg, ALSTsy, and ALSTg3 are the 100 m, 120 m, and 300 m spatial resolution conversion
residual after spatial interpolation.

(5) If the validation of the MGWR possess is good, then we will perform upscaled LST
at 1000 m spatial resolution to 100 m, 120 m, and 300 m. MGWR was used to downscale
observed LST from 100 m, 120 m, and 300 m to 30 m.

The specific steps of MGWR-based LST downscaling method are shown in Figure 4
and are summarized as follows:

Low spatial ‘ Environmmml Variables at | High spatial
resolution LST resolution LST
data ath dataath
DE\I Slope Aspect NDVI
(1 km) G0m) ‘ ‘ (30 m) ‘ (30 m) | ‘ (30 m) (100m/120m/300m)

Resampled
Variables
(1 km)

Resampled Variables
(100m/120m/300m >

Resampled Variables
(100m/120m/300m )

»{ MGWR Model

i—;i

MGWR Model

Regres.sinn Residuals Regression Residuals
Coefficients (1 km) Coefficients (100m /120m/
(1km) (100m/120m/300m ) 300m)
v v

[ Kriging Interpolations

‘ Kriging Interpolations

*—l—i

Regr es's R Residuals REEWS.S o Residuals

Coefficients (100m/120 Coefficients Gom)
(100m/120 m (30m) "
m/300m) m/300m ) I ]

l

Downscaled LST at &
(30m)

Downscaled LST at &
(100m/120m/300m)

Observed LST atn
(100m/120m/300m)

*_]_& E

Figure 4. Flowchart of testing LST downscaling procedure based on MGWR.

2.3.2. Implementation of the Proposed Method

Figure 3 presents a detailed producer of the proposed method. In this study, the
CFSDAF method was used to fuse high-spatiotemporal-resolution LST images in the study
area, in order to monitor summer SUHII, by combining the MOD11A1, MOD11A2, and
downscaled MGWR LST images. The calculation process can be expressed as follows:

LSTy, (xij, yis) = LSTt, (xij yij) + Yy [wk X ALST (xij, yij) | )

where LST;, (xij, yij) represents the predicted high-resolution LST image at prediction
data tp; LSTy, (xi]', yij) represents the high-resolution LST data at base time f; k is the kth
similar pixel; n is the number of similar pixels for central pixel in a single window; and
ALST (x;j, yij) is the prediction of the total change of the target pixel (x;, y;j) between t
and 5.
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In this study, CFSDAF mainly includes the following six steps: (1) adjust the differ-
ences between high-spatial-resolution LST and low-spatial-resolution LST and high-spatial-
resolution LST; (2) classify high-spatial-resolution LST after extracting the endmembers;
(3) obtain the temporal increments by the linear equation of spatial unmixing process; (4) ob-
tain the spatial increments by inverse distance weighting (IDW) interpolation; (5) integrate
the spatial and temporal increments; and (6) obtain the LST prediction by the information
of neighborhood. For more detailed steps of the CFSDAF model kindly refer to previous
studies [26].

2.3.3. SUHII Analysis

In this study, SUHII is the LST difference between urban (LST pan) and suburban
areas (LSTgypurban) using the fused high spatiotemporal resolution summer LST dataset
from 2002 to 2022 over Chengdu City. The formula is as follows [8]:

SUHII = LSTypan — LSTsupurban 8

2.3.4. Boosted Regression Tree Model

The application of the machine learning statistical model, boosted regression tree
(BRT), is employed to investigate the influences of thirteen potential driving factors on
SUHI. The BRT model exhibits strong learning capabilities and adaptability to diverse data
formats, even when handling complex data, without necessitating the consideration of
interactions or correlations among independent variables. Furthermore, it offers significant
advantages in exploring interactions between complex factors and making forecasts. The
BRT model has found successful applications in a wide range of fields, including urban
expansion, ecological modeling, and environmental science [73-75].

In this paper, the gbm package with the statistical programming software R (version 3.3.2)
was used to analyze the contribution of potential driving factors to SUHI. The dependent
variables are the SUHII, and the independent variables are the thirteen driving factors. The
BRT model is a supervised learning method; three parameters were specified after testing.
In this study, the learning rate, bagging fraction, and decision tree complexity were 0.01, 0.5
and 5, respectively. In this study, this model extracted 50% of the data points for training,
with 50% of the data used to fit thirteen driving factors and the first regression tree is SUHL

3. Results
3.1. Land Cover Classification

In order to monitor the SUHII in Chengdu, defining the urban and suburban areas
was the first step. In this study, support vector machine (SVM), as one of the machine
learning algorithms, was used for image classification [76]. Cloud-free Landsat 5 images
were acquired on 25 June 2002 and 9 May 2006, HJ-1B images were acquired on 20 April
2009, 23 August 2011, 27 April 2012, 20 April 2013, 28 July 2014, 16 April 2015, and 16 May
2016, Landsat 8 images were acquired on 1 May 2017, 2 April 2018, and 11 August 2019,
and a Landsat 9 image was acquired on 21 April 2022. The landcover maps from 2002 to
2009 were classified using SVM based on the above cloud-free data. Land cover types are
mainly built-up areas, water bodies, vegetation, and bare soil, which are typical in urban
areas. Using Google Earth, we randomly chose 1600 sample points, 400 for each type, for
the accuracy assessment (Figure 1). We also compared the performance of three machine
learning classifiers—SVM, artificial neural networks (ANN), and maximum likelihood
classification (MLC). Table 3 illustrates the overall accuracy and kappa coefficients. The
result showed that SVM performed better than ANN and MLC.

Due to Chengdu being the sixth-largest city in China, its administrative boundaries
encompass not only urban areas but also extensive suburban regions, which do not align
with the requirements of the SUHI study. Therefore, in this study, urban and suburban
areas were separated according to four land cover classification types from landcover maps.
An urban area is defined as a high-intensity and densely occupied areas near a built-up
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area. After the urban area is determined, a suburban area is defined as the buffer zone that
includes a smaller suburban area (50% of the urban area) and a larger suburban area (100%
of the urban area) around the urban area (Figure 5).

Table 3. Classification accuracy of SVM, ANN and MLC from 2002 to 2022.

SVM ANN MLC
Year/A‘;curacy Overall Kappa Overall Kappa Overall Kappa
(%) Accuracy Coefficient Accuracy Coefficient Accuracy Coefficient
2002 99.47 98.96 98.50 98.27 98.06 98.24
2006 98.22 98.01 98.18 97.68 97.48 97.52
2009 99.10 99.07 98.94 98.71 97.53 96.99
2011 99.23 99.47 99.01 98.20 96.44 96.00
2012 98.76 98.24 98.01 97.65 97.48 97.71
2013 98.59 99.05 97.48 97.25 97.48 97.09
2014 99.46 99.78 97.18 98.48 98.25 97.48
2015 99.05 99.26 98.36 98.04 98.10 98.02
2016 97.89 98.48 96.25 97.63 95.66 96.75
2017 98.19 97.79 97.50 98.64 96.57 96.28
2018 99.12 98.75 97.64 97.20 96.41 96.49
2019 97.45 97.21 96.48 97.96 95.75 95.06
2022 99.43 98.24 98.09 97.95 97.27 96.99

Legend
Border of suburban with 100% of urban areas
Border of suburban with 50% of urban areas
Border of urban areas

| | Bare Soil | Water Bodies
— Vegetation - Built-up Area

Figure 5. The delineation of urban and suburban areas over Chengdu City from 2002 to 2022.
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3.2. Testing the Proposed Method

MGWR is an extension of the generalized linear regression, with NDVI, DEM, slope,
and aspect as the nominated environmental variable set that is highly LST-related. Firstly,
high-spatial-resolution LST at the ¢1, such as Landsat 9 LST observed on 21 April 2022
(Figure 6) with 100 m resolution, was aggregated to 1000 m. The LST downscaling results
from MGWR from 1000 m to 100 m is shown in Figure 6, where four kinds of subareas,
notably subarea (Figure 6a) in vegetation, subarea (Figure 6b) in built-up area, subarea
(Figure 6c¢) in bare soil area, and subarea (Figure 6d) in waterbody area, were used to show
the LST downscaling performance using MGWR. Visually, MGWR can extract more spatial
texture information from land surface temperature data, effectively revealing temperature
distribution variations within similar land cover types.

- N . a i (0 3 LST(°C)
@" g~ = W, i I A 46.10
F}‘ el s [T [ - u F
L4 .i".': : . .\ (a) i I. Lo ] > ‘ ~— |
'l s : ™ '

il CE gl ®
'

A )
o L GiFs,. s A e

b X - . .} . - ;. ﬁ- A -
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TR G R T T b — ‘_J
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e ,.' . ‘3. 1 l. n = .E! '.- E du -
"v '{‘%' p% n I. o | ﬁ-—» ‘. “}‘. ... |
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Figure 6. The 1000 m aggregated Landsat 9 LST on 21 April 2022 of (a) 100 m downscaled LST of
vegetation, (b) 100 m downscaled LST of built-up area, (c¢) 100 m downscaled LST of brae soil, and
(d) 100 m downscaled LST of water body.

To assess the accuracy of the method of MGWR in downscaling LST, GWR and thermal
image sharpening (TsHARP), which possess the advantage of LST downscaling, were also
used in this study. RMSE and the mean error (ME) as the evaluation metrics were used
to quantitatively evaluate the performance of the three downscaling methods, which is
shown in Table 4. We can see that the MGWR possesses lower RMSE and ME compared
to GWR and TsHARP; it shows MGWR produces higher LST downscaling accuracy than
other methods from 2002 to 2022 in the study area.

Table 4. Downscaling statistics for MGWR, GWR, and TsSHARP method in this study.

D MGWR GWR TsHARP

ate RMSE ME RMSE ME RMSE ME

25 June 2002 2.12 0.06 2.66 0.25 3.97 2.98
19 May 2006 2.18 0.32 3.25 0.69 —4.01 —2.35

20 April 2009 1.79 0.24 —2.66 1.58 6.25 2.64

23 August 2011 —2.59 —0.05 3.67 0.98 423 325
27 April 2012 4.65 0.07 5.32 —0.45 5.26 -0.26
20April 2013 1.26 0.25 1.98 —2.77 3.30 —3.06

28 July 2014 1.77 0.63 —2.06 1.35 —2.16 1.23

16 April 2015 2.06 0.54 3.17 0.66 2.59 1.54

16 May 2016 —1.59 —0.26 2.31 0.58 3.07 0.44

1 May 2017 3.65 —0.06 —4.65 0.09 3.76 3.99

2 April 2018 297 0.62 6.01 -0.89 -3.02 1.26
11 August 2019 —-3.57 0.16 5.32 1.67 —5.60 —1.38

21 April 2022 2.64 0.48 —-2.99 3.25 2.76 2.64
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2013
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2018

2022

Therefore, the downscaled LST images and MOD11A1 at ¢; could be used as the
LST base data of CFSDAF for predicting the high-spatial-resolution LST data at t,. The
next step is testing the performance of the proposed method in the first part (Figure 3).
Figure 7a,f k,p was downscaled using MGWR LST at t; on 20 April 2013, 16 April 2015, 2
April 2018, and 21 April 2022, respectively. Figure 7b,g,i,q was MOD11A1 as the similar
time at ¢. Figure 7c,h,m,r was the MOD11A1 data at t, on 21 May 2013, 10 July 2015, 5 June
2018, and 7 May 2022, respectively, for predicting the LST data at 100 m and 300 m spatial
resolution on the same predicted date at t, (Figure 7d,i,n,s). The observed LST data at t,
(Figure 7e,j,0,t) can be used to evaluate the predicted LST results as the similar time at t;.

' LST(°C)

. LST(°C)

4 I 59.42

2 LST(°C)

l 58.07
I a23

Figure 7. Spatial distributions of LST: (a) 300 m downscaled LST at #; on 20 April 2013; (b) 1000 m
MOD11A1 at t; on 20 April 2013; () 1000 m MOD11A1 at ¢, on 21 May 2013; (d) 300 m predicted
LST on 21 May 2013; (e) observed LST at t, on 21 May 2013; (f) 300 m downscaled LST at t; on 16
April 2015; (g) 1000 m MOD11A1 at t; on 16 April 2015; (h) 1000 m MOD11A1 at ¢, on 10 July 2015;
(i) 300 m predicted LST on 10 July 2015; (j) observed LST at ¢, on 10 July 2015; (k) 100 m downscaled
LST at t; on 2 April 2018; (1) 1000 m MOD11A1 at t; on 2 April 2018; (m) 1000 m MOD11A1 at ¢, on 5
June 2018; (n) 100 m predicted LST on 5 June 2018; (o) observed LST at ¢, on 5 June 2018; (p) 100 m
downscaled LST at t; on 21 April 2022; (q) 1000 m MOD11A1 at t; on 21 April 2022; (r) 1000 m
MOD11A1 at f; on 7 May 2022; (s) 100 m predicted LST on 7 May 2022; (t) observed LST at t, on 7
May 2022.

Figure 8 shows scatter plots of correlations between observed LST and predicted LST
on 21 May 2013, 10 July 2015, 5 June 2018, and 7 May 2022. We can see some of the scatters
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Predicted 300-m LST(°C) on 21 May 2013

deviate a lot from the fitted line owing to the predicted LST images being affected by
weather conditions like thin clouds and fog. However, the accuracy assessment shows that
the R? ranges from 0.8103 to 0.9476, RMSE from 1.0601 to 1.4974, and AAD from 0.8455 to
1.3380 on the same dates, which proves the proposed method has a better performance for
predicting the high-spatiotemporal-resolution LST data.

45 -

y=0.9581x + 1.7851 y=1.1918x —4.9844

R2=0.9476 s oh = R2=0.8103
RMSE=1.0601 e
AAD=0.8455
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Observed HI-1B 300-m LST(°C) on 21 May 2013 Observed HJ-1B 300-m LST(°C) on 10 July 2015
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(©

Figure 8. Scatter plots of the relation between observed LST and predicted LST image for: (a) 21 May
2013, (b)10 July 2015, (c) 5 June 2018, and (d) 7 May 2022.

In addition, CFSDAF and FSDAF were used to evaluate the performance of the
predicted LST results using the proposed method (Figure 9). The R?, RMSE, and AAD
between the predicted LST and the observed LST on 21 May 2013, 10 July 2015, 5 June 2018,
and 7 May 2022 show that the proposed method can be used to improve the fusion accuracy
of high-spatial-resolution LST. The proposed method, with higher accuracy than CFSDAF
and FSDAF on different dates, which shows the performance of the spatiotemporal fusion
model, is more sensitive to the spatial resolution scale.
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Figure 9. Comparison of the predicted LSTs using the proposed method and CFSDAF, FSDAE. (a) the
coefficient of determination (R2); (b) the root mean square error (RMSE); (c) the absolute average
difference (AAD).

3.3. Monitoring Summer SUHII from 2002 to 2022

In this study, the proposed method has a better performance for predicting the high-
spatiotemporal-resolution LST data in the first part (testing the proposed method), which
suggests that we can conduct the next step to predict high-spatiotemporal-resolution LST
data using the proposed method with 30 m spatial resolution and 8-day temporal resolution
in summer for monitoring summer SUHII in Chengdu City from 2002 to 2022 (Figure 10).
Since there is no real satellite-derived LST data at 30 m spatial resolution, in situ LST
data were used to validate the predicted LST results. In addition, the CFSDAF model, the
FSDAF model, and the observed MOD11A2 at t, were also used to evaluate the perfor-
mance of the proposed method. Table 5 shows the proposed method can produce higher
accuracy predictions of high-spatiotemporal-resolution LST data than other spatiotemporal
fusion methods.

Table 5. Comparison of the predicted LSTs using the proposed method, classical FSDAF and
MOD11A2, respectively, with in situ LSTs during the summer from 2002 to 2022.

Average Summer In Situ R?
LST Acquisition Year  7he proposed Method CFSDAF FSDAF MOD11A2
2002 0.9048 ** 0.8991 ** 0.8422 * 0.8130 *
2006 0.8925 ** 0.8806 ** 0.8616 ** 0.7948
2009 0.9023 ** 0.8595 * 0.8453 * 0.8246
2011 0.8779 0.8651 0.8660 * 0.8157
2012 0.8849 * 0.8022* 0.7963 0.7850
2013 0.9091 ** 0.8947 ** 0.8526 0.8501 *
2014 0.8730 * 0.8546 * 0.8026 0.7584
2015 0.8815 * 0.8802 * 0.8730 * 0.8039
2016 0.9025 ** 0.8928 * 0.8840 * 0.7964
2017 0.8661 0.8545 0.8532 0.8061
2018 0.8990 ** 0.8920 * 0.8859 * 0.8712*
2019 0.9065 ** 0.8933 ** 0.8953 ** 0.7990
2022 0.9008 ** 0.8654 * 0.7821 0.7605

Note: * = significant at p = 0.05, ** = significant at p = 0.001.
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Figure 10. Spatial distributions of 30-m predicted LST using the proposed method.

Both averaged summer LSTs from 2002 to 2022 were computed (Figure 11). As shown
in Figure 11, due to the rapid urbanization, the spatial distribution of the LSTs showed an
irregular distribution, and the high LST areas changed from urban to suburban areas. The
high LST areas were mainly concentrated in the urban high-density blocks, where buildings
and population were highly concentrated. The low LST areas were mainly concentrated
in the mountainous areas of the suburban, such as the Longquan Mountain Range in the
southeast of the study area. The spatial resolution characteristics of the LSTs from 2002
to 2022 were similar, such as the high LST areas covered by the built-up areas. The low
LST areas were mainly distributed in the vegetation-covered areas, such as farmland and
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mountain areas outside the built-up areas. We can see that the increase in the SUHI effect
was roughly in the “southeast-northwest” direction as the urban built-up area expanded.
The expansion of the SUHI effect corresponds to the urban spatial growth pattern.

2018

Border of suburban with LST(°C)

100% of urban areas . 50
/ —  Border of suburban with
\ v 50% of urban areas
2022 — Border of urban areas . 9

Figure 11. Spatial distribution of the summer averaged 30 m predicted LST using the proposed
method from 2002 to 2022.

Figure 12 shows the summer SUHII from 2002 to 2022. The significantly increasing
trends of the summer SUHII in Chengdu used the averaged 30 m predicted LSTs. The
highest SUHII for summer occurred in 2022 (5.07 °C from a larger suburban area and
4.93 °C from a smaller suburban area). Summer SUHII increased from 2.32 °C in 2002 to
5.07 °C for a larger suburban area and increased by 2.85 °C in the same period for a smaller
suburban area. This indicates a large SUHII in the summer from 2002 to 2022 over the
Chengdu City. It not only increases the risk of heatwave extreme events but also presents a
big challenge for scientists to mitigate serious SUHI effects.
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Figure 12. Temporal changes of SUHII in the study area from 2002 to 2022.

3.4. Relationship between SUHI and Potential Driving Factors

As described in Table 2, thirteen driving factors were selected to evaluate their in-
fluence on summer SUHI. The driving factors were divided into climate driving factors,
anthropogenic activity driving factors, population shift driving factors, and natural land
surfaces driving factors. Figure 13 presents the results of a BRT analysis for Chengdu City.
The relative influence of each factor is scaled as a percentage [77]. Overall, on average
the most important factors are PISI, EVI, and NLI, with about 26.9%, 17.4%, and 12.5%,
respectively. The other influences range from high to low are POP, PD, GDP, WSA, BI,
PM;, 5, NDWI, RH, PRE, and WS, with 9.7%, 9.5%, 9.0%, 3.1%, 3.0%, 2.9%, 1.9%, 1.8%, 1.4%,
and 1.1% on average, respectively. For the population shift driving factors (Figure 14), the
natural land surfaces driving factors (Figure 15), the climate driving factors (Figure 16),
and the anthropogenic activity driving factors (Figure 17), PD, EVI, WSA, and PISI are the
most influential factors with the influence of 37.6%, 50.1%, 50.8, and 59.2%, respectively.

WS PRE RH WSA NLI PISI PM,; POP GDP PD EVI NDWI BI

o
-

2009

2011

2012 .

2013 . Relative
Influence (%)

2014 High:31.4

2015

2016 .

2017

2018

2019
Total Low:0.7

Figure 13. The relative influence of SUHI of the driving factors in Chengdu City from 2002 to 2019.
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Figure 14. The relative influence of SUHI of the population shift driving factors in Chengdu City
from 2002 to 2019.
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Figure 15. The relative influence of SUHI of the natural land surfaces driving factors in Chengdu
City from 2002 to 2019.
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Figure 16. The relative influence of SUHI of the climate driving factors in Chengdu City from 2002 to
2019.
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Figure 17. The relative influence of SUHI of the anthropogenic activity driving factors in Chengdu
City from 2002 to 2019.

Overall, each one of the potential driving factors had a comparable influence on SUHI.
EVI has been widely used to characterize vegetation coverage. Previous studies have
shown that SUHII is negatively correlated with EVI across 419 global big cities [78]. From
2002 to 2019, the relative influence of SUHI on EVI is gradually weakening, owing to
human activities. The contribution of PISI and NLI was relatively high, indicating that the
built-up area and economic development are the main causes of SUHI, while the influence
of the climate factors is relatively low during the study period. The results show that
the relative influence of SUHI on the climate factors may not be significant. Therefore,
the intensification of human activities and economic activities is the main reason for the
aggravation of the SUHI effect in Chengdu. As shown in Figure 18, from 2002 to 2019, PD,
POP, and GDP increased in Chengdu City and were mainly concentrated in the urban areas.
This was mainly due to the increasing centralization of the city, with various industrial
zones expanding around the city center.
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Figure 18. Spatial and temporal changes in PD, POP, and GDP in Chengdu City from 2002 to 2019.
(a) population density (PD); (b) population count (POP); (c) gross domestic product (GDP).

4. Discussion

An MGWR-CFSDAF spatiotemporal fusion method was proposed to generate high-
spatiotemporal-resolution LST data from Landsat, H]-1B, and MODIS. Although the pro-
posed method can preserve spatial detail and generate high-resolution LST images with
high accuracy in Chengdu City, there are also some limitations. Firstly, the performance
of the proposed method greatly relies on the pairs of temporally close LST images, which
only allows for the clear-sky conditions because the TIR data is difficult to obtain due
to cloud cover [79-81]. If we want to acquire all-weather LST data, more effective cloud
removal methods should be adopted to mitigate the influence of clouds. Secondly, since
the overpass time of the Landsat, HJ-1B, and MODIS are different, within half an hour, a
time normalization method should be applied to correct for possible inconsistencies in the
future [82]. Thirdly, the spatial distribution of the LST is significantly influenced not only by
variations in surface thermal properties but also by a pronounced terrain effect [83]. In this
study, the spatiotemporal fusion accuracy of the LST data is less affected by mountainous
terrain since the study area primarily comprises flat plains. However, this also suggests that
further research is needed to explore whether the research method is applicable to urban
areas with significant topographic variations. In addition, the main cause of urban thermal
environmental change is carbon dioxide (CO;y) [84]. The spatiotemporal distribution of
CO; emissions has been affected by land use/cover change (LUCC) [85]. Deng et al. [86]
found that the potential changes in the LST were caused by LUCC. Therefore, in order
to mitigate the SUHI effect and meet China’s target of carbon neutrality, future studies
are needed to explore the relationships between urban expansion, land use changes, CO,
emissions, and the SUHI effect.

5. Conclusions

This paper took Chengdu, a typical cloudy and rainy city that easily satisfies the
missing-filled satellite data scenario, as a case study for SUHII monitoring and performed
quantitative analyses to investigate the influence of thirteen potential driving factors on
the SUHII from 2002 to 2019. Firstly, high-spatiotemporal-resolution LST dataset with
30 m spatial resolution and 8-day temporal resolution were predicted by the proposed
method using an MGWR coupling CFSDAF method. The performance of the method
could generate high-accuracy summer LST datasets better than the CFSDAF, and FSDAF
methods for the MOD11A2 dataset. Secondly, significantly increasing trends in the SUHII
in Chengdu from 2.32 °C in 2002 to 5.07 °C in 2022 were observed for larger suburban
areas and increased 2.85 °C during the same period for a smaller suburban area. Finally,
PISI, EVI, and NLI are the three most influential factors on SUHI. The total contribution for
the driving factors (PISI > EVI > NLI > POP > PD > GDP > WSA > Bl > PM; 5 > NDWI >
RH > PRE > WS) indicated that the summer SUHI in Chengdu is highly affected by the
anthropogenic factor. So, we recommend that the anthropogenic activity driving factor
should be considered with CO; emissions and land use changes for urban planning to
mitigate the SUHI effect.
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