
Citation: Huang, S.; Song, Z.;

Choi, H.-R.; Kim, J.-J.; Park, D.-M.;

Park, B.-K. ConGPS: A Smart

Container Positioning System Using

Inertial Sensor and Electronic Map

with Infrequent GPS. Sensors 2023, 23,

9198. https://doi.org/10.3390/

s23229198

Academic Editors: Gaoge Hu and

Bingbing Gao

Received: 4 September 2023

Revised: 22 October 2023

Accepted: 9 November 2023

Published: 15 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

ConGPS: A Smart Container Positioning System Using Inertial
Sensor and Electronic Map with Infrequent GPS
Shan Huang, Zihan Song , Hyung-Rim Choi, Jae-Joong Kim, Do-Myung Park and Byung-Kwon Park *

Smart Logistics Research Center, Dong-A University, Busan 49315, Republic of Korea; 2270923@donga.ac.kr (S.H.);
1973741@donga.ac.kr (Z.S.); hrchoi@dau.ac.kr (H.-R.C.); jjkgb@dau.ac.kr (J.-J.K.); home21cc@gmail.com (D.-M.P.)
* Correspondence: bpark@dau.ac.kr; Tel.: +82-10-3254-9260

Abstract: Real-time global positioning is important for container-based logistics. However, a chal-
lenge in real-time global positioning arises from the frequency of both global positioning system
(GPS) calls and GPS-denied environments during transportation. This paper proposes a novel system
named ConGPS that integrates both inertial sensor and electronic map data. ConGPS estimates the
speed and heading direction of a moving container based on the inertial sensor data, the container
trajectory, and the speed limit information provided by an electronic map. The directional information
from magnetometers, coupled with map-matching algorithms, is employed to compute container
trajectories and current positions. ConGPS significantly reduces the frequency of GPS calls required
to maintain an accurate current position. To evaluate the accuracy of the system, 280 min of driving
data, covering a distance of 360 km, are collected. The results demonstrate that ConGPS can maintain
positioning accuracy within a GPS-call interval of 15 min, even if using low-cost inertial sensors in
GPS-denied environments.

Keywords: GPS-denied area; multi-sensor technology; inertial navigation; real-time positioning;
map-matching algorithm; smart container

1. Introduction

With the increasing complexity and scale of supply chains, the real-time visibility of
container position is crucial in today’s global logistics industry [1–3]. It enhances supply
chain coordination and minimizes operational risks such as theft or damage, as well as
enabling efficient problem-solving in emergencies. A smart container is a container that is
equipped with global positioning system (GPS) and a telecommunication system to send
its position data to a remote server. The major technology currently employed for real-time
positioning is GPS [4].

Although the widespread availability of precise positioning services provided by
GPS can significantly enhance traceability in container transportation, GPS is subject to
two limitations imposed during transportation: the battery life of the containers and the
existence of GPS-denied areas [5]. Battery life is important because a battery cannot be
replaced at the time of discharge during transportation. A GPS-denied area is where a
satellite signal is obstructed or attenuated. For example, areas with dense buildings or long
tunnels impede the seamless acquisition of GPS data and necessitate alternative positioning
methods or hybrid positioning systems.

To address these limitations, various solutions have been proposed. As shown in
Table 1, many researchers have sought to address the issue of positioning loss due to GPS-
denied areas by employing inertial sensor data to predict trajectories [6–9]. This approach
involves continuously tracking a vehicle’s position based on acceleration, direction, and
attitude data provided by inertial sensors, assuming an initial position is available. Rogne
et al. [10] applied strap-down inertial navigation technology to infer travel trajectories in
GPS-denied areas. However, solutions including strap-down inertial navigation require

Sensors 2023, 23, 9198. https://doi.org/10.3390/s23229198 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23229198
https://doi.org/10.3390/s23229198
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5055-179X
https://doi.org/10.3390/s23229198
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23229198?type=check_update&version=1

Sensors 2023, 23, 9198 2 of 13

high-precision inertial sensors and continuous calls. For container positioning systems, the
cost associated with such a solution is prohibitively high. Furthermore, a high-precision
inertial navigation system (INS) requires high-precision inertial measurement unit (IMU)
sensors and high sampling frequency, which increase cost and power consumption.

Table 1. Comparison of techniques for container positioning.

Works Features Advantage Limitation

[6–9] INS, GPS Precise position INS can only maintain short-range
position guessing

[11–13] Low-power WIFI, Bluetooth,
and ZigBee

Low battery consumption,
accurate position Need to connect to edge nodes

[14,15] SLAM No additional infrastructure required Requires substantial allocation of
computational resources

Reducing the frequency of GPS calls to save power (e.g., by increasing the call interval
to 1 h) introduces a significant issue of potentially missing important waypoint information.
Typically, containers pass through or enter important intermediate stations/waypoints
during transportation. If the GPS call frequency is too low, the container may fail to report
those important events. A more innovative approach involves utilizing vehicle state data
to predict vehicle location during GPS unavailability [9,16]. This approach primarily relies
on state prediction through the application of Kalman filtering. Nevertheless, the system is
susceptible to rapid error accumulation due to the utilization of only directional data as
reference upon entering GPS-denied areas.

On the other hand, considerable research has been conducted to determine container
positions through low-power Bluetooth/Wi-Fi/ZigBee connection technologies [11–13].
These technologies are viable alternatives for acquiring location data when GPS signals
are unavailable. This approach is relevant within urban context monitoring scenarios.
Nevertheless, it is imperative to acknowledge that integrating such alternative network
connections engenders a heightened reliance upon existing network infrastructure.

An additional promising avenue pertains to visual simultaneous localization and
mapping (SLAM), a technology that offers navigational and positional capabilities in
contexts devoid of GPS signals [14,15]. Within GPS-denied areas, visual SLAM achieves
navigation and localization through recognizing and tracking visual features such as
key points and edges within the environment, coupled with an analysis of inter-frame
motion relationships. This methodology operates independent of GPS signals, affording
an accurate positioning service within GPS-denied settings such as indoor environments,
urban canyons, and forested regions. Nonetheless, it is important to underscore that the
processing demands of visual SLAM entail substantial computing resources, potentially
constraining its applicability to the scenarios characterized by embedded devices with
limited resource availability.

This study aimed to maintain real-time container positioning in GPS-denied areas
while minimizing reliance on GPS calls. We propose a novel system named ConGPS that
integrates inertial sensor data and electronic map data. ConGPS estimates the speed and
heading direction of a moving container based on the inertial sensor data, the container
trajectory, and the speed limit information provided by an electronic map. A container
velocity estimation method was developed to estimate the current velocity based on the
current heading direction, previous average speed, and map speed limit data. Further-
more, to enhance the precision of the position estimation, we introduced a map-matching
algorithm. This algorithm aligns the estimated trajectory with the road network depicted
on the electronic map to refine the position estimates. Through the results of a series of
experiments, we demonstrate the superiority of the proposed algorithm in maintaining
real-time position accurately while reducing the system’s dependence on GPS. In summary,
the contributions of this research can be summarized as follows:

Sensors 2023, 23, 9198 3 of 13

• Integrating the accelerometer and magnetometer data of low-cost inertial sensors with
the speed limit data of electronic map for continuously predicting container velocity
during inter-GPS calls or in GPS-denied environments.

• Devising a map-matching method utilizing the distance and direction similarity of
container trajectory with the roads of electronic maps for adjusting container position.

• Evaluating performance via a field experiment over a 360 km course with 280 min of
transportation.

The rest of this paper is organized as follows: proposing a positioning system in
Section 2; analyzing accuracy in Section 3; A discussion in Section 4; concluding the paper
in Section 5.

2. ConGPS

We propose a novel real-time container positioning system called ConGPS (a smart
container positioning system using inertial sensor data and electronic map data with
infrequent GPS). ConGPS can maintain positioning with infrequent GPS calls as well as in
GPS-denied areas based on acceleration data, orientation data, and electronic map data.

2.1. Flowchart of ConGPS

Figure 1 depicts the flowchart of ConGPS. Firstly, the GPS call interval is set to 15 min.
During this period, the container’s velocity estimation algorithm and the map-matching
algorithm are continuously engaged to update the container’s position. After a GPS call
and an update of container position and trajectory, the acceleration and orientation data
are obtained from inertial sensors. The acceleration data are used to identify the current
state of motion (Section 2.2.1). Based on the previous position, the speed limit data from
the electronic map are retrieved to estimate the container speed (Section 2.2.2). The current
position and trajectory are updated according to the estimated speed and direction. To
reduce the estimation error, the current position and trajectory of the container are adjusted
using the map-matching algorithm (Section 2.3). The above process is repeated during the
GPS call interval. On reaching the interval, we call the GPS and correct the current position
and trajectory in accordance with the GPS data.

Sensors 2023, 23, x FOR PEER REVIEW 3 of 14

real-time position accurately while reducing the system’s dependence on GPS. In sum-

mary, the contributions of this research can be summarized as follows:

 Integrating the accelerometer and magnetometer data of low-cost inertial sensors

with the speed limit data of electronic map for continuously predicting container ve-

locity during inter-GPS calls or in GPS-denied environments.

 Devising a map-matching method utilizing the distance and direction similarity of con-

tainer trajectory with the roads of electronic maps for adjusting container position.

 Evaluating performance via a field experiment over a 360 km course with 280 min of

transportation.

The rest of this paper is organized as follows: proposing a positioning system in Sec-

tion 2; analyzing accuracy in Section 3; A discussion in Section 4; concluding the paper in

Section 5.

2. ConGPS

We propose a novel real-time container positioning system called ConGPS (a smart

container positioning system using inertial sensor data and electronic map data with in-

frequent GPS). ConGPS can maintain positioning with infrequent GPS calls as well as in

GPS-denied areas based on acceleration data, orientation data, and electronic map data.

2.1. Flowchart of ConGPS

Figure 1 depicts the flowchart of ConGPS. Firstly, the GPS call interval is set to 15

min. During this period, the container’s velocity estimation algorithm and the map-match-

ing algorithm are continuously engaged to update the container’s position. After a GPS

call and an update of container position and trajectory, the acceleration and orientation

data are obtained from inertial sensors. The acceleration data are used to identify the cur-

rent state of motion (Section 2.2.1). Based on the previous position, the speed limit data

from the electronic map are retrieved to estimate the container speed (Section 2.2.2). The

current position and trajectory are updated according to the estimated speed and direc-

tion. To reduce the estimation error, the current position and trajectory of the container

are adjusted using the map-matching algorithm (Section 2.3). The above process is re-

peated during the GPS call interval. On reaching the interval, we call the GPS and correct

the current position and trajectory in accordance with the GPS data.

Figure 1. The flowchart of ConGPS.

Figure 1. The flowchart of ConGPS.

2.2. Estimation of Container Positions using a Velocity-Estimating Algorithm
2.2.1. Recognizing Container Motion State

Based on the acceleration data from an accelerometer, we can determine the current
motion state of the container, i.e., whether it is in motion or at a standstill. As accelerometers
are sensitive to various environmental influences and may produce noisy readings, it is

Sensors 2023, 23, 9198 4 of 13

essential to address these challenges to ensure the accuracy and reliability of the data. The
simple moving average (SMA) method is employed to mitigate the impact of noise on the
accelerometer data [17,18]. The SMA is defined as follows:

SMA =

n
∑

i=1
Ai

n
(1)

where n is window size; Ai is the acceleration data in a single window i.
The window size is set to discriminate different movement states through experimen-

tation and validation to achieve optimal performance. Based on the magnitude of the
acceleration values, the container’s current state is classified as either moving or stationary.
This binary classification provides a basis for subsequent modules in the system.

Assuming that the y-axis of the accelerometer points to the direction of container’s
forward movement, the filtered y-axis acceleration, after eliminating the effect of gravity,
can effectively reflect the current motion state of the container. As illustrated in Figure 2,
the acceleration threshold for movement state detection was set to 0.05 G (green line).
When the consecutive acceleration readings for at least 3 s fall below the threshold, we
assume that it is the noise induced by vibration and that the container is in a stationary
state. Furthermore, in the ideal condition of uniform linear motion, the acceleration would
theoretically be zero, excepting acceleration due to gravity. However, we assume that, in
real transportation scenarios, containers experience minor acceleration and deceleration
phases. Consequently, the proposed method is sufficiently robust to detect the container’s
motion status.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 14

2.2. Estimation of Container Positions using a Velocity-Estimating Algorithm

2.2.1. Recognizing Container Motion State

Based on the acceleration data from an accelerometer, we can determine the current

motion state of the container, i.e., whether it is in motion or at a standstill. As accelerom-

eters are sensitive to various environmental influences and may produce noisy readings,

it is essential to address these challenges to ensure the accuracy and reliability of the data.

The simple moving average (SMA) method is employed to mitigate the impact of noise on

the accelerometer data [17,18]. The SMA is defined as follows:

1

n

i
iSMA

A

n



(1)

where n is window size; iA is the acceleration data in a single window i.

The window size is set to discriminate different movement states through experimen-

tation and validation to achieve optimal performance. Based on the magnitude of the ac-

celeration values, the container’s current state is classified as either moving or stationary.

This binary classification provides a basis for subsequent modules in the system.

Assuming that the y-axis of the accelerometer points to the direction of container’s

forward movement, the filtered y-axis acceleration, after eliminating the effect of gravity,

can effectively reflect the current motion state of the container. As illustrated in Figure 2,

the acceleration threshold for movement state detection was set to 0.05 G (green line).

When the consecutive acceleration readings for at least 3 s fall below the threshold, we assume

that it is the noise induced by vibration and that the container is in a stationary state. Further-

more, in the ideal condition of uniform linear motion, the acceleration would theoretically be

zero, excepting acceleration due to gravity. However, we assume that, in real transportation

scenarios, containers experience minor acceleration and deceleration phases. Consequently,

the proposed method is sufficiently robust to detect the container’s motion status.

Figure 2. Acceleration data processed using the SMA.

2.2.2. Estimating Velocity and Next Position of Container

Due to error accumulation, the accuracy of inertial navigation systems rapidly dete-

riorates within a few minutes [19,20]. This leads to the issue that a navigation system

based on inertial sensors cannot be used for positioning over a long period. We propose a

Figure 2. Acceleration data processed using the SMA.

2.2.2. Estimating Velocity and Next Position of Container

Due to error accumulation, the accuracy of inertial navigation systems rapidly deterio-
rates within a few minutes [19,20]. This leads to the issue that a navigation system based on
inertial sensors cannot be used for positioning over a long period. We propose a dynamic
velocity estimation algorithm that incorporates electronic map data to address this issue,
assuming the following throughout the transportation:

• The container is traveling only on the road.
• The traveling speed of the container remains relatively constant around the speed

limit of the road.

We utilize the container’s stationary states as reference points. The phase between two
consecutive stationary states encompasses the container’s acceleration, constant speed, and

Sensors 2023, 23, 9198 5 of 13

deceleration stages. We employ the road’s speed limit multiplied by a dynamic weight to
estimate the container’s velocity. The algorithm can be summarized as follows:

(1) Initialization: Perform a GPS call to obtain the current position and retrieve the speed
limit of the road segment on which the container is currently traveling.

(2) Retrieve the weight w and estimate the speed Vestimate as the road’s speed limit times
the weight w (in this study, let the initial weight be 0.75).

Vestimate = SpeedLimit× w (2)

(3) Read the orientation data from the magnetometer, HeadingAngle, which is the angle
between the container’s current direction and true north. When the container faces true
north, the heading angle is 0 degrees. For true east, it is 90 degrees; for true south, 180
degrees; and for true west, 270 degrees. Next, calculate NextPosition after ∆t, which is
the time interval between the current position and the next position. In this study, the
frequency of calling the magnetometer was 1 Hz; therefore, ∆t was equal to 1 s.

NextPosition = (PreviousLatitude + ∆ϕ, PreviousLongitude + ∆λ) (3)

∆λ =
∆x

R× cos(PreviousLatitude)
(4)

∆ϕ =
∆y
R

(5)

∆x = Vestimate × cos(HeadingAngle)× ∆t (6)

∆y = Vestimate × sin(HeadingAngle)× ∆t (7)

where ∆ϕ the is amount of change in latitude; ∆λ the is amount of change in longitude;
∆x is the displacement in the x-direction (east–west) in meters; ∆y is the displacement
in the y-direction (north–south) in meters; R is the Earth’s radius, approximately 6371
km.

(4) Store HeadingAngle as the latest trajectory point.
(5) Iterate Step 2 to 4 until the next GPS call is made. Note that GPS calls are made in an

interval (in this study, 15 min).
(6) After making the next GPS call, estimate the average GPS speed Vgps from the distance

Dgps (estimated by the map-matching algorithm; see Section 2.3) divided by the
interval time between the two GPS calls.

(7) Adjust the weight w.

w =
vgps

vestimate
(8)

(8) Repeat Steps 2 to 7 until the container comes to a stop.
(9) Upon container stoppage, store w. When the container resumes travel, retrieve w for

subsequent calculations.

2.3. Adjustment of Container Positions using Trajectory-Based Map-Matching Algorithm

A trajectory-based map-matching algorithm is a method aimed at associating trajectory
data with the geographical road network [21,22]. It facilitates the alignment of continuous
spatiotemporal location points, constituting a trajectory, to the corresponding road segments
represented in digital maps. Compared to the conventional distance-based approaches [23],
a trajectory-based map-matching algorithm determines the precise path traversed by
containers by matching trajectory points to the road network topology. Python’s OSMnx
library [24] can be used to obtain offline map data from OpenStreetMap [25].

Sensors 2023, 23, 9198 6 of 13

Our trajectory-based map-matching algorithm is composed of three subalgorithms.
The first involves distance-similarity computing, the second involves direction-similarity
computing, and the final involves next-position adjustment. These algorithms can be
summarized as follows:

2.3.1. Distance-Similarity Computing

(1) Acquire road data R = {ri, i ∈ N∗} and trajectory data P = {pi, i ∈ N∗}, where ri and
pi are composed of the latitude and longitude coordinates, respectively. R refers to all
roads within 1 km of the current position. P is a series of location points produced
by ConGPS within 1 km of the current position. Figure 3 illustrates an example data
structure. It is noteworthy that R is sparser than P because road data typically only
consist of endpoints, turning points, and intersections of roads, while trajectory data
comprise a series of closely spaced waypoints.

(2) Compose a set of paths T, as shown in Figure 3. A path in T comprises the road data
points such that the start point is within 300 m of the start point of P, and the end
point is within 300 m of the end point of P. In Figure 3, the start point is r1, and the
end point is r5 in a relevant path. We can use the breadth-first search algorithm [26] to
obtain T.

(3) For each path in T, the path is evenly divided to have the same size as that of P,
resulting in a set K = {ki, i ≤ |P|}. This process aims to transform the sparse road
data into a format that allows for comparison with P. As shown in Figure 4, P contains
9 points and the path {r1, r2, r3} in T contains 3 points (representing the start, turning,
and end of the road). Then, to compare the distance similarity between roads and
trajectories, the path needs to be evenly divided into 9 points, as shown in Figure 4.

(4) Calculate the distance between K and P using the Haversine formula [27]. The
computation formula is as follows:

d = 2× arctan(
√

a,
√

1− a) · R (9)

a = sin2(∆ϕ/2) + cos ϕ1 × cos ϕ2 × sin2(∆λ/2) (10)

where d is the great-circle distance between two points; ϕ1 and ϕ2 are the latitudes of
two points; ∆ϕ is the difference in latitude; ∆λ is the difference in longitude; R is the
Earth’s radius (mean radius = 6371 km).

(5) Find all d for each K, resulting in the distance similarity denoted as D = {di, i ≤ |T|}.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 14

(9) Upon container stoppage, store w . When the container resumes travel, retrieve w

for subsequent calculations.

2.3. Adjustment of Container Positions using Trajectory-Based Map-Matching Algorithm

A trajectory-based map-matching algorithm is a method aimed at associating trajec-

tory data with the geographical road network [21,22]. It facilitates the alignment of con-

tinuous spatiotemporal location points, constituting a trajectory, to the corresponding

road segments represented in digital maps. Compared to the conventional distance-based

approaches [23], a trajectory-based map-matching algorithm determines the precise path trav-

ersed by containers by matching trajectory points to the road network topology. Python’s OS-

Mnx library [24] can be used to obtain offline map data from OpenStreetMap [25].

Our trajectory-based map-matching algorithm is composed of three subalgorithms.

The first involves distance-similarity computing, the second involves direction-similarity

computing, and the final involves next-position adjustment. These algorithms can be sum-

marized as follows:

2.3.1. Distance-Similarity Computing

(1) Acquire road data  *,iR r i N  and trajectory data  *,iP p i N  , where ir

and ip are composed of the latitude and longitude coordinates, respectively. R

refers to all roads within 1 km of the current position. P is a series of location points

produced by ConGPS within 1 km of the current position. Figure 3 illustrates an ex-

ample data structure. It is noteworthy that R is sparser than P because road data

typically only consist of endpoints, turning points, and intersections of roads, while

trajectory data comprise a series of closely spaced waypoints.

Figure 3. Example of R , P , and T .

(2) Compose a set of paths T , as shown in Figure 3. A path in T comprises the road

data points such that the start point is within 300 m of the start point of P , and the

end point is within 300 m of the end point of P . In Figure 3, the start point is 1r ,

and the end point is 5r in a relevant path. We can use the breadth-first search algo-

rithm [26] to obtain T .

Figure 3. Example of R, P, and T.

Sensors 2023, 23, 9198 7 of 13

Sensors 2023, 23, x FOR PEER REVIEW 7 of 14

(3) For each path in T , the path is evenly divided to have the same size as that of P , re-

sulting in a set  ,iK k i P  . This process aims to transform the sparse road data

into a format that allows for comparison with P . As shown in Figure 4, P contains 9

points and the path 1 2 3{ , , }r r r in T contains 3 points (representing the start, turning,

and end of the road). Then, to compare the distance similarity between roads and trajec-

tories, the path needs to be evenly divided into 9 points, as shown in Figure 4.

Figure 4. Example of dividing path data based on the number of trajectory points.

(4) Calculate the distance between K and P using the Haversine formula [27]. The

computation formula is as follows:

(2 , 1)arctan a a Rd    (9)

   2
1 2² / 2 / 2a sin cos cos sin       (10)

where d is the great-circle distance between two points; 1 and 2 are the latitudes

of two points;  is the difference in latitude;  is the difference in longitude; R is

the Earth’s radius (mean radius = 6371 km).

(5) Find all d for each K , resulting in the distance similarity denoted as

 ,iD d i T  .

2.3.2. Direction-Similarity Computing

(1) to (3) The same as for distance-similarity computing.

(4) The elements in K are sequentially paired and transformed into vectors. As shown

in Figure 5, assuming that K contains 7 points, the paired vectors are

1 2 2 3 3 4 4 5 5 6 6 7{ , , , , , }k k k k k k k k k k k k
     

 . The HeadingAngle of each vector is then com-

puted, resulting in a set  , 1iV i K   . We define HeadingAngle as the angle

between the vector and the true north as follows:

(,)HeadingAngle arctan x y (11)

cos() sin()bx     (12)

Figure 4. Example of dividing path data based on the number of trajectory points.

2.3.2. Direction-Similarity Computing

(1) to (3) The same as for distance-similarity computing.

(4) The elements in K are sequentially paired and transformed into vectors. As shown in
Figure 5, assuming that K contains 7 points, the paired vectors are{ →

k1k2,
→

k2k3,
→

k3k4,
→

k4k5,
→

k5k6,
→

k6k7

}
. The HeadingAngle of each vector is then com-

puted, resulting in a set V = {θi, i ≤ |K| − 1}. We define HeadingAngle as the angle
between the vector and the true north as follows:

HeadingAngle = arctan(x, y) (11)

x = cos(ϕb)× sin(∆λ) (12)

y = cos(ϕa)× sin(ϕb)− sin(ϕa)× cos(ϕb)× cos(∆λ) (13)

where a and b are two points of the vector; ϕ is latitude; λ is longitude.
(5) Apply Step 4 to P in the same way as K, obtaining Q = {θi, i ≤ |P| − 1}.
(6) Compute the Pearson correlation coefficient ρ for V and Q.

ρ =
cov(V, Q)

σVσQ
(14)

where σV is the standard deviation of V; σQ is the standard deviation of Q.
(7) For each K, repeat Steps 4 to 6, resulting in the direction similarity denoted as

W = {ρi, i ≤ |T|}.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 14

cos() sin() sin() cos() cos()a b a by           (13)

where a and b are two points of the vector;  is latitude;  is longitude.

Figure 5. Example of heading angle representations.

(5) Apply Step 4 to P in the same way as K , obtaining  , 1iQ i P   .

(6) Compute the Pearson correlation coefficient ρ for V and Q .

cov(,)

V Q

V Q

 
ρ (14)

where V is the standard deviation of V ; Q is the standard deviation of Q .

(7) For each K , repeat Steps 4 to 6, resulting in the direction similarity denoted as

 ,iW i T ρ .

2.3.3. Next-Position Adjustment

(1) We compute trajectory similarity is for each K as follows:

i i is k d  ρ (15)

where id is the distance similarity for each K ; iρ is the direction similarity for each

K ; k is the weight used to balance the direction similarity and distance similarity (in

this study, k was set to 0.5).

(2) We select K having maximum is as the matching path with P . After finding the

matching path, we adjust the current position to the point in the matching path that

has the shortest distance to the estimated position using the method in Section 2.2.

3. Experimental Evaluation

We employed two Android smartphones of an identical model to collect data about

vehicular movement. Table 2 presents the relevant parameters of the inertial sensors in-

stalled in the smartphones. One smartphone was used to collect GPS data at a frequency

of 1 Hz, thereby delineating an accurate representation of the authentic trajectory. The

other smartphone was used to capture acceleration data at a rate of 10 Hz and magnetom-

eter data at a rate of 1 Hz. The dataset encompassed a comprehensive temporal span of

360 min (337 min of travel time and 23 min of stop time) over a total vehicular travel dis-

tance of 280 km. Preceding each instance of data collection, a calibration procedure of the

Figure 5. Example of heading angle representations.

Sensors 2023, 23, 9198 8 of 13

2.3.3. Next-Position Adjustment

(1) We compute trajectory similarity si for each K as follows:

si = ρi − k× di (15)

where di is the distance similarity for each K; ρi is the direction similarity for each K; k
is the weight used to balance the direction similarity and distance similarity (in this
study, k was set to 0.5).

(2) We select K having maximum si as the matching path with P. After finding the
matching path, we adjust the current position to the point in the matching path that
has the shortest distance to the estimated position using the method in Section 2.2.

3. Experimental Evaluation

We employed two Android smartphones of an identical model to collect data about
vehicular movement. Table 2 presents the relevant parameters of the inertial sensors
installed in the smartphones. One smartphone was used to collect GPS data at a frequency
of 1 Hz, thereby delineating an accurate representation of the authentic trajectory. The other
smartphone was used to capture acceleration data at a rate of 10 Hz and magnetometer
data at a rate of 1 Hz. The dataset encompassed a comprehensive temporal span of 360 min
(337 min of travel time and 23 min of stop time) over a total vehicular travel distance of 280
km. Preceding each instance of data collection, a calibration procedure of the smartphone’s
magnetometer was conducted at a locale devoid of pronounced magnetic field interferences.

Table 2. Sensor specifications.

Sensors Range Resolution

Accelerometer ±16 g 0.5 mg/LSB
Magnetometer ±2 Gauss 0.0667 mG/LSB

GPS <2.5 m <0.1 m/s

Figure 6 illustrates the practical performance of the proposed algorithm along an exem-
plary trajectory. The container travels from the upper-right corner to the lower-left corner
of the map. Figure 6a depicts the trajectory obtained only through the velocity estimation
algorithm in Section 2.2. Figure 6b depicts the trajectory adjusted after undergoing the
map-matching algorithm in Section 2.3, resulting in the path better aligned with road on
which the container is traveling. The green dots denote the positions corrected with GPS
calls with a time interval of 15 min. In Figure 6a, although the trajectory is similar to the
road in direction, the trajectory travels outside the road due to the limited accuracy of the
magnetometer and the algorithm. In contrast, the trajectory in Figure 6b is located inside
the road owing to the adjustment produced by the map-matching algorithm.

On the other hand, the errors appearing in the middle and in the end in Figure 6b
are caused by the accumulation of acceleration error and magnetometer error. The errors
are regularly corrected at each GPS point. Figure 7 illustrates the average distance error
of the trajectory generated by the proposed algorithm under varying intervals of GPS call.
The average distance error of the trajectory is the average of all the distances between each
pair of points (one on the trajectory and the other on the road). The distance is calculated
according to the Haversine formula [27]. The average distance error at the 5 min, 10 min,
and 15 min intervals increases slowly. However, after the 15 min interval, the error increases
rapidly. Specifically, at the 30 min interval, the average distance error increases to 2.85
times greater than that at the 15 min interval.

In addition, we evaluated the performance of the motion status detection and velocity
estimation algorithm in Section 2.2. Figure 8a compares Vgps and Vestimate along an exemplar
trajectory. Vgps is computed from GPS data sampled at 1 Hz. Vestimate is derived through
the velocity estimation algorithm and the container motion status recognition algorithm
in Section 2.2. The trend of change in Vestimate is similar to that in Vgps. Figure 8b shows

Sensors 2023, 23, 9198 9 of 13

the distribution of error between Vestimate and Vgps in the dataset. The average discrepancy
between Vestimate and Vgps rests at approximately −1 m per second, showing that Vestimate
effectively corresponds to Vgps.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 14

smartphone’s magnetometer was conducted at a locale devoid of pronounced magnetic

field interferences.

Table 2. Sensor specifications.

Sensors Range Resolution

Accelerometer ±16 g 0.5 mg/LSB

Magnetometer ±2 Gauss 0.0667 mG/LSB

GPS <2.5 m <0.1 m/s

Figure 6 illustrates the practical performance of the proposed algorithm along an ex-

emplary trajectory. The container travels from the upper-right corner to the lower-left

corner of the map. Figure 6a depicts the trajectory obtained only through the velocity es-

timation algorithm in Section 2.2. Figure 6b depicts the trajectory adjusted after undergo-

ing the map-matching algorithm in Section 2.3, resulting in the path be�er aligned with

road on which the container is traveling. The green dots denote the positions corrected

with GPS calls with a time interval of 15 min. In Figure 6a, although the trajectory is similar to

the road in direction, the trajectory travels outside the road due to the limited accuracy of the

magnetometer and the algorithm. In contrast, the trajectory in Figure 6b is located inside the

road owing to the adjustment produced by the map-matching algorithm.

(a) (b)

Figure 6. (a) Trajectory using the velocity-estimating algorithm only. (b) Trajectory using both the

velocity-estimating and map-matching algorithm.

On the other hand, the errors appearing in the middle and in the end in Figure 6b are

caused by the accumulation of acceleration error and magnetometer error. The errors are

regularly corrected at each GPS point. Figure 7 illustrates the average distance error of the

trajectory generated by the proposed algorithm under varying intervals of GPS call. The

average distance error of the trajectory is the average of all the distances between each

pair of points (one on the trajectory and the other on the road). The distance is calculated

according to the Haversine formula [27]. The average distance error at the 5 min, 10 min,

and 15 min intervals increases slowly. However, after the 15 min interval, the error in-

creases rapidly. Specifically, at the 30 min interval, the average distance error increases to

2.85 times greater than that at the 15 min interval.

Figure 6. (a) Trajectory using the velocity-estimating algorithm only. (b) Trajectory using both the
velocity-estimating and map-matching algorithm.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 14

Figure 7. The average distance error between the estimated trajectory and the real trajectory along

the GPS call interval.

In addition, we evaluated the performance of the motion status detection and velocity

estimation algorithm in Section 2.2. Figure 8a compares gpsV and estimateV along an ex-

emplar trajectory. gpsV is computed from GPS data sampled at 1 Hz. estimateV is derived

through the velocity estimation algorithm and the container motion status recognition al-

gorithm in Section 2.2. The trend of change in estimateV is similar to that in gpsV . Figure

8b shows the distribution of error between estimateV and gpsV in the dataset. The average

discrepancy between estimateV and gpsV rests at approximately −1 m per second, show-

ing that estimateV effectively corresponds to gpsV .

(a) (b)

Figure 8. (a) Comparison between GPS speed (gpsV) and estimated speed (estimateV). (b) The prob-

ability density distribution of the error between gpsV and estimateV .

Figure 9 presents the probability density distribution of distance errors between the

estimated trajectories and the actual trajectory in 15 min intervals. Curve 1 corresponds to

the error between the trajectory obtained through ConGPS and the actual trajectory. Curve

2 corresponds to the error when the trajectory was obtained through ConGPS without the

Figure 7. The average distance error between the estimated trajectory and the real trajectory along
the GPS call interval.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 14

Figure 7. The average distance error between the estimated trajectory and the real trajectory along

the GPS call interval.

In addition, we evaluated the performance of the motion status detection and velocity

estimation algorithm in Section 2.2. Figure 8a compares gpsV and estimateV along an ex-

emplar trajectory. gpsV is computed from GPS data sampled at 1 Hz. estimateV is derived

through the velocity estimation algorithm and the container motion status recognition al-

gorithm in Section 2.2. The trend of change in estimateV is similar to that in gpsV . Figure

8b shows the distribution of error between estimateV and gpsV in the dataset. The average

discrepancy between estimateV and gpsV rests at approximately −1 m per second, show-

ing that estimateV effectively corresponds to gpsV .

(a) (b)

Figure 8. (a) Comparison between GPS speed (gpsV) and estimated speed (estimateV). (b) The prob-

ability density distribution of the error between gpsV and estimateV .

Figure 9 presents the probability density distribution of distance errors between the

estimated trajectories and the actual trajectory in 15 min intervals. Curve 1 corresponds to

the error between the trajectory obtained through ConGPS and the actual trajectory. Curve

2 corresponds to the error when the trajectory was obtained through ConGPS without the

Figure 8. (a) Comparison between GPS speed (Vgps) and estimated speed (Vestimate). (b) The probabil-
ity density distribution of the error between Vgps and Vestimate.

Sensors 2023, 23, 9198 10 of 13

Figure 9 presents the probability density distribution of distance errors between the
estimated trajectories and the actual trajectory in 15 min intervals. Curve 1 corresponds to
the error between the trajectory obtained through ConGPS and the actual trajectory. Curve
2 corresponds to the error when the trajectory was obtained through ConGPS without
the map-matching algorithm. Curve 3 corresponds to the error when the trajectory was
obtained through a direct connection of GPS points. Curve 1 exhibits the most favorable
performance, with an average distance error of 132.28 m. This implies that, in comparison to
the trajectory obtained via directly connecting GPS points, the proposed algorithm enhances
the localization accuracy by approximately twofold. On the other hand, the average
distance error of curve 2 is 1.12 times that of curve 1, which illustrates the improvement in
the map-matching algorithm on positioning accuracy.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 14

map-matching algorithm. Curve 3 corresponds to the error when the trajectory was ob-

tained through a direct connection of GPS points. Curve 1 exhibits the most favorable

performance, with an average distance error of 132.28 m. This implies that, in comparison

to the trajectory obtained via directly connecting GPS points, the proposed algorithm en-

hances the localization accuracy by approximately twofold. On the other hand, the aver-

age distance error of curve 2 is 1.12 times that of curve 1, which illustrates the improve-

ment in the map-matching algorithm on positioning accuracy.

Figure 9. The probability density distribution of distance errors between the estimated trajectories

and the actual trajectory.

4. Discussion

In this study, we developed a container positioning system that integrates both iner-

tial sensor data and electronic map data. Our findings illustrate that the incorporation of

road data from electronic maps enables an accurate prediction of container trajectory, em-

ploying low-precision accelerometers and magnetometers. We observed that the pro-

posed system can maintain positioning accuracy up to a 15 min interval of GPS calls with

an average distance error of 132.28 m. Due to the relatively small difference in distance

error and to minimize the frequency of GPS calls, we employed a 15 min interval to assess

the performance of the proposed system.

The performance partially stems from the dynamic adjustment of the estimated ve-

locity based on the utilization of the road speed limit data obtained from electronic maps,

resulting in an average speed error of approximately 1 m per second, as shown in Figure

8b. It is noteworthy that the algorithm circumvents the error accumulation inherent to

traditional INS algorithms, thereby averting significant deviation between estimated and

actual speed. In addition, the use of accelerometer data for detecting container motion

states also contributes to avoiding error accumulation. In particular, the proposed algo-

rithm obviates the necessity for high-precision sensors and the acquisition of supplemen-

tary sensor data.

Compared to prior research, this study’s novelty resides in utilizing speed limit data

and trajectory data to estimate container positions during GPS-denied periods. Sun et al.

[16] proposed a navigation solution for GPS-absent scenarios, reporting errors below 100

m within 60 min. However, this solution necessitates employing relatively sophisticated

onboard INS equipment and is confined to a singular testing route. Chunhakam et al. [9]

introduced a navigation algorithm employing magnetometers and speed data retrieved

via truck on-board diagnostics (OBD), yielding an evaluated error of 30 m. The reliance

on speed information obtained exclusively from the truck’s OBD system limits their

Figure 9. The probability density distribution of distance errors between the estimated trajectories
and the actual trajectory.

4. Discussion

In this study, we developed a container positioning system that integrates both inertial
sensor data and electronic map data. Our findings illustrate that the incorporation of road
data from electronic maps enables an accurate prediction of container trajectory, employing
low-precision accelerometers and magnetometers. We observed that the proposed system
can maintain positioning accuracy up to a 15 min interval of GPS calls with an average
distance error of 132.28 m. Due to the relatively small difference in distance error and
to minimize the frequency of GPS calls, we employed a 15 min interval to assess the
performance of the proposed system.

The performance partially stems from the dynamic adjustment of the estimated ve-
locity based on the utilization of the road speed limit data obtained from electronic maps,
resulting in an average speed error of approximately 1 m per second, as shown in Figure 8b.
It is noteworthy that the algorithm circumvents the error accumulation inherent to tradi-
tional INS algorithms, thereby averting significant deviation between estimated and actual
speed. In addition, the use of accelerometer data for detecting container motion states also
contributes to avoiding error accumulation. In particular, the proposed algorithm obviates
the necessity for high-precision sensors and the acquisition of supplementary sensor data.

Compared to prior research, this study’s novelty resides in utilizing speed limit data
and trajectory data to estimate container positions during GPS-denied periods.
Sun et al. [16] proposed a navigation solution for GPS-absent scenarios, reporting er-
rors below 100 m within 60 min. However, this solution necessitates employing relatively
sophisticated onboard INS equipment and is confined to a singular testing route. Chun-
hakam et al. [9] introduced a navigation algorithm employing magnetometers and speed

Sensors 2023, 23, 9198 11 of 13

data retrieved via truck on-board diagnostics (OBD), yielding an evaluated error of 30 m.
The reliance on speed information obtained exclusively from the truck’s OBD system limits
their method’s applicability. In contrast, our work integrates information such as road
speed limits and road trajectories with inertial sensor data, enhancing accuracy during
GPS-denied periods. Furthermore, it reduces the frequency of GPS calls required while
upholding positioning accuracy.

There are some limitations worth mentioning. As the GPS call interval increases,
the proposed system’s distance error also escalates. This is attributed to the simplicity of
the velocity estimation algorithm. Future research endeavors may therefore contemplate
refining the velocity estimation algorithm amalgamated with road and traffic information.
For instance, incorporating intersections and road congestion levels could elevate the
positioning accuracy.

ConGPS can provide a real-time positioning service for moving containers. The
algorithm for recognizing container motion state just scans the input data to calculate the
SMA and recognize a stationary or moving state, so that its time complexity is O(n), where
n is the input data size. The algorithm for estimating the velocity and next position of a
container scans the magnetometer data and calculates the velocity and the next position,
so that its time complexity is also O(n). The algorithm for distance-similarity computing
scans the road data and the trajectory data, making all possible paths from the road data to
compute the distance between the path and the trajectory. When there are n points in the
road data, maximal n! paths should be considered, so that the time complexity in making
all possible paths is O(n!). Therefore, we should control the road data size to prohibit
the path-making time from growing exponentially. In this study, we retrieved the road
data only from within 1 km of the current position. Furthermore, we considered only
those paths where the start point was within 300 m of the start point of the trajectory and
where the end point was within 300 m of the end point of the trajectory. The algorithm for
direction-similarity computing sequentially scans the path data to compute the heading
angles, so that its time complexity is O(n), where n is the number of points in the path.
Overall, we can control the time complexity of the proposed algorithm to be O(n) so as to
provide a real-time positioning service for a moving container.

5. Conclusions

In this study, we developed a smart container positioning system named ConGPS
that combines inertial sensor data and electronic map information. ConGPS innovatively
leverages road trajectory data and road speed limit data from electronic maps as well as
inertial sensor data to achieve accurate positioning with reduced GPS calls. ConGPS also
cost-effectively furnishes a real-time positioning service with low-precision inertial sensors.

The limitation of this study is that the distance error of ConGPS starts to increase
rapidly when the GPS request interval exceeds 15 min. This is attributed to the simplicity
of the velocity estimation algorithm. Subsequent research endeavors could consider in-
corporating additional road- or traffic-related data to reduce distance error. For instance,
such data as traffic congestion levels, road construction information, and the number of
available lanes could be explored to refine the velocity estimation.

Author Contributions: Conceptualization by S.H., Z.S. and B.-K.P.; methodology development by
S.H., Z.S. and B.-K.P.; software implementation by S.H. and Z.S.; validation by Z.S. and B.-K.P.; formal
analysis by S.H.; investigation, S.H., Z.S., H.-R.C., J.-J.K., D.-M.P. and B.-K.P.; resources, H.-R.C.,
J.-J.K., D.-M.P. and B.-K.P.; data curation by S.H. and Z.S.; draft by S.H. and Z.S.; review and editing
by S.H., Z.S. and B.-K.P.; supervision by H.-R.C., J.-J.K., D.-M.P. and B.-K.P.; project administration
by D.-M.P. and B.-K.P.; funding acquisition by H.-R.C., J.-J.K. and D.-M.P. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by Korea Institute of Marine Science & Technology Promotion
(KIMST) funded by the Ministry of Oceans and Fisheries, Korea (20210154).

Institutional Review Board Statement: Not applicable.

Sensors 2023, 23, 9198 12 of 13

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy and confidentiality concerns.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Salah, K.; Alfalasi, A.; Alfalasi, M.; Alharmoudi, M.; Alzaabi, M.; Alzyeodi, A.; Ahmad, R.W. IoT-Enabled Shipping Container

with Environmental Monitoring and Location Tracking. In Proceedings of the 2020 IEEE 17th Annual Consumer Communications
& Networking Conference (CCNC), Las Vegas, NV, USA, 10–13 January 2020; Volume 3, pp. 1–6.

2. Mahmood, S.; Hasan, R.; Ullah, A.; Sarker, K.U. SMART Security Alert System for Monitoring and Controlling Container
Transportation. In Proceedings of the 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC),
Muscat, Oman, 15–16 January 2019; pp. 1–5.

3. Chan, A.S.; Sutapa, I.N. Truck management integrated information system in a shipping line company. In Proceedings of the
2017 International Conference on Soft Computing, Intelligent System and Information Technology (ICSIIT), Bali, Indonesia,
26–29 September 2017; pp. 257–262. [CrossRef]

4. Wang, Y.; Ning, X.; Xu, X. An Improved In-Motion Coarse Alignment Method for SINS/GPS Integration with Initial Velocity
Error Suppression. Sensors 2023, 23, 3662. [CrossRef]

5. Li, X.; Zhang, X.; Chen, K.; Feng, S. Measurement and analysis of energy consumption on Android smartphones. In Proceedings
of the 2014 4th IEEE International Conference on Information Science and Technology, Guangdong, China, 26–28 April 2014;
pp. 242–245.

6. Ibrahim, A.; Abosekeen, A.; Azouz, A.; Noureldin, A. Enhanced Autonomous Vehicle Positioning Using a Loosely Coupled
INS/GNSS-Based Invariant-EKF Integration. Sensors 2023, 23, 6097. [CrossRef]

7. Cao, Y.; Bai, H.; Jin, K.; Zou, G. An GNSS/INS Integrated Navigation Algorithm Based on PSO-LSTM in Satellite Rejection.
Electronics 2023, 12, 2905. [CrossRef]

8. Davidson, P.; Vazquez, M.A.; Piche, R. Uninterrupted portable car navigation system using GPS, map and inertial sensors data.
In Proceedings of the 2009 IEEE 13th International Symposium on Consumer Electronics, Kyoto, Japan, 25–28 May 2009; pp.
836–840.

9. Chunhakam, P.; Pummarin, P.; Jeen-Im, P.; Wardkien, P.; Wisartpong, P.; Lertteerada, K. GPS Positon Predicting System by
Kalman Filter with Velocity from OBD and Direction from Magnetometer. In Proceedings of the 2021 9th International Electrical
Engineering Congress (iEECON), Pattaya, Thailand, 10–12 March 2021; pp. 444–447. [CrossRef]

10. Rogne, R.H.; Bryne, T.H.; Fossen, T.I.; Johansen, T.A. On the Usage of Low-Cost MEMS Sensors, Strapdown Inertial Navigation,
and Nonlinear Estimation Techniques in Dynamic Positioning. IEEE J. Ocean. Eng. 2021, 46, 24–39. [CrossRef]

11. Ni, P. Intelligent Containers for the Goods Transport. In Proceedings of the 2021 4th International Conference on Information
Systems and Computer Aided Education, Dalian, China, 24–26 September 2021; ACM: New York, NY, USA, 2021; pp. 1829–1832.

12. Ungurean, I.; Chi, J.; Wang, K.; Gaitan, N.C.; Yao, H.; Yang, Y. Mobile ZigBee Network in a High RF Interference Environ-
ment. In Proceedings of the 2019 International Conference on Sensing and Instrumentation in IoT Era (ISSI), Lisbon, Portugal,
2–30 August 2019; pp. 1–5.

13. Talukder, N.; Ahamed, S.I.; Abid, R.M. Smart Tracker: Light Weight Infrastructure-less Assets Tracking solution for Ubiquitous
Computing Environment. In Proceedings of the 2007 Fourth Annual International Conference on Mobile and Ubiquitous Systems:
Networking & Services (MobiQuitous), Philadelphia, PA, USA, 6–10 August 2007; pp. 1–8.

14. Luo, F.; Liu, Z.; Zou, F.; Liu, M.; Cheng, Y.; Li, X. Robust Localization of Industrial Park UGV and Prior Map Maintenance. Sensors
2023, 23, 6987. [CrossRef]

15. Wells, L.A.; Chung, W. Vision-Aided Localization and Mapping in Forested Environments Using Stereo Images. Sensors 2023, 23,
7043. [CrossRef]

16. Sun, C.; Li, K. A Vehicle-Carried INS Positioning Accuracy Improvement Method by Using Lateral Constraint in GPS-Denied
Environment. IEEE Trans. Veh. Technol. 2023, 72, 205–213. [CrossRef]

17. Moving Average. Available online: https://en.wikipedia.org/wiki/Moving_average (accessed on 2 August 2023).
18. Song, Z.; Park, H.-J.; Thapa, N.; Yang, J.-G.; Harada, K.; Lee, S.; Shimada, H.; Park, H.; Park, B.-K. Carrying Position-Independent

Ensemble Machine Learning Step-Counting Algorithm for Smartphones. Sensors 2022, 22, 3736. [CrossRef]
19. Chen, C.; Lu, X.; Markham, A.; Trigoni, N. IONet: Learning to Cure the Curse of Drift in Inertial Odometry. Proc. AAAI Conf.

Artif. Intell. 2018, 32, 6468–6476. [CrossRef]
20. El-Sheimy, N.; Hou, H.; Niu, X. Analysis and Modeling of Inertial Sensors Using Allan Variance. IEEE Trans. Instrum. Meas. 2008,

57, 140–149. [CrossRef]
21. Chawathe, S.S. Segment-Based Map Matching. In Proceedings of the 2007 IEEE Intelligent Vehicles Symposium, Istanbul, Turkey,

13–15 June 2007; pp. 1190–1197.
22. Hashemi, M.; Karimi, H.A. A weight-based map-matching algorithm for vehicle navigation in complex urban networks. J. Intell.

Transp. Syst. 2016, 20, 573–590. [CrossRef]

https://doi.org/10.1109/ICSIIT.2017.60
https://doi.org/10.3390/s23073662
https://doi.org/10.3390/s23136097
https://doi.org/10.3390/electronics12132905
https://doi.org/10.1109/iEECON51072.2021.9440239
https://doi.org/10.1109/JOE.2020.2967094
https://doi.org/10.3390/s23156987
https://doi.org/10.3390/s23167043
https://doi.org/10.1109/TVT.2022.3205047
https://en.wikipedia.org/wiki/Moving_average
https://doi.org/10.3390/s22103736
https://doi.org/10.1609/aaai.v32i1.12102
https://doi.org/10.1109/TIM.2007.908635
https://doi.org/10.1080/15472450.2016.1166058

Sensors 2023, 23, 9198 13 of 13

23. Dakai, Y.; Baigen, C.; Yifang, Y. An improved map-matching algorithm used in vehicle navigation system. In Proceedings of
the 2003 IEEE International Conference on Intelligent Transportation Systems, Shanghai, China, 12–15 October 2003; Volume 2,
pp. 1246–1250.

24. Boeing, G. OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput.
Environ. Urban Syst. 2017, 65, 126–139. [CrossRef]

25. OpenStreetMap Planet Dump. Available online: https://www.openstreetmap.org/ (accessed on 3 September 2023).
26. Breadth-First Search. Available online: https://en.wikipedia.org/wiki/Breadth-first_search (accessed on 16 October 2023).
27. Haversine Formula. Available online: https://en.wikipedia.org/wiki/Haversine_formula (accessed on 13 August 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.compenvurbsys.2017.05.004
https://www.openstreetmap.org/
https://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/Haversine_formula

	Introduction
	ConGPS
	Flowchart of ConGPS
	Estimation of Container Positions using a Velocity-Estimating Algorithm
	Recognizing Container Motion State
	Estimating Velocity and Next Position of Container

	Adjustment of Container Positions using Trajectory-Based Map-Matching Algorithm
	Distance-Similarity Computing
	Direction-Similarity Computing
	Next-Position Adjustment

	Experimental Evaluation
	Discussion
	Conclusions
	References

