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Abstract: The transform domain provides a useful tool in the field of confidential data hiding
and protection. In order to protect and transmit patients’ information and competence, this study
develops an amplitude quantization system in a transform domain by hiding patients’ information in
an electrocardiogram (ECG). In this system, we first consider a non-linear model with a hiding state
switch to enhance the quality of the hidden ECG signals. Next, we utilize particle swarm optimization
(PSO) to solve the non-linear model so as to have a good signal-to-noise ratio (SNR), root mean
square error (RMSE), and relative root mean square error (rRMSE). Accordingly, the distortion of the
shape in each ECG signal is tiny, while the hidden information can fulfill the needs of physiological
diagnostics. The extraction of hidden information is reversely similar to a hiding procedure without
primary ECG signals. Preliminary outcomes confirm the effectiveness of our proposed method,
especially an Amplitude Similarity of almost 1, an Interval RMSE of almost 0, and SNRs all above 30.

Keywords: transform domain; ECG; amplitude; non-linear; hiding state; switch; PSO

1. Introduction

An electrocardiogram (ECG) shows the human heart’s electrical activity as a basis to
investigate heart disease and diagnose a cardiovascular anomaly. Accordingly, an ECG
is a paramount biosignal to be secured and transmitted in a hospital network. For this
goal, it is necessary to apply information-hiding techniques on the ECG to preserve the
patient’s information. Related research is still an important issue. Engin [1] proposed a
simple data-hiding method for ECG signals. However, their method was not blind. Zheng
and Qian [2,3] proposed a wavelet-based ECG data-hiding method of a non-QRS complex
to ensure the replacement of undistorted ECG signals. Kuar and colleagues [4] proposed a
blind hiding method to warrant the secure spreading of ECG signals in wireless networks.
Ibaida [5] used an improved least significant bit (LSB) watermarking method to embed the
patient’s biomedical information into the ECG signal while ensuring the integrity of the
patient’s ECG. Nevertheless, the choice of an immersing position is sophisticated [6].

In [7,8], the authors applied a quantization watermarking technique to ECG signals in
a wavelet domain. Nevertheless, this method was blind. However, the quality of each ECG
signal embedded with a watermark decreased when the embedding strength increased.
Moreover, Zhou [8] proposed a blind recognition model of a single-channel electromyogra-
phy. Dey et al. [9] embedded a reversible binary watermark into photoplethysmo-graphic
(PPG) signals and then extract the watermark by an error-prediction algorithm. The same
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laboratory [10] inserted the binary watermark image into the electrocardiogram signal and
then proposed a new session-based blind watermarking scheme. However, methods [9]
and [10] were not blind. In [11,12], a single-coefficient quantization in the transform do-
main applied digital watermark encryption technology to the ECG for the protection of
the patient’s information and competence. Based on this method, the changes in PQRST
complexes and magnitude in the ECG signal are trivial. Jero et al. [13,14] applied curvelet
transforms to identify coefficients that keep important data regarding diagnosis. The origi-
nality of their paper is to propose a curvelet transform of the ECG steganography, adaptive
selection of a watermarking location, and a new algorithm of the selecting threshold. In [15],
the authors proposed a novel time-frequency watermarking scheme with an adaptive lead-
independent beat-to-beat data repository plan. In [16], authors embedded the information
obtained from the patient’s data into the ECG signals based on curvelet transform. It
is a new method to make the hidden message robust against image-processing attacks.
In [17], the authors integrated the watermarking and compression in Fourier domain for
electrocardiogram (ECG). In [18], authors proposed an ECG watermarking scheme based
on redundant discrete wavelet transform (RDWT) and singular value decomposition (SVD).
First, the ECG signal is adjusted into a 2-D matrix by the Pan–Tompkins algorithm. Then,
the hybrid of RDWT and SVD is to conceal the patient data and logo image in the 2-D ECG
image. Sanivarapu et al. [19] embedded the patient’s data with a QR image into the ECG
in the wavelet domain. Initially, they adjusted the ECG signal into a 2-D ECG image by
applying the Pan–Tompkins algorithm and applying wavelet transform to deteriorate the
2-D ECG image. Then, they applied QR decomposition to the QR image to reduce the detail
coefficient of the wavelet to obtain the hidden information. In [20], the authors proposed
an ECG signal watermarking scheme based on multiple embedding strength (MES), which
is optimized by a hunger games search (HGS) algorithm. The scheme maintained the
imperceptibility–robustness trade-off. Table 1 lists the domain, solution, fining, and gap for
these references.

Table 1. List of domain, solution, fining, gap for references [11–20].

Reference Domain Solution. Fining Gap.

[11] transform domain single-coefficient quantization

In case of embedding strength
by SNR = 32, most of amplitude
simi-larities are 1, root mean
square ap-proaches 0.

For increase in embedding
strength, there is decrease in the
SNR value.

[12] transform domain single-coefficient quantization

In case of embedding strength
by SNR = 32, most of amplitude
similarities are 1, root mean
square approaches 0.

For increase in embed-ding
strength, there is decrease in the
SNR value.

[13] transform domain

adaptive selection of
watermarking location and
threshold selecting
for embedding

As the patient data size is
increased, the cover signal
deteriorates but the Bit Error
Rate is zero. The signal
deterioration is about 10% when
patient data increase 1.5 times.

For increase in watermark size,
there is decrease in the
PSNR value.

[14] transform domain

adaptive selection of
watermarking location and
selecting threshold for
embedding

As the patient data size is
increased, the cover signal
deteriorates but the Bit Error
Rate is zero.

For increase in watermark size,
there is decrease in the
PSNR value.

[15] transform domain
adaptive lead-independent
beat-to-beat
data repository plan

(1) The 11th order Symlet is the
best among the wavelets tested
(2) The watermark and noise
similarity of amplitude and
numerical distribution
are highly affected

Further watermarking destroys
the existing watermark.
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Table 1. Cont.

Reference Domain Solution. Fining Gap.

[16] transform domain

embed the information of the
patient’s data into the ECG
signals using
curvelet transform

A PSNR value higher than 64
shows the high quality of
extracted information. The NC
values of all ECG signals are 1
and the SSIM values are close to
1, which indicates high similarity
between embedded and
extracted information.

Some false positives occur
during the watermark
embedding process, which not
only reduces the quality of the
extracted watermark, but also
affects the robustness of
the image.

[17] transform domain
ECG watermarking and
compression in
Fourier domain

The improved SNR proves the
denoising ability of the
watermark signal.

For increase in embedding
strength, there is decrease in the
SNR value.

[18] transform domain

ECG watermarking using the
integration of redundant
discrete wavelet transform
(RDWT) and singular value
decomposition (SVD)

The optimal invisibility and
robustness result are
more effective.

There does not seem to be any
guarantee that the encoded
binary bits could be recovered
using particle swarm
optimization (PSO).

[19] transform domain

embedding factor value is
calculated adaptively by
harnessing the entropy value
of the signal

The embedding factor value is
calculated adaptively by
harnessing the entropy of the
ECG signal. The embedded data
can be easily extracted with
no distortion.

For increase in embedding
strength, there is decrease in the
SNR value.

[20] time domain
multiple embedding strength
optimized by hunger games
search algorithm

maintaining the
imperceptibility-robustness
trade-off to obtain
PSNR = 57.725 dB

Embedded patient information
is less hidden and less robust.

In this study, we develop a new bio-information hiding method on the ECG signals
by using the MIT-BIH arrhythmia database [21,22] to protect patients’ information and
competence. Firstly, we develop an amplitude optimization model with a hiding state
switch in the transform domain to hide patient information in ECG signals. In the model,
we consider the optimization of the SNR with respect to two hiding equations to maximize
the feature of the hidden ECG signals. Next, we apply particle swarm optimization (PSO)
to solve the optimization problem in the proposed non-linear model in order to obtain best
signal-to-noise ratio (SNR), root mean square error (RMSE), and relative root mean square
error (rRMSE). Accordingly, the shape distortion in each ECG signal is extremely small.
The removal of hidden information is reversely similar to the hiding procedure without
the original ECG signals. In experiments, we evaluate the relationship between the hiding
strength Q and SNR, the hiding strength Q and RMSE, and the hiding strength Q and
similarity. The results of our experiment confirm the efficacy of this proposal.

This paper is composed of five main parts. Part 1 gives an introduction to the back-
ground knowledge. Part 2 reviews some preliminaries. Part 3 mainly introduces the
proposed hiding method including an optimization model and its solver PSO. Part 4
demonstrates our outcome results and discussion in this study. Part 5 lists our conclusions.

2. Preliminaries

In this part, we recall the waveform of the ECG and point out its fundamental require-
ment when performing information hiding.

2.1. ECG Signal

Electrocardiography is a technique that uses repeated cardiac cycles to record the
electrophysiological activity of the heart in units of time. It works by plotting voltage
versus time of the heart’s electrical activity using electrodes placed on the skin. These
electrodes detect small electrical changes caused by depolarization and repolarization of
the heart muscle during each cardiac cycle (heartbeat). A cardiac cycle is divided into P, Q,
R, S, and T complexes. The electrocardiogram contains three major components: the P wave
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represents atrial depolarization; the QRS complex represents ventricular depolarization;
and the T wave represents ventricular repolarization.

2.2. Discrete Wavelet Transform (DWT)

The DWT is a scaling method which translates the mother wavelet ψ(x). The nor-
malized wavelets obtained by scales are defined as ϕi,n(t) = 2i/2hi ϕ(2it− n), ψi,n(t) =
2i/2giψ(2it− n), where i and n stand for scale and translation parameters, and hi and gi
stand for low-pass and high-pass filters. In order to decompose the input signal into multi-
ple non-overlapping multi-resolution sub-bands, including high-frequency sub-bands and
low-frequency sub-bands, we choose orthogonal wavelet basis functions to expand the co-
efficients. For example, Figure 1 shows a 4-level Haar DWT with orthogonal wavelet bases.
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Figure 1. The 4-level DWT decomposition.

2.3. Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) is a discrete form of Fourier transform in both the
time domain and frequency domain, converting the time domain samples of the signal
into the frequency domain samples of its DTFT. Since it contains a certain amount of
quantity information, this may be accomplished by computers with numerical algorithms
or customized tools. The achievements apply structured fast Fourier transform (FFT)
algorithms in a way that “FFT” and “DFT” are usually utilized mutually. The DFT has been
an important discrete transform used in many practical applications to perform Fourier
analysis. In digital signal processing, a function is any time-varying quantity or signal that
is sampled over a finite time interval, such as a radio signal or a daily temperature value.
In image processing, samples can be pixel values along rows or columns of a raster image.
DFT can also be used to solve equations such as partial differential equations.

2.4. Discrete Cosine Transform (DCT)

The discrete cosine transform (DCT) is a finite sequence of data samples represented
by the sum of cosine functions oscillating at different frequencies and is widely used in
signal processing and data compression. In addition, DCT is also used in most digital
media, including digital imaging, digital video, digital audio, digital television, and digital
broadcasting. In particular, DCT is a Fourier-related transform interchangeable to DFT
applying barely real numbers.

2.5. Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) was proposed by Eberhart and Kennedy in 1995. It
was inspired by observing the social behavior of foraging birds and applied it to search for
solutions to optimization-related problems. The search method is to use a group of potential
solutions called particles to find the best solution position in the multi-dimensional solution
space. Each time a particle moves, it will refer to the best solution position it has found
in the past and the past best solutions of all particles. The position then determines the
movement direction and distance. Therefore, PSO is a method with group intelligence
and a new branch of evolutionary computing. However, PSO is not guaranteed to find an
optimal solution exactly [23–27].
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3. Proposed System

This part shows the recommended amplitude-quantization technique for hiding pa-
tient information in ECGs in the transform domain.

3.1. Information Hiding and Detection

Information hiding means embedding certain data into a digital carrier comprising
signal, imaging, video, document, software, etc. This will not reduce the performance of
the initial carrier and is difficult to detect or catch by human visual and auditory perception
systems. The block diagram for information hiding in the transform domain is given in
Figure 2.
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The ECG diagnosis is based on the waves of the PQRST. Accordingly, it is necessary
to keep these waveform shapes as we include data in the ECG signals or execute their
compression. Presumably, the signal of the ECG is changed when the patient’s confidential
information is embedded. The modification is normally defined as distortion. With the
intention of decreasing the ECG signal distortion, we scrutinize to maximize the SNR
during information hiding.

The information hiding and detection proposed in this study is introduced as follows.
In information hiding, we first denote S = {s1, s2, · · · , sn} to be one segment of a patient’s
ECG signal. Subsequently, we transform the DWT, DCT, and DFT separately on the ECG
signal S = {s1, s2, · · · , sn} to obtain transform-domain coefficients C = {c1, c2, · · · , cn} in
DWT, DCT, and DFT so that the binary bits B = {0, 1} can be hidden in the amplitude
performed by the coefficients C = {c1, c2, · · · , cn} as follows.

Maximize 10 log


n
∑

i=1
|ci|2

n
∑

i=1
(|c̃i| − |ci|)2

 (1a)

Subject to
n

∑
i=1
|c̃i| = α




n

∑
i=1
|ci|
/

Q

Q +
3
4

Q

+(1− α)




n

∑
i=1
|ci|
/

Q

Q +
1
4

Q

 (1b)

where C̃ = {c̃1, c̃2, · · · , c̃n} denotes the hidden ECG signal; Q is the hiding strength; α = 1
or α = 0 represents the hiding state of the binary bit “βi= 1” or “βi= 0”.
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In information detection, we utilize the formula in (2) for detecting binary bits B∗ from
the DWT, DCT, and DFT coefficient-amplitude

{
c̃i
}

B∗ =



1, if
N
∑

i=1

∣∣c̃i

∣∣−


N
∑

i=1

∣∣c̃i

∣∣/
Q

Q ≥ Q/2

0, if
N
∑

i=1

∣∣c̃i

∣∣−


N
∑

i=1

∣∣c̃i

∣∣/
Q

Q < Q/2

(2)

3.2. Enhance Performance by PSO

In this sub-part, we adopt the solver PSO [20–23] to find the optimization solutions
of {c̃i}N

i=0 the proposed optimization model approximately in (1). We suppose xj,h(t) and
vj,h(t) are the position and velocity of the hth dimension for the jth particle at time t. There
are two calculating equations:

vj,h(t) = vj,h(t− 1) + k1r1(x∗j,h − xj,h(t− 1)) + k2r2(x#
h − xj,h(t− 1)) (3)

xj,h(t) = xj,h(t− 1) + vj,h(t) (4)

where x∗j and x# stand for the finest position solution of the jth particle with all particles as
of time t−1; both r1 and r2 denote random numbers; k1 and k2 represent the individuality
coefficient and sociality coefficient; it is normally set to 2.

From the previous two calculating equations and fitness 10 log
[

n
∑

i=1
|ci|2

/
n
∑

i=1
(|c̃i| − |ci|)2

]
,

we itemize the solving solutions of PSO phases by the proposed optimization model as follows.
Phase I. Set the sample size to 20, then give the beginning value arbitrarily for the

position and velocity of every particle.

Phase II. Calculate the fitness 10 log
[

n
∑

i=1
|ci|2

/
n
∑

i=1
(|c̃i| − |ci|)2

]
of the potential position

solution for every particle j. When the fitness of the position solution is better than the
individual position solution in old memory, the individual position solution is updated.

Phase III. Search the novel finest position solution in the whole particle swarm. If the
fitness of this position solution is superior to the previous one, then it is upgraded.

Phase IV. If the terminating condition is satisfied, then the PSO is stopped. If not, go to
phase V.

Phase V. Use the PSO flowchart to upgrade the velocity and position solution of every
particle. Return to phase II in order to proceed.

3.3. Flowchart

Figure 3 shows a flowchart hiding the patient’s information in the ECG signal in the
transform domain. The transform domain is first applied to ECG signals and then the
authentication and patient’s confidential data are hidden in the coefficient-amplitude of the
transform domain by the proposed information-hiding method. Finally, we perform an
inverse transform to obtain the hidden ECG signals. At the other end, the authentication
and patient’s confidential data are conducted after the hidden ECG signals are received and
the performing of the transform. Practically, our daily life is full of many other applications.
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4. Experiments and Discussion

In experiments, we apply the ECG data ID100 to ID105 obtained through the MIT-BIH
arrhythmia database [21,22] to examine our suggested solution. The ECG data possess a
360 Hz sampling rate together with a 12-bit binary characterization. Every ECG signal
is converted to zero in order to erase the DCT offset. Nevertheless, the settlement of the
12-bit binary characterization is to predict the precise coefficients for hiding the patient’s
confidential data. Thus, every signal of ECG with 12-bit binary characteristics is graded
to 1 with 16-bit characteristics comparatively. The experimental procedure and results are
listed in the following.

First of all, we apply 5-level Haar DWT with orthogonal wavelet bases to degrade an ECG
signal to six non-overlapping sub-bands. In order to avoid distorting too much, we hide the
binary bits in the multiple low-frequency coefficient-amplitude in the fifth level. The hiding in
the DCT and DFT also adopts the low-frequency coefficient-amplitudes, respectively.

Next, we perform the transform domain DWT, DCT, and DFT in every ECG signal
of length 4096 selected via 47 datasets from the MIT-BIH arrhythmia database. Study
outcomes for the proposed solution in the sample of N = 2 are analyzed in the following.

Without loss of generality, presentation of the proposed scheme is examined by the
SNR, similarity, and RMSE, as in the following formulas:

SNR = 10 log10


N
∑

i=1
s2

i

N
∑

i=1
(s̃i − si)

2

 (5)

Similarity
(

S, S̃
)
=

N
∑

i=1
si s̃i

N
∑

i=1
s̃2

i

(6)

RMSE =

√√√√ 1
N

N

∑
i=1

(s̃i − si)
2 (7)

where si and s̃i indicate theoriginal sample and hidden sample in some ECG signals.
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The proposed information detection is similar to the proposed information-hiding pro-
cedure. First of all, we transform DWT, DCT, and DFT in the test ECG signals, respectively.
Next, we detect the binary bits by the rule in (2).

Each hidden ECG signal has good quality because of the proposed method. For
example, Figure 4a,b show the original ECG signal and the hidden ECG signal of dataset
ID 100 using DWT lowest-frequency coefficients in a 5-level decomposition. They are
similar, as shown in Figure 4c, where the green curve demonstrates primitive ECG signals;
in addition, the green curve shows hidden ECG signals by DWT and the quantization
size Q = 3000.
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Moreover, as shown in Table 2, our recommended technique applies PSO (20 particles)
to maximize amplitude similarity and SNR but minimize RMSE. SNR is significantly
diminished when the quantization size Q is escalated. In addition, our technique persists
with high quality, small RMSE and high SNR, for each hidden ECG signal under a sufficient
hiding capacity when the quantization size Q is escalated. Both DFT and DCT also have
the same effect on the RMSE and SNR. For extracting the embedded patient information,
the average success rate of extraction is about 81.2% since PSO does not guarantee that
it can accurately solve the proposed optimization model in Equation (1a,b). Usually, the
average success rate of extraction in non-approximation hiding methods is above 90%. For
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example, the average success rate of extraction in reference [12] is 94.8%. Compared with
these methods, the success rate of extraction in our method is lower.

Table 2. Experimental results for the three transforms: DWT, DCT, and DFT.

ID Method Domain Q Amplitude
Similarity SNR RMSE

Interval RMSE in ECG

PR QRS ST QT

Reference
[12]

DWT
(Level 5)

400 1 40.85 36.86 0 0 0 0

1000 1 35.16 67.43 0 0 0 0

3000 1 24.26 121.52 0 0 0 0

DFT

400 1 61.13 3.75 0 0 0 0

1000 1 54.68 8.21 0 0 0 0

4000 0.99 46.12 28.36 0 0 0 0

DCT

400 0.99 29.92 197.92 0 0 0 0

1000 0.98 20.16 435.11 0 0 0 0

3000 0.81 9.21 2014.6 0 0 0 0

Proposed

DWT
(Level 5)

400 0.99 39.86 51.93 0 0 0 0

1000 0.99 39.14 49.22 0 0 0 0

3000 0.99 38.95 49.37 0 0 0 0

DFT

400 1 34.22 93.15 0 0 0 0

1000 1 31.81 109.74 0 0 0 0

3000 1 31.09 105.82 0 0 0 0

DCT

400 1 47.16 19.88 0 0 0 0

1000 1 45.94 21.90 0 0 0 0

3000 1 45.78 23.12 0 0 0 0

101

Reference [12]

DWT
(Level 5)

400 1 41.78 36.39 0 0.001 0.002 0

1000 1 34.67 71.65 0 0 0 0

3000 1 25.39 141.47 0 0 0 0

DFT

400 1 60.42 4.12 0 0 0 0

1000 1 54.37 6.95 0 0 0 0

3000 1 45.58 29.73 0 0 0 0

DCT

400 0.99 26.63 203.31 0 0 0 0

1000 0.98 18.67 441.87 0 0 0 0

3000 0.78 8.32 1983.4 0 0 0 0

Proposed

DWT
(Level 5)

400 1 33.45 92.56 0 0 0 0

1000 1 33.16 92.13 0 0 0 0

3000 0.99 32.89 96.09 0 0 0 0

DFT

400 0.99 32.25 107.58 0 0 0 0

1000 0.99 30.82 103.14 0 0 0 0

3000 0.99 30.19 94.31 0 0 0 0

DCT

400 1 36.46 70.15 0 0 0 0

1000 1 35.83 68.63 0 0 0 0

3000 1 35.47 68.51 0 0 0 0
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Table 2. Cont.

ID Method Domain Q Amplitude
Similarity SNR RMSE

Interval RMSE in ECG

PR QRS ST QT

102

Reference
[12]

DWT
(Level 5)

400 0.99 44.65 33.94 0 0 0 0

1000 0.99 37.35 70.16 0 0 0 0

3000 0.99 27.31 267.17 0 0 0 0

DFT

400 1 63.18 4.12 0 0 0 0

1000 1 56.28 7.45 0 0 0 0

3000 1 47.53 30.28 0 0 0 0

DCT

400 0.99 28.02 200.19 0 0 0 0

1000 0.99 21.45 421.37 0 0 0 0

3000 0.87 13.28 1890.5 0 0 0 0

Proposed

DWT
(Level 5)

400 1 34.28 92.78 0 0 0 0

1000 1 34.22 95.68 0 0 0 0

3000 1 33.42 115.24 0 0 0 0

DFT

400 0.99 28.62 300.25 0 0 0 0

1000 0.99 26.61 334.68 0 0 0 0

3000 0.99 26.60 293.24 0 0 0 0

DCT

400 1 29.57 171.13 0 0 0 0

1000 1 29.36 170.12 0 0 0 0

3000 1 29.24 166.77 0 0 0 0

103

Reference [12]

DWT
(Level 5)

400 1 40.56 36.07 0 0 0 0

1000 1 37.65 63.48 0 0 0 0

3000 1 26.35 270.75 0 0 0 0

DFT

400 1 63.23 4.07 0 0 0 0

1000 1 55.76 8.13 0 0 0 0

3000 0.99 47.12 30.08 0 0 0 0

DCT

400 0.99 28.23 211.17 0 0 0 0

1000 0.99 21.62 450.70 0 0 0 0

3000 0.85 10.21 1980.2 0 0 0 0

Proposed

DWT
(Level 5)

400 1 27.38 258.11 0 0 0 0

1000 1 26.75 238.72 0 0 0 0

3000 1 26.48 253.62 0 0 0 0

DFT

400 0.99 28.32 155.43 0 0 0 0

1000 0.99 28.54 160.41 0 0 0 0

3000 0.99 28.61 158.37 0 0 0 0

DCT

400 1 34.17 96.24 0 0 0 0

1000 1 34.11 95.84 0 0 0 0

3000 1 34.25 94.33 0 0 0 0
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Table 2. Cont.

ID Method Domain Q Amplitude
Similarity SNR RMSE

Interval RMSE in ECG

PR QRS ST QT

104

Reference [12]

DWT
(Level 5)

400 0.99 41.56 37.21 0.041 0 0 0

1000 0.99 37.20 68.96 0 0 0 0

3000 0.99 23.67 260.17 0 0 0 0

DFT

400 1 62.46 4.37 0.653 0.015 0 0

1000 1 56.47 8.57 0 0 0 0

3000 0.99 44.45 30.16 0 0 0 0

DCT

400 0.99 27.84 202.645 0 0 0 0

1000 0.99 21.26 431.98 0 0 0 0

3000 0.86 8.41 1895.5 0 0 0 0

Proposed

DWT
(Level 5)

400 0.99 25.16 317.65 0 0 0 0

1000 0.99 25.34 327.75 0 0 0 0

3000 0.99 25.76 322.64 0 0 0 0

DFT

400 0.99 27.18 166.73 0 0 0 0

1000 0.99 27.29 167.35 0 0 0 0

3000 0.99 27.36 166.46 0 0 0 0

DCT

400 1 31.41 134.54 0 0 0 0

1000 1 32.26 130.17 0 0 0 0

3000 1 32.18 128.96 0 0 0 0

105

Reference [12]

DWT
(Level 5)

400 1 41.96 34.54 0 0 0 0

1000 1 39.15 68.28 0 0 0 0

3000 0.99 24.75 284.63 0 0 0 0

DFT

400 1 64.46 3.70 0 0 0 0

1000 1 58.37 7.47 0 0 0 0

3000 1 46.24 30.21 0 0 0 0

DCT

400 0.98 29.58 205.58 0 0 0 0

1000 0.99 22.76 450.82 0 0 0 0

3000 0.88 9.43 2092.6 0 0 0 0

Proposed

DWT
(Level 5)

400 1 26.83 283.36 0 0 0 0

1000 1 26.39 297.79 0 0 0 0

3000 1 26.56 291.29 0 0 0 0

DFT

400 0.99 25.96 161.36 0 0 0 0

1000 0.99 25.74 162.85 0 0 0 0

3000 0.99 25.36 161.46 0 0 0 0

DCT

400 1 46.58 31.01 0 0 0 0

1000 1 46.00 31.05 0 0 0 0

3000 1 46.22 28.54 0 0 0 0

When transmitting data, they is sent to the receiver by the transmission speed of
1 Giga (G) bps. When the quantity of information transmitted is not large enough or during
a restriction on transmitting data, information-hiding is recommended.

5. Conclusions

By developing an optimization model, we combine coefficient-amplitude quantization
with a SNR to propose a new hiding method for a patient’s confidential data in this study.
After testing six ECG datasets by using the proposed hiding method, the distinction of the
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hidden ECG signal and primitive one has an Amplitude Similarity of almost 1, an Interval
RMSE of almost 0, and SNRs all above 30, which is tiny and insignificant for physiological
detection. In addition, our recommended technique ameliorates the weakness of each
hidden ECG signal, which is significantly diminished when the quantization size Q is
escalated. However, our proposed method has the limitation of a low extraction success
rate. In future work, we will improve the shortcomings of the low extraction success rate.
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