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Abstract: This paper deals with the practical application of Radar Cross Section (RCS) reduction
technology using plasma. Although various plasma application technologies for RCS reduction
have been studied, there are still many issues to be addressed for practical implementation. In
order to achieve actual application, the discharge should be sustained regardless of the external
environment of the aircraft. It is also important to investigate the actual plasma parameters to
determine the expected RCS reduction effect. Building upon previous studies that optimized the
electrodes for RCS reduction, this study fabricates a Dielectric Barrier Discharge (DBD) source suitable
for dynamic environments and verifies the power consumption during one cycle of plasma generation.
The obtained results are expected to contribute to the optimization of DBD electrodes for plasma
RCS reduction.

Keywords: Dielectric Barrier Discharge (DBD); Radar Cross Section reduction; Lissajous figure

1. Introduction

Radar Cross Section (RCS) reduction technology in modern warfare is a cutting-edge
field being extensively researched by many advanced countries as a crucial technology
directly related to the survival of aircraft. Among various RCS reduction techniques, the
use of plasma has been extensively studied, leading the development of aircraft stealth
technology. RCS using plasma is based on the scattering properties resulting from the
behavior of electrons in plasma.

Recently, various methods of utilizing plasma for RCS have been researched. These
include developing a compact plasma source with checkerboard patterned electrodes [1–3],
creating a specific plasma source in the form of fluorescent lamps to verify the reduction
effect [4,5], and designing plasma configurations to encompass jet engines that emit aircraft
gases [6–8]. Furthermore, extensive research is being conducted on plasma sources, includ-
ing the development of flexible electrodes as plasma generation elements in board form,
for applications in aircrafts [9–11].

One of the more effective methods for reducing RCS using plasma is Dielectric Barrier
Discharge (DBD). DBD provides the advantage of a low breakdown voltage [12] compared
to other discharge sources, making it suitable for a wide range of applications, including
RCS reduction, industrial processing, and even in the field of plasma medicine [13–18]. The
basic structure of DBD typically involves two opposing electrode plates where one or both
electrodes are covered by dielectrics. Y.S. Lee et al. applied variations to this basic design
by selectively covering one side with a dielectric and confirmed RCS reduction effects with
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different electrode configurations in the dielectric-covered region [14–16]. However, there
are still several challenges in applying these results in practical applications.

The first challenge is that a DBD source for RCS reduction requires the optimization of
electrode discharge regions or independent control of its internal and external environments.
The aircraft operates at slightly lower pressures (0.3 atm) than atmospheric pressure and
moves at high speeds approaching Mach numbers, necessitating that the discharge remains
unaffected by the high velocity.

The second challenge is the difficulty in plasma diagnostics. Currently used DBD
sources have temporal and spatial non-uniformities of the current and it is difficult to
determine the plasma parameters [19]. Therefore, it is necessary to analyze the DBD source
using reliable methods to understand the actual plasma parameters and predict the future
results for RCS reduction.

In this paper, for independent control in gas environments and high-speed flow, several
types of encapsulated DBD plasma sources sealed by an acrylic skeleton are introduced. It
is confirmed that the discharge behavior remains relatively stable over time, even when
discharge is conducted independently. As a DBD plasma diagnostics method, Lissajous
figures, the well-known volt-coulomb (V-Q) characteristic [19–22], is employed to examine
the variation trends of power values with respect to voltage and frequency for the three
different sources.

2. Materials and Methods

(a) DBD source structure and discharge characteristics

The DBD plasma generator, as depicted in Figure 1, utilizes an upper plate made of
acrylic material measuring 200 × 200 × 10 mm3 to isolate from the external environment.
A square-shaped pit measuring 160 × 160 × 5 mm3 is created on one side of the acrylic
plate to establish a discharge region within. The electrode is inserted into the pit and is
covered by a 70 µm polyimide dielectric film. The electrode attached to the upper plate is
connected to a wire passing through the acrylic, and it is bonded to the acrylic plate using
a sealing bond (940LE, SANUL CO., LTD, Seoul, Republic of Korea). The upper plate is
then combined with the bottom plate, and the internal gas conditions are isolated from the
external gas conditions by the presence of dual silicon O-rings in the side. Various types of
electrodes are adopted for the characterization of plasmas. Each electrode type has already
been proved to show an RCS reduction effect. Figure 1a shows a coplanar electrode (COP)
using the same structure [14] and (b) shows a frequency selective surface (FSS) electrode,
as conducted in experiments by Y.S. Lee et al. [15]. Therefore, in cases (a) and (b), the
plasma is discharged between the polyimide dielectric barrier and the bottom plate. In
case (c), a patterned dielectric is added. The introduction of patterned dielectric material
can lead to an increase in the real part of the effective permittivity between the electrodes,
potentially enhancing the attenuation effect [16]. In this case, plasma is generated between
the polyimide film and the patterned dielectric (FSS + Patterning).

(b) DBD source voltage measurement

The schematic design of the experiment is shown in Figure 2. The internal pressure of
the DBD source is fixed at 1 Torr of argon gas and the external condition is at atmospheric
pressure. A square wave with a driving voltage of 1.5–2.5 kV and frequency of 2–10 kHz is
delivered from a power generator. A system voltage probe (P5100, Tektronix, Beaverton,
OR, USA) is used for the voltage measurement. To measure the current, a test capacitor of
3000 pF is connected to the DBD source with a voltage probe (P5100A, Tektronix, United
States). The measured data from both probes are transmitted to a single oscilloscope (TDS
3054C, Tektronix, Beaverton, OR, USA). All measurements are taken within 1 min after
the initiation of DBD source discharge. For better validation, voltage measurements are
performed five times for each plasma source.
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Figure 2. A schematic design of the experimental setup. Voltage probe 1 measures the overall system
voltage, while voltage probe 2 measures the voltage across a 3000 pF test capacitor.

(c) Methods

The voltage measurements are used to investigate the voltage applied to the DBD
source and the charge amount flowing through the wire from the additional capacitor over
time. The power consumption of the DBD source in one cycle is examined under various
frequencies and voltages. According to the Drude model, the plasma frequency is related
to the RCS reduction effect and depends on the electron density [23,24]. When conducting
RCS reduction studies, it is important to measure the plasma electron density. However,
there is a significant limitation in the current DBD source, which prevents direct insertion of
a probe into the plasma. Therefore, in this study, the power consumed by the DBD source
in one cycle is investigated using the measured voltage under different frequencies and
voltages. It was reported that the plasma density is directly related to the input power as
the density commonly increases with the power [25,26]. The equivalent circuit model of
this study is shown in Figure 3.
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The equivalent circuit of the DBD source can be expressed as Equation (1) based on
Kirchhoff’s voltage law.

Vg = V − Vdi (1)

Vg represents the electrode gap voltage, V represents the measured voltage of the
entire DBD plasma generator system, and Vdi represents the voltage applied to the dielectric
barrier (polyimide) within the DBD source. In Equation (1), the values of V can be obtained
through measurements. However, Vdi can be solved using Equation (2). As for Cdi, since
it is fabricated in a form that covers the entire electrode, it is calculated using the parallel
plate capacitor model.

Vdi =
Qdi
Cdi

(2)

The value of Qdi is determined by the current.

Qdi =
∫

Idt (3)

Subsequently, considering the sum of Vg and Vdi as the voltage across the DBD source,
it can be expressed as Equation (4).

Vg(t) + Vdi(t) = VDBD(t) (4)

Furthermore, the rate of change of Vg and Vdi with respect to time can be written as
Equations (5) and (6), respectively.

dVg(t)
dt

=
1

Cg
(I(t)− Ia(t)) (5)

dVdi(t)
dt

=
I(t)
Cdi

(6)

By substituting Equations (5) and (6) into Equation (4), Equation (7) is obtained as

Ia(t) = I(t)
Cg + Cdi

Cdi
− Cg

∂U
∂t

(7)

According to the Q-V characteristics, when plotting the Lissajous figures for one
cycle, it takes the form of a trapezoid [19–22]. The shape and slope of the trapezoid are
determined by various variables. Additionally, by calculating the width of the trapezoid,
we can determine the energy consumed during one cycle. The energy of one cycle (E)
determined by ∆Vg and ∆Qg is expressed in Equation (8).

E = ∆Vg × ∆Qg (8)
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Afterwards, the energy is divided by the duration of one cycle (T) to calculate the
average power [27].

P =
1
T

E (9)

3. Results and Discussion

Figure 4a shows the discharge images of the encapsulated DBD sources with different
electrode structures. Under atmospheric conditions, the three types of DBD source exhibit
uniform discharge across all electrodes inside the source. Light emitted from the uncovered
cross-shaped region, not shielded by the electrodes, shows the discharge. As in Figure 4b,
it is confirmed that the discharge is sustained stably for a duration of 30 min. The COP and
FSS structures manifest as yellowish, which is attributed to the presence of the polyimide
film. Conversely, in the case of FSS + Patterning, a violet hue is discerned due to the absence
of polyimide film on the lateral surfaces.
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Figure 4. Discharge appearance of the FSS plasma generator: (a) appearance immediately after
discharge from each electrode, and (b) temporal evolution of the FSS electrode. The photo was taken
on top of the DBD source and appears as yellow light due to the polyimide dielectric.

The voltage–current results obtained from the three DBD sources are presented in
Figure 5. Voltage data are collected within 1 min after the initiation of the discharge,
and the measurements are repeated 5 times to ensure accuracy. In Figure 5, Vg and Ia
represent the voltage across the plasma resistance Rg and the current flowing through Rg
from the measured data, respectively. Notably, the current results exhibit similarities in
the observed trends of effective DBD discharge under the same square-wave generator
power conditions [13,28]. Overall, the trends observed in the FSS and FSS + Patterning
configurations are similar, while the Coplanar configuration shows slightly different results.
The patterned dielectric does not affect the voltage–current shape and the difference can
be attributed to variations in the electrode’s shape as the dielectric thickness remains the
same. FSS-based structures have slightly biased and noisy voltage profiles. This shows
that the shape of electrodes directly affects the circuit characteristics and plasma operations
even in the similar structures. Additionally, a notable divergence is observed between the
applied voltage and the voltage across the electrodes. This phenomenon is consistent with
experiments exhibiting DBD characteristics in other instances, but the underlying cause
remains elusive [13,15].
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Figure 5. The voltage–current graph of the DBD (Dielectric Barrier Discharge) calculated as described
in the paper, using the provided data for Vg (voltage across the plasma resistance Rg) and Ia (current
flowing in Rg). The presented results correspond to a driving voltage of 2.5 kV and a driving
frequency of 5 kHz.

For the detailed analysis, Lissajous figures of the three types of DBD source with
different electrode configurations are derived as in Figure 6. The area under the Q-V
graph represents the energy consumed during one cycle [20]. All configurations display
a trapezoid. Similar to the voltage–current data in Figure 5, the shape of the Q-V graph
of the FSS and FSS + Patterning configurations are similar, while that of the Coplanar
configuration shows some differences. In the case of FSS and FSS + Patterning, despite
having lower applied voltages compared to the coplanar electrode structure, it can be
observed that they possess higher charge values. Having a greater charge when the same
voltage is applied signifies a larger capacitance. This observation can be explained by the
FSS electrode and the FSS + Patterning electrode having a larger electrode area compared
to the Coplanar structure or conventional DBD plasma sources, resulting in a greater
capacitance.
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This result indicates that the variation in capacitance due to the electrode structure
has a greater impact than the presence or absence of dielectric material in the middle.

Figure 7 shows the applied voltage and the gap voltage between the applied voltage
and the DBD source. In the case of the coplanar structure, the gap voltage increases with the
applied voltage. This result indicates that the coplanar structure exhibits efficient voltage
control. On the other hand, for the FSS and FSS + Patterning structures, it can be observed
that the gap voltage remains constant regardless of the applied voltage. In the context of
our research, this suggests that the sensitivity of the operating voltage to the shape of the
FSS electrode is lower than that of the Coplanar electrode, irrespective of the presence of
the patterning dielectric.
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From Lissajous figures, the power consumptions of each type of the source are de-
rived. Figure 8 shows the power consumption depending on input voltage and frequency,
respectively. Again, the Coplanar structure shows different behaviors comparing to the
cases of the FSS and FSS + Patterning structures. In the case of the Coplanar configuration,
the power consumption continues to increase with voltage. On the other hand, the FSS
and FSS + Patterning structures exhibit a slight increase in power consumption up to
2000 V, after which it remains relatively constant. Additionally, the variations with driving
frequency show that the Coplanar configuration reaches its maximum power consumption
at 5 kHz. However, the FSS and FSS + Patterning structures exhibit a slight decrease in
power consumption on input frequency. Overall, the Coplanar structure shows higher
plasma activation rate in the higher voltage and frequency range compared to FSS-based
structures. Also, FSS-based structures show almost constant behaviors on input parameters.
These results indicate that the optimal points in power and frequency vary depending on
the electrode spacing and shape.

Combining the voltage and power characteristics in Figures 7 and 8, in the case of the
coplanar structure, the gap voltage increases along with the applied voltage. Consequently,
the power consumed during one cycle also increases. On the contrary, FSS-based structures
do not show significant changes in the gap voltage and power with respect to the applied
voltage, which can be interpreted as low efficiency in voltage control. Overall, Coplanar
structures show higher power coupling to the input signal compared to FSS-based struc-
tures. These results give the Coplanar structure the potential of characterization with its
controllability by the input signals, whereas FFS-based structures show stable behaviors in
wide operation conditions. In the case of the FSS + Patterning, as the patterned dielectric
which has already been reported to show additional RCS reduction effects [16] does not
have any meaningful physical disruption, we can enhance the RCS reduction effects of the
FSS structure without side effects.



Sensors 2023, 23, 9170 8 of 9

Sensors 2023, 23, x FOR PEER REVIEW 13 of 15 
 

 

From Lissajous figures, the power consumptions of each type of the source are 
derived. Figure 8 shows the power consumption depending on input voltage and 
frequency, respectively. Again, the Coplanar structure shows different behaviors 
comparing to the cases of the FSS and FSS + Patterning structures. In the case of the 
Coplanar configuration, the power consumption continues to increase with voltage. On 
the other hand, the FSS and FSS + Patterning structures exhibit a slight increase in power 
consumption up to 2000 V, after which it remains relatively constant. Additionally, the 
variations with driving frequency show that the Coplanar configuration reaches its 
maximum power consumption at 5 kHz. However, the FSS and FSS + Patterning 
structures exhibit a slight decrease in power consumption on input frequency. Overall, 
the Coplanar structure shows higher plasma activation rate in the higher voltage and 
frequency range compared to FSS-based structures. Also, FSS-based structures show 
almost constant behaviors on input parameters. These results indicate that the optimal 
points in power and frequency vary depending on the electrode spacing and shape. 

 
Figure 8. The power change according to the driving frequency and driving voltage of 3 types of 
sources derived from Lissajous figures. 

Combining the voltage and power characteristics in Figures 7 and 8, in the case of the 
coplanar structure, the gap voltage increases along with the applied voltage. 
Consequently, the power consumed during one cycle also increases. On the contrary, FSS-
based structures do not show significant changes in the gap voltage and power with 
respect to the applied voltage, which can be interpreted as low efficiency in voltage 
control. Overall, Coplanar structures show higher power coupling to the input signal 
compared to FSS-based structures. These results give the Coplanar structure the potential 
of characterization with its controllability by the input signals, whereas FFS-based 
structures show stable behaviors in wide operation conditions. In the case of the FSS + 
Patterning, as the patterned dielectric which has already been reported to show additional 
RCS reduction effects [16] does not have any meaningful physical disruption, we can 
enhance the RCS reduction effects of the FSS structure without side effects. 

4. Conclusions 
We have simplified the existing DBD source for practical application and developed 

a DBD source suitable for mobile environments. Three types of DBD sources with 
different electrode designs are introduced, which are already confirmed to have RCS 
reduction effects. The fabricated DBD source enables uniform discharge without the need 
for a separate vacuum system, maintaining consistent discharge characteristics for 
approximately 30 min. Basic plasma parameters with input signals are analyzed. 

Figure 8. The power change according to the driving frequency and driving voltage of 3 types of
sources derived from Lissajous figures.

4. Conclusions

We have simplified the existing DBD source for practical application and developed a
DBD source suitable for mobile environments. Three types of DBD sources with different
electrode designs are introduced, which are already confirmed to have RCS reduction effects.
The fabricated DBD source enables uniform discharge without the need for a separate
vacuum system, maintaining consistent discharge characteristics for approximately 30 min.
Basic plasma parameters with input signals are analyzed.

As we have compared three types of electrode design, ultimately the shape of elec-
trodes directly affects the circuit characteristics and plasma operations. It is mainly from
the different capacitance in different effective electrode areas, while the patterned dielectric
does not have any meaningful effect. Overall, the Coplanar structure shows higher control-
lability by the input signals, whereas FFS-based structures show stable behaviors in wide
operating conditions. Focusing on those different characteristics, the characterization of a
DBD source for RCS reduction is possible, choosing a proper electrode design. As a basic
parameter analysis, these results are beneficial in understanding the variations associated
with electrode configuration and the presence of additional dielectrics when designing
DBD plasma generators for RCS reduction.
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