
Citation: Li, Y.; Metzner, M.;

Schwieger, V. Driving Environment

Inference from POI of Navigation

Map: Fuzzy Logic and Machine

Learning Approaches. Sensors 2023,

23, 9156. https://doi.org/10.3390/

s23229156

Academic Editor: Arturo de la

Escalera Hueso

Received: 20 October 2023

Revised: 8 November 2023

Accepted: 10 November 2023

Published: 13 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Driving Environment Inference from POI of Navigation Map:
Fuzzy Logic and Machine Learning Approaches
Yu Li 1,2,* , Martin Metzner 1 and Volker Schwieger 1

1 Institute of Engineering Geodesy, University of Stuttgart, Geschwister-Scholl-Str. 24D,
70174 Stuttgart, Germany; martin.metzner@iigs.uni-stuttgart.de (M.M.);
volker.schwieger@iigs.uni-stuttgart.de (V.S.)

2 Daimler Truck AG, Fasanenweg 10, 70771 Leinfelden-Echterdingen, Germany
* Correspondence: yu.y.li@daimlertruck.com

Abstract: To adapt vehicle control and plan strategies in a predictive manner, it is usually desired to
know the context of a driving environment. This paper aims at efficiently inferring the following five
driving environments around vehicle’s vicinity: shopping zone, tourist zone, public station, motor
service area, and security zone, whose existences are not necessarily mutually exclusive. To achieve
that, we utilize the Point of Interest (POI) data from a navigation map as the semantic clue, and solve
the inference task as a multilabel classification problem. Specifically, we first extract all relevant POI
objects from a map, then transform these discrete POI objects into numerical POI features. Based on
these POI features, we finally predict the occurrence of each driving environment via an inference
engine. To calculate representative POI features, a statistical approach is introduced. To composite
an inference engine, three inference systems are investigated: fuzzy inference system (FIS), support
vector machine (SVM), and multilayer perceptron (MLP). In total, we implement 11 variants of
inference engine following two inference strategies: independent and unified inference strategies,
and conduct comprehensive evaluation on a manually collected dataset. The result shows that the
proposed inference framework generalizes well on different inference systems, where the best overall
F1 score 0.8699 is achieved by the MLP-based inference engine following the unified inference strategy,
along with the fastest inference time of 0.0002 millisecond per sample. Hence, the generalization
ability and efficiency of the proposed inference framework are proved.

Keywords: driving environment inference; point of interest (POI); multilabel classification; fuzzy
inference system; support vector machine; multilayer perceptron; navigation map

1. Introduction

Nowadays, environment perception plays an important role in automotive applications.
One aspect of environment perception is to geometrically detect and track surrounding objects
as precise as possible, to assist the driver to avoid potential collisions with other road obstacles.
Such systems have been widely employed in Advanced Driver Assistance Systems (ADAS)
applications such as Adaptive Cruise Control (ACC) [1] and Automatic Emergency Braking
(AEB) [2]. Another aspect is to interpret the context of the driving environment as close to
the reality as possible. Existing research has shown that knowing the context of driving
environment can help to adapt the vehicle control and plan strategies in a more predictive
manner. Example applications include intelligent vehicle power management [3–6], adaptive
vehicle control [7–12], adaptive positioning [13–15], adaptive parametrization of perception
algorithm [16,17], and fleet management [18]. In this paper, we focus on the inference of the
following five driving environments around vehicle’s vicinity, i.e., a shopping zone, tourist
zone, public station, motor service area, and security zone, which are mainly inspired by
the use cases of the TransSec project [19]. As the semantic clue to address each driving
environment, we utilize the Point of Interest (POI) data from a navigation map. Figure 1
graphically illustrates this idea.

Sensors 2023, 23, 9156. https://doi.org/10.3390/s23229156 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23229156
https://doi.org/10.3390/s23229156
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4652-2037
https://orcid.org/0000-0001-9055-9809
https://doi.org/10.3390/s23229156
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23229156?type=check_update&version=2

Sensors 2023, 23, 9156 2 of 33

Tourist zone?

Motor
service area?

Public station?

Shopping zone?

Security zone?

Figure 1. Using POI for driving environment inference.

To solve the driving environment inference problem, a variety of approaches have
been developed within recent decades. Depending on the utilized data source, existing
research can be divided into the following groups: vehicle-probe-data-based approaches,
map-based approaches and vision-based approaches. To reduce fuel consumption and
emission, the authors in [3–5,20] predicted road types (e.g., urban, rural, and highway
roads) from onboard kinematic data such as vehicle speed and acceleration. Similarly, with
the help of data mining techniques such as decision tree, Naive Bayes, and artificial neural
network (ANN), other kinematic data such as gear position and wheel suspensions from
CAN (Controller Area Network) bus can also be utilized to classify driving environments
according to [8]. More recently, one noticeable method is proposed in [21], where the
objective is to estimate the driving behavior and crash risk from onboard vehicle data
such as speed, travel distance, and hand-on-wheel event. To achieve that, a variety of
multiclass classifiers are investigated, such as Support Vector Machine (SVM), Random
Forest, AdaBoost, and Multilayer Perceptron (MLP). Additionally, recent research has
demonstrated the possibility to recognize different urban driving environments (e.g., open
area, urban canyon, and tree shade) using various GNSS signal characteristics [13–15].
The basic idea behind these works is to utilize the statistical properties of historical GNSS
signals as the feature, and then classify the driving environment using multiclass classifiers.
Typically utilized classifiers include Support Vector Machine and other neural network
approaches. Map-based applications are mostly focused on fuel economy; to achieve that,
the road slope from map is utilized to identify the upcoming driving conditions [6,22,23].
Moreover, the POI data from map are also utilized by car insurance companies to predict
the probability of car accident risk of their customers according to [24]. Vision-based
approaches are applied in a wide range of applications, as they essentially take advantage
of the advance in computer vision and pattern recognition over the recent years. Early
vision-based approaches mainly utilize handcrafted image features for driving environment
classification [7,9,25], while recent research has tended to solve this classification problem
in an end-to-end fashion by leveraging modern neural networks [10–12,18,26]. As the
common input to vision-based approaches, either the raw camera view or the so-called
occupancy grid is utilized, where the occupancy grid can be calculated from LiDAR and/or
radar measurement [11,12].

In general, the choice of data source depends on the environment types under inves-
tigation. For example, due to the legal speed limit differences between urban, suburban,
and highway environments, vehicle-speed-related information provides delimiting hints
to identify one driving environment from another [3–5,8,20]. In [6,22,23], the slope data
from map are a key indicator for the upcoming road profiles such as uphill or downhill;
therefore, it is considered as a proper choice. Camera view provides rich color and texture
information about the environment, and hence, it is widely used in scene interpretations
such as identifying urban versus rural roads, or minor versus major roads [7,9–12,26].
However, compared to existing research, the environment types in this work are unique in

Sensors 2023, 23, 9156 3 of 33

the following two senses. First, the five driving environments are semantically enriched by
the functional properties of vehicle’s vicinity, i.e., each driving environment can be seen
as a functional indicator of the nearby surroundings. Second, unlike the hard distinction
between e.g., highway and urban environments, the existence of these five driving environ-
ments are not necessarily mutually exclusive, e.g., one road may belong to a shopping zone
and a public station at the same time.

To solve the first problem, we use the POI data from a navigation map as the data
source. Specifically, we use the concept "function" as the intermediate bridge between
a POI object and a driving environment, and make the following assumptions: (1) one
specific driving environment reflects a particular functional pattern of a location, which
can be measured by the probabilistic existences of certain functions; (2) the occurrence of a
specific POI object brings variable confidences to the existences of certain functions. With
these assumptions, the intended inference can be seen as the process to numerically predict
the existence of a specific driving environment from a given POI occurrence pattern. In
fact, similar assumptions can also be found in References [27–29], where the intention is to
automatically cluster and discover areas with similar functional properties. Despite that,
these works also use map POI data as the main input, their focuses are mainly on large-scale
geographical areas. As a result, the online processing capability is usually not required in
these works, which is in contrary to the near-range and real-time demands in automotive
applications. Regarding the data processing, due to the challenge in directly processing
discrete POI objects, one usually needs to transform them into other representative POI
features. For example, the author in [27] derived a POI feature vector to discover and
annotate functional regions, where each term in this POI feature vector is calculated as
the so-called POI frequency density measured by the number of a specific POI category
over a unit area. A similar feature calculation method can also be found in [28], where
the co-occurrence patterns of different POI categories are utilized to discover functional
regions. Inspired by these works, in this paper, we propose a statistical feature calculation
approach, which utilizes statistically calibrated POI occurrence patterns to quantitatively
measure the confidence brought by the occurrence of certain POI objects to the existence of
a specific driving environment.

As for the second problem, we propose to solve it as a multilabel classification task.
In existing works, driving environment inference is generally solved as a classification
problem [7–9,14,20,25]. Specifically, since the environment types are usually mutually ex-
clusive in existing works, multiclass classifiers are often utilized as the ad hoc solutions. In
contrast, in multilabel classification a sample is allowed to have more than one label, which
is suitable for predicting the environment types that are not necessarily mutually exclusive.
To solve the multilabel classification problem, it is common to transform the classification
of multiple labels into a series of single-label classification subtasks, so that each subtask
can be tackled by off-the-shelf classifiers [30]. Regarding the choice of classifier, it mainly
depends on the structure of input data. For example, the Convolutional Neural Network
(CNN)-based classifiers are frequently applied to handle image-like input [10–12,18,26].
Low-dimensional data such as the time series of vehicle probe data and the discrete map
data are usually processed via other machine learning classifiers such as Support Vector
Machine and Multilayer Perceptron (MLP) [3,13,14,20]. In our case, the classifier input is
the calculated POI features, which is essentially a numeric vector with fixed dimension and
size; thus, we consider the classic machine learning approaches as the classifier. Specifically,
motivated by their success in classification tasks, we employ Support Vector Machine and
Multilayer Perceptron as the classifier during implementation. Additionally, as another
efficient tool that has been widely applied in spatial data analysis [31–34], the fuzzy infer-
ence system (FIS)-based classifier is also investigated in this work. It should be noted that,
as the proposed inference framework is independent of the chosen classifier, one can in
principle also employ other classifiers instead of these three.

In this paper, our objective is to develop an efficient inference framework that is
capable of predicting the driving environments around vehicle’s vicinity. As the data

Sensors 2023, 23, 9156 4 of 33

source, we use solely the POI data from a navigation map. However, due to the difficulty
in directly processing discrete POI objects, we propose a statistical approach to calculate
representative POI features from raw POI objects. To accomplish the inference from POI
features to a specific driving environment, we investigate the following three inference
systems: fuzzy inference system, support vector machine, and multilayer perceptron.
Particularly, we treat the driving environment inference task as a multilabel classification
problem, and solve it through two inference strategies: the independent inference strategy
and the unified inference strategy. To validate the proposed inference framework, we
implement 11 inference engines and evaluate them on a manually collected dataset. In
summary, with this work, we make the following contributions:

• A modular inference framework for the driving environment inference task with
complete data processing workflows.

• A statistical feature calculation approach for the input transformation from discrete
POI objects into semantically meaningful and numerically manageable POI features.

• The detailed composition of inference engines from three inference systems following
two inference strategies.

• A comprehensive evaluation and comparison of 11 implemented inference engines on
a manually collected dataset.

The remainder of this paper is organized as follows. Section 2 details the proposed
inference framework, with particular focus on the proposed POI feature calculation method
and the composition of inference engines from three investigated inference systems. Section 3
explains the implementation details and the experiment setups. Section 4 provides a compre-
hensive evaluation and comparison of 11 implemented inference engines. Finally, Section 5
concludes this paper and points out future directions.

2. Framework for Driving Environment Inference
2.1. Overview

By knowing the driving environment, the objective is to monitor and adapt the vehicle
movement in a predictive manner. To achieve this goal, we conduct the inference based on
a digital navigation map. Since our focus is on the vicinity of vehicle location, the problem
can be translated to: given the vehicle GNSS position and a navigation map, how can we
predict the driving environment(s) for the current vehicle location?

Figure 2 shows the overview of the proposed inference framework. This framework
starts with map matching followed by the POI extraction process, where the purpose is to
obtain the POI objects in vehicle’s vicinity. Then, based on the extracted POI objects, a POI
feature calculation module is proposed to transform the discrete POI objects into numerical
POI features that can be used for subsequent inference. Finally, an inference engine is built
to predict the driving environment(s) at the given vehicle location. The remainder of this
section is organized as follows. Section 2.2 provides an overview of the utilized navigation
map, including a brief introduction of map matching and POI extraction within this map.
Section 2.3 introduces a statistical approach for POI feature calculation. Finally, Section 2.4
details the compositions of inference engine using three inference systems: fuzzy inference
system, support vector machine, and multilayer perceptron.

GNSS

Map Matching POI Extraction

P

+

POI Feature Calculation Inference Engine

Map

Prediction(s)

tourist zone…

Figure 2. Overview of the proposed inference framework.

Sensors 2023, 23, 9156 5 of 33

2.2. Navigation Map and Point of Interest Object

As the name suggests, a navigation map is a digital map that is built for navigating
purposes. In automotive industries, the most popular navigation map format is the so-
called Navigation Data Standard (NDS), which is developed by NDS e.V. [35–37]. NDS e.V.
is a registered association and does not produce map data by itself; instead, it defines the
map standard that is independent of navigation software. Digital maps complying with
the NDS standard are called NDS map, which are usually produced by map suppliers such
as HERE [38] and TOMTOM [39]. In addition to the basic geometry and topology of road
network, a navigation map usually also contains other geo-referenced data. For example,
a typical NDS map includes the following data blocks in its database: Routing block for
road geometry and topology, POI block for geo-referenced places that can be selected as
the navigation destination, and Name block for human references to certain locations and
roads [35,40].

In navigation map, physical roads are typically represented by links and nodes, where
a link stands for the road segment between two consecutive junctions and a node represents
a road junction where two or more roads intersect [41]. Based on this link-node graph, one
can match the vehicle position onto the map. This is usually achieved via the so-called map
matching technique, which is essentially a process to find the best road candidate in the
map given a series of vehicle positions (measured via, e.g., GNSS). The typical criteria for
map matching include geometric point-to-line distance, topological connectivity, and the
traversability between two roads [40,42,43].

Once the vehicle position is matched onto the map, the next step is to extract the nearby
POI objects from the map database. Here, a practical question is the following: within
which distance from the vehicle position should a POI object be considered as relevant for
the inference? That is, if the distance is too large, the inference result may be diluted by the
irrelevant POI objects that are far away. While a small distance may result in an insufficient
number of extracted POI objects, i.e., too few POI objects to be representative. In either case,
the inference result will not be able to reflect the actual driving environment in the vicinity.
To solve this problem, one can either trim or extend the matched map link to a certain range
according to the actual needs. For example, in our implementation, we set an upper length
limit to trim single matched links that are too long, while we also selectively aggregate
consecutive short links to form a long path if the matched link is too short. During this
aggregation, we mainly utilize the most probable path (MPP) calculation logic to grow
the ego path, where the commonly applied criteria include turn angle and the change of
functional road class [44].

Regarding the POI object in navigation map, it is usually stored as a single geolocation
together with other supplementary attributes addressing its functional properties. For
example, a restaurant is stored as a geolocation with the POI category “restaurant”, and
possibly also with other information such as opening hours and contact details. Here, the
POI category is important information to us, as it provides a semantic clue for predicting
the functional property of the surroundings. Figure 3 depicts an example relation between
link, node, and POI in NDS map.

As for the extraction of POI objects from map, it usually depends on the database
structure of the utilized map. In NDS map, each POI object is uniquely referred to a certain
link from which it is accessible in reality, see Figure 3. This is another important type of
information in our application, as it allows to precisely query and extract all inherent POI
objects for a given road link in map. For example, assume the vehicle is current located on
link AB with the driving direction from A to B, and the MPP goes from link AB to link BC
due to the smaller turn angle from AB to BC. Here, the vehicle’s vicinity is defined as the
MPP that consists of link AB and link BC. Therefore, to extract all POI objects in the vicinity,
we query from the map database all the POI objects that are accessible from link AB and
link BC. As a result, we will obtain the following five POI objects POI (1,2,3,4,5).

Sensors 2023, 23, 9156 6 of 33

POINodeLink

A

B

C

D

B

Reference between POI and Link

Figure 3. An example relation between link, node, and POI in NDS map. Note that each POI object is
uniquely referred to a link from which it is accessible in reality.

2.3. POI Feature Calculation: A Statistical Approach

In reality, the number of extracted POI objects may vary from one location to another.
Besides, as we will see later in Section 2.4, all the investigated inference systems require
continuous floating numbers as the input. Thus, directly processing the raw POI object
with discrete POI categories is difficult, and we need to find an alternative. A general
solution is to conduct the so-called feature engineering, which essentially creates new input
variables (known as features) from the raw input source [45–48]. In our case, we consider
the following two requirements on the new input variables: (1) the dimension and size
of the new input variables should be numerically deterministic and (2) they should be
representative and semantically meaningful for the intended inference. In this section, we
first introduce the conceptual definition of POI features proposed in this paper, then we
derive the mathematical calculation of these POI features.

To make the subsequent explanation easier, we define the following notations. Assume
we have a training set S = (pi, Yi), 1 ≤ i ≤ n, where n is the number of training samples.
Each training sample si(pi, Yi) is a pair of input pi and target Yi. pi is a vector of the
extracted raw POI objects on sample si, and as discussed before, its size |pi| may vary over
different samples. Yi is a binary vector of the ground truth labels: Yi = (y1

i , y2
i , . . . , yk

i),

Yi ∈ {0, 1}k, yj
i ∈ {0, 1}, 1 ≤ j ≤ k, where k = |L| is the number of unique labels in the

investigated problem, and L = {λ1, λ2, . . . , λk} is a constant label set which equals to
{shopping zone, tourist zone, public station, motor service area, security zone} in our case. The
term “label” is a terminology widely used in multilabel classification, and it is equivalent to
“driving environment” in this paper. yj

i = 1 means the corresponding label λj on sample si
is true, otherwise false. It should be noted that, in our case, a training sample may contain
more than one true labels, e.g., a road may belong to both tourist zone and public station at
the same time in reality. With these notations, feature engineering can be seen as a process
to find a transformation t so that X = t(p), where the input p is an unbounded POI vector,
and the output X is a deterministic POI feature vector: X = (x1, x2, . . . , xm), X ∈ Rm, with
m being a constant value.

2.3.1. Conceptual Definition of POI Features

In principle, a representative and semantically meaningful POI feature should help to
identify one specific characteristic of a driving environment during inference. To conceptu-
ally define such POI features, we start with analyzing the distribution of POI categories
over a specific driving environment.

For a specific label λj, 1 ≤ j ≤ k, the aforementioned training set S can be divided into
the following two groups: positive training set S+

j = {(p, Y)|yj = 1} and negative training

set S−j = {(p, Y)|yj = 0}, with S = S+
j ∪ S−j and ∅ = S+

j ∩ S−j . In each of these two groups,
we can enumerate the unique POI categories, and correspondingly, this will result in the
following two sets: a set of positive POI categories C+

j and a set of negative POI categories

Sensors 2023, 23, 9156 7 of 33

C−j . C = C+
j ∪ C−j is a unique set of all available POI categories in the training set S. It

should be noted that C+
j and C−j are not necessarily mutually exclusive, i.e., ∅ 6= C+

j ∩ C−j .
For example, let us say we have two distinct samples s1(p1, Y1) and s2(p2, Y2), where s1
is a “shopping zone only” sample (i.e., Y1 = (1, 0, 0, 0, 0)) and s2 is a “public station only”
sample (i.e., Y2 = (0, 0, 1, 0, 0)). s1 can be seen as a negative sample of “public station”,
and likewise, s2 can be seen as a negative sample of “shopping zone”. Then, let us assume
POI objects of the category “café shop” exist in both samples p1 and p2, which is feasible
since in reality one may find a café shop both in a shopping zone and in a public station.
Hence, we see that the POI category "café shop" exists in both the positive and the negative
samples of the label “shopping zone”, and analogously, it also exists in both the positive
and the negative samples of the label “public station”.

Figure 4 graphically illustrates the distribution of POI categories over a specific driving
environment λj. Apparently, for a specific driving environment λj, one POI category c ∈ C
can only fall into one of the following three sets:

• Set 1: Cj
1 = {c|c ∈ C+

j and c /∈ C−j }, i.e., the POI object of category c exists only in the
positive samples of label λj.

• Set 2: Cj
2 = {c|c /∈ C+

j and c ∈ C−j }, i.e., the POI object of category c exists only in the
negative samples of label λj.

• Set 3: Cj
3 = {c|c ∈ C+

j and c ∈ C−j }, i.e., the POI object of category c exists in both the
positive and the negative samples of label λj.

Positive Belief Negative Belief

Semi-Positive Belief

Semi-Negative Belief

𝐶3
𝑗
= 𝐶𝑗

+ ∩ 𝐶𝑗
−𝐶1

𝑗
= 𝐶𝑗

+ \ 𝐶3
𝑗 𝐶2

𝑗
= 𝐶𝑗

− \ 𝐶3
𝑗

Figure 4. Four POI features derived from the distribution of POI categories over a specific driving
environment λj.

Apparently, if an existing POI object belongs to Cj
1 or Cj

2, it can be utilized to uniquely

identify a positive or negative λj sample. While for a POI object of the group Cj
3, it can be

used to identify both the positive and the negative samples of the same driving environment.
In fact, even though one POI category may be intuitively linked to certain function, the
interactions of different POI categories can reflect various functions [27,28]. Therefore,
when a Cj

3 POI object is utilized to identify a positive/negative λj sample, the underlying
POI context should be considered. Based on these observations, we can define the following
four POI features xj = (xj

1, xj
2, xj

3, xj
4) for label λj:

• POI Feature 1 (xj
1): positive belief from the POI objects that only exist in the positive

samples of label λj. The higher this value, the more likely the corresponding driving
environment exists.

• POI Feature 2 (xj
2): negative belief from the POI objects that only exist in the negative

samples of label λj. The higher this value, the less likely the corresponding driving
environment exists.

Sensors 2023, 23, 9156 8 of 33

• POI Feature 3 (xj
3): semi-positive belief from the POI objects that exist in both the

positive and the negative samples of label λj, which contributes to identifying positive
λj samples jointly with the positive belief .

• POI Feature 4 (xj
4): semi-negative belief from the POI objects that exist in both the

positive and the negative samples of label λj, which contributes to identifying negative
λj samples jointly with the negative belief .

The term belief can be seen as a degree of confidence, e.g., how confident it is to judge
a sample of label λj as positive/negative given the numerical value of the corresponding
feature. To cover k labels in the inference task, we will have 4k POI features in total, as per
the above definitions, i.e., the finally derived POI feature will be a vector of 4k dimensions
(i.e., m = 4k): X = (x1, x2, . . . , xk), X ∈ R4k, xj ∈ R4, 1 ≤ j ≤ k. In our case, since we have
5 labels (i.e., k = 5), we will end up with a 20 dimensional POI feature vector (i.e., m = 20).

2.3.2. Mathematical Calculation of POI Features

Fundamentally, these four POI features are distinguished by their characteristic POI
occurrence patterns. Once the characteristic POI occurrence pattern of a specific POI feature
is known, the calculation of this POI feature can be seen as the numerical quantification of
the similarity measure between a given POI occurrence pattern and a reference POI occur-
rence pattern. Now the question is, how can we mathematically define a POI occurrence
pattern, and how should we model such similarity measure?

In our application, we have the following intuitions: (1) different POI categories can
bring various degree of confidences when inferring the same driving environment, e.g., a
shopping mall versus a grocery store when inferring the existence of shopping zone; (2) the
number of occurrence of the same POI category can also change the degree of confidence
during inference, e.g., ten grocery stores versus one grocery store when inferring a shopping
zone. Based on these intuitions, we use POI occurrence probabilities to mathematically
define a POI occurrence pattern, and a similar idea can also be found in [28]. Specifically,
assume Nc is the number of unique POI categories and w(c) represents the occurrence
probability of the POI category c ∈ C, then the vector w = (w(c1), . . . , w(cNc)) uniquely
defines a POI occurrence pattern. Since a POI occurrence pattern is now represented as a
numerical vector, the similarity measure between two POI occurrence patterns can be ad-
dressed via the inner product of the corresponding vectors. Let wj

l =
(

wj
l(c1), . . . , wj

l(cNc)
)

be the reference POI occurrence pattern of the POI feature xj
l on label λj, and let w be a

given POI occurrence pattern, then the POI feature xj
l can be numerically determined as:

xj
l = wj

l ·w, l ∈ {1, 2, 3, 4} (1)

For a given sample s(p, Y), if we approximate its POI occurrence pattern w by the
POI occurrence counts, i.e., w ≈ (Gs(c1), . . . , Gs(cNc)), where Gs(c) is a counting function
which simply calculates the number of occurrence of the POI category c in the sample s,
then Equation (1) can be rewritten into:

xj
l = ∑

c∈C
wj

l(c)Gs(c), l ∈ {1, 2, 3, 4} (2)

From Equation (2), we see that each POI feature is numerically determined by the
following two variables: a POI category dependent weighting factor and the occurrence of
a POI category in a sample. This coincides with the aforementioned two intuitions. Now
the remaining question is: how should we determine these weighting factors? That is,
how should we numerically determine the reference POI occurrence pattern for each POI
feature? Theoretically, one can handcraft a reference POI occurrence pattern using the expert
knowledge derived from widely acceptable data sources, such as dictionaries, encyclopedias,
and the design and planning standards of a local government [29]. Alternatively, one can also

Sensors 2023, 23, 9156 9 of 33

experimentally derive a reference POI occurrence pattern from a set of training samples [49].
However, the first method may face the following challenges in our application:

• Due to the large variety of POI categories existing in map (e.g., 89 in our case), it is a
nontrivial task to manually quantify the contribution of each POI category to a specific
driving environment.

• Given the geographic diversity in terms of urban planning and construction, the
reference POI occurrence pattern designed for one geographic region may not be
directly applicable to another region.

Therefore, we employ the second method by proposing a statistical approach. Particu-
larly, for each POI feature, we calculate its weighting factors based on the POI occurrence
probabilities over a set of training samples. The detailed calculations are given as follows:

• Weighting factors for feature 1 (positive belief):

wj
1(c) =

1
|S+

j |
∑s∈S+

j
Ps(c), if c ∈ Cj

1

0, if c ∈ C \ Cj
1

(3)

where Ps(c) is the occurrence probability of one POI category c in a sample s(p, Y), s ∈ S+
j ,

which is calculated according to:

Ps(c) =
Gs(c)

∑c′∈Cj
1

Gs(c′)
(4)

• Weighting factors for feature 2 (negative belief):

wj
2(c) =

1
|S−j |

∑s∈S−j
Ps(c), if c ∈ Cj

2

0, if c ∈ C \ Cj
2

(5)

where Ps(c) is the occurrence probability of one POI category c in a sample s(p, Y), s ∈ S−j ,
which is calculated according to:

Ps(c) =
Gs(c)

∑c′∈Cj
2

Gs(c′)
(6)

• Weighting factors for feature 3 (semi-positive belief):

wj
3(c) =

1
|S+

j |
∑s∈S+

j
Ps(c), if c ∈ Cj

3

0, if c ∈ C \ Cj
3

(7)

where Ps(c) is the occurrence probability of one POI category c in a sample s(p, Y), s ∈ S+
j ,

which is calculated according to:

Ps(c) =
Gs(c)

∑c′∈Cj
3

Gs(c′)
(8)

• Weighting factors for feature 4 (semi-negative belief):

wj
4(c) =

1
|S−j |

∑s∈S−j
Ps(c), if c ∈ Cj

3

0, if c ∈ C \ Cj
3

(9)

Sensors 2023, 23, 9156 10 of 33

where Ps(c) is the occurrence probability of one POI category c in a sample s(p, Y), s ∈ S−j ,
which is calculated according to:

Ps(c) =
Gs(c)

∑c′∈Cj
3

Gs(c′)
(10)

Essentially, the weighting factor of a specific POI category is statistically calculated
as the averaged occurrence probability over the corresponding training samples. For each
POI feature, we see that only the relevant POI categories have nonzero weighting factors,
the weighting factors of all other irrelevant POI categories are set to zero. This implies that
the occurrence of these irrelevant POI categories will have no influence on the numerical
value of the corresponding POI feature.

2.4. Inference Engine

As the last step in the proposed inference framework, an inference engine is utilized
to predict all potentially existing driving environment(s). Fundamentally, an inference
engine can be seen as one realized solution to the multilabel classification problem. In
this subsection, we first explain the motivation of solving the intended inference task
as a multilabel classification problem, including two proposed inference strategies and
the corresponding optimizations. Then, we detail the composition of inference engines
based on three inference systems: fuzzy inference system, support vector machine, and
multilayer perceptron.

2.4.1. Driving Environment Inference as a Multi-Label Classification Problem

From the discussion in Section 2.3, we know that the intended inference task has the
following characteristics: (1) each given sample may contain more than one ground truth
labels and (2) the inference of each label can be seen as a binary classification problem,
i.e., does a given sample belong to a specific label or not? These characteristics coincide
with the properties of multilabel classification task, which is basically a form of supervised
learning where the classification algorithm is required to learn from a set of instances, and
each instance can belong to multiple classes; thus, it is able to predict a set of class labels
for a new instance [30].

Following the notations introduced in Section 2.3, the inference task can be defined
as: given a POI feature vector X, X ∈ R4k, how can we develop an inference engine
fθθθ : R4k → {0, 1}k which is conditioned on parameter set θθθ, so that the predicted label
vector Ŷ = fθθθ(X), Ŷ = (ŷ1, ŷ2, . . . , ŷk) is “close” to the ground truth label vector Y up to
certain qualification measures (e.g., accuracy, precision). The process to find the optimal
parameters for this inference engine is generally known as training, which is equivalent to
optimizing the following objective equation:

θθθ∗ = arg min
θθθ

LS(fθθθ(X), Y) (11)

where fθ is the inference engine under investigation, (X, Y) ∈ S is a single training sample
in the given training dataset S, LS(Ŷ, Y) is the overall loss on the whole training dataset S,
and θθθ∗ is the optimal parameter set that minimizes the overall loss.

To solve the multilabel classification problem, one common practice is to transform
the classification of multiple labels into a series of single-label classification subtasks [30].
Depending on the utilized transformation method, difference inference strategies can be
formed. In this paper, we propose the following two inference strategies: the independent
inference strategy and the unified inference strategy. As depicted in Figure 5, the unified
inference strategy aims at solving the inference task using a single classifier. This is
achieved by training a k-output classifier, where each output represents the prediction for
a specific label. In contrast, the idea of the independent inference strategy is to treat the
inference of each label independently, so that a k-label multilabel classification problem

Sensors 2023, 23, 9156 11 of 33

can be solved by employing k independent classifiers. Figure 6 illustrates this idea. The
advantage of the independent inference strategy is that any existing single label classifier
can be directly applied for the inference task. However, in order to predict k labels, we
need to implement k instances of such single classifier, which may theoretically increase
the computational demand.

𝐗 = 𝐱1, 𝐱2, … , 𝐱𝑘 , 𝐗 ∈ ℝ4𝑘, 𝐱𝑗 ∈ ℝ4, 1 ≤ 𝑗 ≤ 𝑘

Unified Classifier

𝐘 = ො𝑦1, ො𝑦2, … , ො𝑦𝑘 , ො𝑦𝑗 ∈ 0,1 , 1 ≤ 𝑗 ≤ 𝑘

Input:

Inference:

Output:

Figure 5. The proposed unified inference strategy.

Input:

Inference:

Output:

Classifier 1 Classifier 2 Classifier 𝑘

𝐱1 ∈ ℝ4 𝐱2 ∈ ℝ4 𝐱𝑘 ∈ ℝ4

ො𝑦1 ∈ 0,1 ො𝑦2 ∈ 0,1 ො𝑦𝑘 ∈ 0,1

…

…

…

Figure 6. The proposed independent inference strategy.

In the unified inference strategy, there is only one single classifier, and therefore,
the optimization of the whole inference engine fθθθ is identical to optimizing this single
classifier, i.e., Equation (11). However, as for the independent inference strategy, there
are k independent classifiers, as depicted in Figure 6. In this case, the optimization of an
inference engine is equivalent to optimizing the following k independent equations:

θθθ∗j = arg min
θθθ j

Lj
S

(
f j
θθθ j

(
xj
)

, yj
)

, 1 ≤ j ≤ k (12)

where f j
θθθ j

: R4 → {0, 1} is the classifier specified for label λj, xj is the label-specific POI

feature vector calculated according to Equation (2), yj is the ground truth label for λj,

Lj
S(ŷ

j, yj) is a label-specific loss function which calculates the overall loss caused by the

classifier f j
θθθ j

on the whole training dataset S, and θθθ∗j is the optimal parameter set that

minimizes this loss. In the independent inference strategy, a complete inference engine
consists of k classifiers, i.e., fθθθ = (f 1

θθθ1
, f 2

θθθ2
, . . . , f k

θθθk
), which are conditioned on k sets of

parameters, i.e., θθθ = (θθθ1, θθθ2, . . . , θθθk).
Fundamentally, the realization of a classifier is achieved via certain inference system. As

next steps, we introduce three inference systems with particular focus on their integration
and formulation into an inference engine by following the proposed inference strategies.

Sensors 2023, 23, 9156 12 of 33

2.4.2. Fuzzy-Inference-System-Based Inference Engine

Fuzzy inference system (FIS) is an inference system that is built upon fuzzy logic, and
fuzzy logic is a logic system that aims at a formalization of approximate reasoning [50,51].
In contrast to the bivalent classical logic where only absolute true or false are permitted,
fuzzy logic provides an efficient way of modeling partial truth or the degree of truth. This
property makes it widely applicable in problems such as control, classification, and other
decision-making applications [34,50,52–54]. A typical fuzzy inference process involves
mainly three steps: fuzzification, inference, and defuzzification. Depending on the actual
implementation of these steps, different inference mechanisms exist, such as the Mamdani
inference system [55] and the Sugeno inference system [56]. As a common choice both
in practice and in the literature [50,53], we take the Mamdani inference system as our
investigation target and explain its principle.

Instead of working with the so-called crisp variables directly, fuzzy logic takes fuzzy
set as the basic processing unit. A fuzzy set is a set with vague boundary between its
members, and therefore, it can contain elements with only a partial degree of membership.
Fuzzification is a process that transforms each input from a crisp value to a corresponding
fuzzy input (i.e., a group of fuzzy sets), and this transformation is achieved via a series of
predefined membership functions. A membership function (MF) is a numerical mapping
from a point in the input space (also known as the universe of discourse) to a single value
known as the grade of membership.

As an example, Figure 7 illustrates the inference process of a single label λj in our
application. In this case, the crisp inputs are four POI features calculated in Section 2.3:
xj = (xj

1, xj
2, xj

3, xj
4), xj ∈ R4, and hence, the universe of discourse for each input is the real

number set R. To comply with the definition of each POI feature, here, the fuzzy inputs
are defined as the following four linguistic variables: “positive belief”, “negative belief”,
“semi-positive belief”, and “semi-negative belief”. Analogously, the fuzzy output is defined
as the linguistic variable “confidence of positive λj”. A linguistic variable is a variable
whose values are words or sentences, where each word or sentence is generally known
as a term which essentially represents a fuzzy set [53]. For each linguistic variable in our
fuzzy inputs and fuzzy output, we define the following three terms: “high”, “average”, and
“low”. Each term is numerically defined by a membership function on its corresponding
crisp input/output. For example, the term “high” in the input linguistic variable “positive
belief” is basically a fuzzy set defined by a pair of the crisp input xj

1 and its membership
value, which can be represented as:

high = {xj
1, µhigh(xj

1)|x
j
1 ∈ R} (13)

where µA(x) is the membership function of a given crisp input x in the fuzzy set A.
Each term requires one membership function, so we need in total 5× 3 = 15 (5 linguistic
variables times 3 terms in each linguistic variable) membership functions for the proposed
FIS in Figure 7.

𝑥1
𝑗
∈ ℝ

𝑥2
𝑗
∈ ℝ

𝑥3
𝑗
∈ ℝ

𝑥4
𝑗
∈ ℝ

Crisp Input

Positive belief

Negative belief

Semi-positive
belief

Semi-negative
belief

Fuzzy Input

Rule 1

Rule 2

Rule 𝑁

…

Fuzzy Rules

∑

Aggregation Confidence of
positive 𝜆𝑗:

▪ High
▪ Average
▪ Low

Fuzzy Output

𝑃(𝜆𝑗 = 1|𝐱𝑗)

Crisp Output

"Fuzzification" "Defuzzification""Inference"

Figure 7. Fuzzy inference system for the inference of a single label λj, 1 ≤ j ≤ k.

Sensors 2023, 23, 9156 13 of 33

As the first step, fuzzification is the process to transform input from crisp values into
fuzzy inputs, and this is achieved via a series of membership functions. Even though
there exist research papers aimed at finding the proper membership functions for specific
applications [57], it remains a flexible and mostly problem-oriented process, since the only
requirement to a membership function is that its output should be a real number ranging
between 0 and 1. Nevertheless, the commonly applied membership functions include:
Triangular MF, Trapezoidal MF, Gaussian MF, combined Gaussian (cG) MF, and Bell-shaped
MF [53]. Their mathematical expressions are defined in Equation (14)–(18), correspondingly.
Here, a, b, c, d, σ, m, σ1, m1, σ2, and m2 are the definitive parameters in the corresponding
MF function; x is the input crisp value and µ(x) is the corresponding membership value:

Triangular MF: µ(x) = max
(

min
(

x− a
b− a

,
c− x
c− b

)
, 0
)

(14)

Trapezoidal MF: µ(x) = max
(

min
(

x− a
b− a

, 1,
d− x
d− c

)
, 0
)

(15)

Gaussian MF: µ(x) = exp

[
−1

2

(
x−m

σ

)2
]

(16)

cG MF: µ(x) =

exp

[
− 1

2

(
x−m1

σ1

)2
]

, if x ≤ m1

1, if m1 < x < m2

exp
[
− 1

2

(
x−m2

σ2

)2
]

, if m2 ≤ x

, if m1 ≤ m2

min
(

exp
[
− 1

2

(
x−m1

σ1

)2
]

, exp
[
− 1

2

(
x−m2

σ2

)2
])

, if m1 > m2

(17)

Bell-shaped MF: µ(x) =
1

1 +
∣∣ x−m

σ

∣∣2a (18)

As the second step, inference is a process where a series of fuzzy rules are evaluated
and aggregated following certain fuzzy operations. A fuzzy rule is typically an If-Then
conditional statement, which has the following form:

If <antecedent>, Then <consequent> (19)

where each antecedent is a premise which is built up on the terms of an input linguistic
variable, and the consequent part is a conclusion acting on the terms of the output linguistic
variable. One fuzzy rule may contain multiple antecedents that are connected with fuzzy
operators. For example, one potential fuzzy rule for the proposed FIS in Figure 7 may look
like: “If (positive belief is high) AND (negative belief is high) AND (semi-positive belief is
high) AND (semi-negative is high), Then (confidence of positive λj is high)”. In this case,
the If-part consists of four antecedents that are joint via three intersection (AND) operators.
In addition to intersection (AND), there exist other two fuzzy operators as well: union (OR)
and complement (NOT). Assume A{x, µA(x)} and B{x, µB(x)} are two fuzzy sets, these
three fuzzy operators are defined as follows:

Intersection (AND): (A ∩ B){x, µA∩B(x)}, where µA∩B(x) = min(µA(x), µB(x)) (20)

Union (OR): (A ∪ B){x, µA∪B(x)}, where µA∪B(x) = max(µA(x), µB(x)) (21)

Complement (NOT): A{x, µA(x)}, where µA(x) = 1− µA(x) (22)

Theoretically, complex logic can be achieved by composing multiple simple fuzzy rules,
which is generally known as fuzzy rule base. As long as a fuzzy rule base is constructed,

Sensors 2023, 23, 9156 14 of 33

the major task during inference is to evaluate all fuzzy rules. The evaluation of a fuzzy
rule consists of two steps: (1) calculate the so-called degree of support for this fuzzy
rule by aggregating all antecedents with the preselected fuzzy operators; (2) determine
the consequent fuzzy set by truncating its membership function using the calculated
degree of support. The second step is also known as the implication from antecedent to
consequent [58]. Typically, each fuzzy rule only addresses a specific term of the output
linguistic variable. Thus, we need to aggregate individual consequents into an overall
consequent, so that it can be used to determine the final fuzzy output. For that, we apply
the disjunctive operation “OR” as the aggregation method [50], which essentially conducts
the union operation over all consequent fuzzy sets:

C = (C1 ∪ C2 ∪ . . . ∪ CN) (23)

where C is the output fuzzy set, Cj, 1 ≤ j ≤ N is the consequent fuzzy set from the fuzzy
rule j, and N is the total number of fuzzy rules in the fuzzy rule base.

As the last step, defuzzification converts the output from a linguistic variable to
a crisp variable that is more meaningful for the interested application. For example,
the defuzzification process in Figure 7 converts the output from the linguistic variable
“confidence of positive λj” to a numerical value, which can be interpreted as the probability
that the given sample is positive in label λj: P(λj = 1|xj). There exists many defuzzification
methods in the literature, but the most prevalent one is the Centroid method according
to [50,53]. In the Centroid method, the crisp output is defined as the projection of the
geometric center formed by the membership function of the output fuzzy set onto the crisp
axis, which can be numerically calculated according to:

z∗ =
∫

µC(z) · z dz∫
µC(z) dz

(24)

where C is the output fuzzy set calculated in Equation (23), µC(z) is the output membership
function of the desired crisp variable z in the output fuzzy set C, and z∗ is the finally
determined crisp output, which ranges between 0 and 1.

Since the crisp output from Equation (24) can be interpreted probabilistically, the
proposed FIS can be used as a probabilistic classifier. To determine the predicted class
ŷj ∈ {0, 1} for the given sample xj, a threshold value to the crisp output z∗ is needed. For
example, when a threshold value of 0.5 is applied, ŷj can be calculated by:

ŷj = (z∗ > 0.5) (25)

The depicted FIS in Figure 7 is essentially a single classifier, which can be directly
plugged into Figure 6 to form an independent inference engine. With the above introduction,
we can come up with the following observations on the fuzzy inference system:

• Membership function is an important component in fuzzy logic, as it bridges the
gap between a crisp variable and the corresponding fuzzy set. In practice, the choice
of proper membership function is treated as a hyperparameter, which needs to be
fine-tuned in order to achieve the best inference performance.

• A properly designed fuzzy rule base is the key to success in fuzzy logic. However, the
number of possible fuzzy rules grows exponentially with respect to the number of fuzzy
inputs. Assume a FIS has Q1 input and Q2 output linguistic variables, where each input
and output linguistic variable has M1 and M2 terms, correspondingly. Additionally,
assume there is only one fuzzy operator type in the If-part. Then, the number of all
possible fuzzy rules Nmax is equivalent to the permutation and combination of all input
and output terms, which can be calculated as: Nmax = (M2 ·Q2) · ((M1 + 1)Q1 − 1). For
example, the maximum number of possible fuzzy rules in the depicted FIS in Figure 7
is: Nmax = (3 · 1) · ((3 + 1)4 − 1) = 765. If we adapt this FIS to the proposed unified
inference strategy, i.e., by increasing both the crisp inputs and the fuzzy inputs from

Sensors 2023, 23, 9156 15 of 33

4 to 20, and extending the fuzzy outputs and crisp outputs from 1 to 5, while still
keeping 3 terms in each linguistic variable, then the maximum number of fuzzy rules
will amount to: Nmax = (3 · 5) · ((3 + 1)20 − 1) = 16, 492, 674, 416, 625. This makes the
design of a proper rule base no longer practicable, even with the help of the existing
software tools with automatic rule-learning capability like the MATLAB Fuzzy Logic
Toolbox [59]. Such a data-dimension-related challenge is generally known as the curse
of dimensionality [47,60].

2.4.3. Support-Vector-Machine-Based Inference Engine

In the domain of classification, one of the most flexible and effective machine learning
approaches is the support vector machine (SVM) [45,47,54]. Based on clear geometric
intuition, the support vector machine has well-developed mathematical foundations in
solving the two-class linear classification problem. Moreover, nonlinear classification can
also be effectively solved by SVM with the help of the so-called kernel trick [60].

Given a set of linearly separable training samples {(x1, y1), . . . , (xn, yn)}, where
xi ∈ Rd is a d-dimensional input vector and yi ∈ {−1, 1} is the corresponding class
label, the target of support vector machine is to find a decision boundary in the input space
Rd, so that samples of one class can be separated from the other. As shown in Figure 8, for
linearly separable training samples, the decision boundary is actually a hyperplane in the
input space Rd, which can be defined as:

D(x) = w · x− b (26)

where w ∈ Rd and b ∈ R are the definitive parameters of this hyperplane, D(x) = 0
represents the decision boundary itself, and D(x) = −1 and D(x) = 1 represent the margin
boundaries of class −1 and class 1, respectively. Margin is an important concept in SVM,
which indicates the perpendicular distance between the decision boundary and the closest
samples from each class. Margin M can be calculated as:

M =
1
‖w‖ (27)

𝑥1

𝑥2

4

5

𝑀 =
1

𝐰

6

7

1

2

3

𝑀

Figure 8. Support vector machine: margin and hyperplane.

In ideal case, the decision boundary shall separate all samples into the correct class,
i.e., to the correct side of the decision boundary. That is, the following inequality should
hold true for all training samples:

yi(w · xi − b) ≥ 1, i = 1, . . . , n (28)

Sensors 2023, 23, 9156 16 of 33

Hence, the goal of support vector machine is to find an optimal hyperplane in space
Rd, which maximizes the margin in Equation (27) while satisfying the constraints in
Equation (28). This is equivalent to solving the following optimization problem:

w∗ = arg min
w

1
2
‖w‖2

subject to yi(w · xi − b) ≥ 1, i = 1, . . . , n
(29)

However, in practice, the class-conditional distributions may overlap, in which case
exact separation of the training data can lead to poor generalization [60]. Therefore, a
penalty term is usually added to Equation (29) to account for the loss introduced by the
misclassified samples, e.g., samples 4, 5, 6, and 7 in Figure 8. To formulate this penalty term,
a nonnegative slack variable ξi ≥ 0, i = 1, . . . , n for each training sample is introduced,
which is defined as the hinge loss: ξi = max(0, 1− yi(w · xi − b)). This slack variable
will be 0 for samples lying on the correct side of the margin (including samples on the
margin), while for other samples, this slack variable will grow linearly from 0 towards
infinity depending on their geometric distances from the corresponding margin boundary.
With this definition, the inequality in Equation (28) can be rewritten as:

yi(w · xi − b) ≥ 1− ξi, i = 1, . . . , n (30)

Accordingly, the optimization problem in Equation (29) is now updated to:

w∗ = arg min
w

1
2
‖w‖2 + C

n

∑
i=1

ξi

subject to yi(w · xi − b) ≥ 1− ξi and ξi ≥ 0, i = 1, . . . , n

(31)

where C > 0 is a regularization coefficient which controls the trade-off between the slack
variable penalty and the margin loss during optimization. In contrast to the hard-margin
optimization in Equation (29), the optimization task in Equation (31) is called soft-margin
optimization, and the resulting hyperplane is called soft-margin hyperplane. It can be proved
that, when C approaches infinity (i.e., C → ∞), the optimizations in Equations (29) and (31)
become identical.

In order to solve this constrained optimization problem, we can transform Equa-
tion (31) to the so-called dual space using the following Lagrangian function [60]:

L(w, b, a, µµµ) =
1
2
‖w‖2 + C

n

∑
i=1

ξi −
n

∑
i=1

ai[yi(w · xi − b)− 1 + ξi]−
n

∑
i=1

µiξi (32)

where a = (a1, . . . , an) and µµµ = (µ1, . . . , µn); ai ≥ 0 and µi ≥ 0 are the Lagrange multipliers
for each constraint in Equation (30) and for each slack variable ξi, respectively. Now, the
problem is transformed to minimize the function L(w, b, a, µµµ) with respect to w and b, while
maximizing it with respect to a and µµµ. To simplify the representation, we can substitute w,
b, and µµµ with a by setting the derivatives of L with respect to w, b, and µµµ to 0. Consequently,
Equation (32) is reformed into:

L̃(a) =
n

∑
i=1

ai −
1
2

n

∑
i=1

n

∑
j=1

aiajyiyjxi · xj (33)

Now the target is to find an optimal parameter vector a, which maximizes the quadratic
equation in Equation (33) under the following derived constraints:

n

∑
i=1

aiyi = 0 and 0 ≤ ai ≤ C, i = 1, . . . , n (34)

Sensors 2023, 23, 9156 17 of 33

This is a convex optimization problem, which can be effectively solved by the quadratic
programming algorithm with global convergence guarantee. However, the introduction
to this algorithm is beyond the scope of this paper, and we refer the reader to [60–62]
for further details. Once the parameter vector a is determined, the decision function in
Equation (26) can be solved by:

D(x) =
n

∑
i=1

aiyixi · x− b (35)

Consequently, for a given sample with the input vector x, its predicted class ŷ ∈ {0, 1} is
determined by checking the sign of the decision function D(x):

ŷ = sign(D(x)) (36)

In fact, the parameter vector a contains many zero entities, and only the nonzero
entities have an effect on the final decision according to Equation (35). The training samples
corresponding to these nonzero entities are known as support vectors, and hence, this
technique is named support vector machine. For example, the samples 1, 2, and 3 are the
support vectors of the SVM depicted in Figure 8.

Up to now, all the discussions are based on the assumption that the given training
samples are linearly separable in the input space. In cases where the samples cannot be
separated by a linear classifier, SVM leverages the so-called kernel trick. The basic idea of
the kernel trick is to convert the input vector from low dimension input space to a higher
or infinite dimension feature space, in which the classification problem becomes tractable
again by standard linear classifier. Commonly, such conversion is implicitly achieved using
the so-called kernel function. A kernel function is a symmetric function which can be
written as:

k(x, x′) = φ(x) · φ(x′) (37)

where x ∈ Rd and x′ ∈ Rd are vectors in the input space and φ(x) is the nonlinear
function that actually maps a vector from input space to feature space. The explicit
representation of φ(x) is not necessary, as long as the output of the kernel function k(x, x′)
coincides with the inner product of this feature functions. One advantage of this kernel
definition is that the theoretical development from Equation (27) to Equation (36) is still
valid for the kernel-based nonlinear SVM classifier. For example, assume we have a
linear kernel function k(x, x′) = x · x′, i.e., φ(x) = x, Equation (26) can be rewritten as
D(x) = k(w, x)− b = φ(w) · φ(x)− b, and thus, all the subsequent equation developments
are still valid. Another advantage is that the computational effort of calculating the kernel
function k is usually much less than naively constructing two φ(x) vectors and explicitly
taking their inner product [47]. Commonly applied kernel functions include: linear kernel,
polynomial kernel, radial basis function (RBF) or Gaussian kernel, and sigmoid kernel.
Their definitions are given as follows:

Linear Kernel: k(x, x′) = x · x′ (38)

Polynomial Kernel: k(x, x′) = (γx · x′ + r)d, γ > 0 (39)

RBF/Gaussian Kernel: k(x, x′) = exp(−γ‖x− x′‖2), γ > 0 (40)

Sigmoid Kernel: k(x, x′) = tanh(γx · x′ + r) (41)

where γ, r, and d are the hyperparameters in the corresponding kernel function. Similar to
the membership function in fuzzy inference system, the choice of proper kernel function is
also a hyperparameter.

It should be noted that the introduced SVM is actually a decision machine, i.e., only
the sign of the decision function is relevant for determining the final class. Therefore, the

Sensors 2023, 23, 9156 18 of 33

SVM-based classifier is a nonprobabilistic binary classifier. Since it is a binary classifier,
a single SVM cannot model the joint optimization over multiple labels simultaneously.
This is the reason why, currently, we only implement the SVM-based classifier into an
independent inference engine.

2.4.4. Multilayer-Perceptron-Based Inference Engine

Another popular machine learning approach is multilayer perceptron (MLP), which
is essentially a feedforward neural network with fully connected nodes (also known as
neurons) [47,53,60]. A multilayer perceptron consists of at least three layers of nodes,
namely an input layer, a hidden layer, and an output layer. Except for the input nodes, each
node in the hidden layer and the output layer represents a computational unit, which takes
the outputs of the directly preceded layer as input and maps it nonlinearly into a scalar
value that is usually known as the activation of this node. It has been proved that, even the
simplest three-layer MLP is a universal approximator [63].

Figure 9 shows a four-layer multilayer perceptron, which is built as a unified inference
engine for our inference task. In the input layer, each node stands for a single POI feature
calculated in Section 2.3. Hence, the whole input layer can be numerically represented
by the POI feature vector X ∈ R4k, where k is the number of unique labels with the same
meaning as in Section 2.3. The first hidden layer then takes this POI feature vector as input,
and conducts the following operation:

h1 = g(W1X + b1) (42)

where W1 is an n1-by-4k weight matrix, b1 is a n1-dimensional bias vector, h1 = (h1
1, . . . , h1

n1
)

is the output of the first hidden layer, an activation vector where h1
i , 1 ≤ i ≤ n1 corresponds

to the activation value of the i-th node in this layer, n1 is the number of nodes in the first
hidden layer, and g(·) is an element-wise activation function, which is chosen as the recti-
fied linear unit (RuLU) function g(x) = max(0, x) in this paper. Apparently, the operation
in a hidden layer is mathematically equivalent to an affine transformation followed by a
nonlinearity transformation.

𝑥1

𝑥2

…

𝑥4𝑘

ℎ1
1

ℎ2
1

ℎ3
1

ℎ𝑛1
1

…

ℎ1
2

ℎ2
2

ℎ3
2

ℎ𝑛2
2

…

𝑧1

𝑧2

…

𝑧𝑘

Hidden LayersInput Layer Output Layer

Figure 9. Example multilayer perceptron as a unified inference engine.

Likewise, the second hidden layer takes the activation vector from the first hidden
layer as input and conducts a similar nonlinearity transformation:

h2 = g(W2h1 + b2) (43)

Sensors 2023, 23, 9156 19 of 33

where W2 ∈ Mn2×n1R and b2 ∈ Rn2 are the weight matrix and the bias vector of the
second hidden layer, respectively, n2 is the number of nodes in the second hidden layer,
and h2 = (h2

1, . . . , h2
n2
) is the activation vector of the second hidden layer.

For each given sample, there are k unique labels to predict. Thus, we define k nodes
in the output layer, where each node corresponds to a specific label. As a probabilistic
classifier, we would expect each prediction to be a float number ranging between 0 and
1. Therefore, we employ the popular sigmoid function as the activation function in the
output layer. It should be noted that the choice of the activation function is usually
problem-oriented, e.g., linear activation function for regression, sigmoid activation function
for binary classification, and softmax activation function for multiclass classification [47].
Consequently, the operation in the output layer can be written as:

z = σ(W3h2 + b3) (44)

where W3 ∈ Mk×n2R and b3 ∈ Rk are the weight matrix and the bias vector of the output
layer, respectively, z = (z1, . . . , zk), z ∈ Rk is the prediction vector of the output layer, and
σ(·) is the element-wise sigmoid function that is defined by:

σ(x) =
1

1 + exp(−x)
(45)

Each element in the prediction vector can be interpreted as the probability that its
corresponding label is positive. Therefore, in order to determine the predicted binary label
vector Ŷ ∈ {0, 1}k introduced in Section 2.4.1, one can conduct the following element-
wise “>” comparison to the prediction vector z. Note that 0.5 is an example threshold on
each prediction:

Ŷ = (z > 0.5) (46)

Equations (42)–(44) compose the so-called forward propagation of the proposed MLP,
where all the weight matrices and bias vectors are the network parameters that need to
be determined during training. Unlike support vector machine, the process of finding the
optimal parameters for MLP is a nonconvex optimization problem [47], which cannot be
solved by linear solvers. In practice, the training of neural network is usually achieved
by using iterative and gradient-based optimizers, such as the stochastic gradient descent
(SGD) algorithm [64,65]. The basic idea of stochastic gradient descent is to update the
network parameters using the gradients of the loss with respect to the network parameters,
and by doing such an update iteratively, the network parameters will finally converge to a
certain optimal. During each iteration, the following updates are performed:

W(τ+1) = W(τ) − η∇WL(W, b) (47)

b(τ+1) = b(τ) − η∇bL(W, b) (48)

where τ denotes the iteration number, η is the learning rate, L(W, b) is the loss over
a batch of training samples that is parametrized by the network weight W and bias b,
and ∇WL(W, b) and ∇bL(W, b) represent the gradients of the loss L with respect to W
and b, respectively. To calculate these gradients, the chain rule based back-propagation
algorithm is usually applied [66]. It should be noted that, in addition to the standard
SGD algorithm, there exists many other modern optimizers which not only consider the
gradient itself, but also the momentum of each gradient over epochs. The advantage of
utilizing momentum is that the resulting optimizer converges faster than the vanilla SGD
optimizer. Example momentum-based optimizers include: Nesterov Momentum [67–69],
AdaGrad [70], RMSProp [71], and Adam [72].

Sensors 2023, 23, 9156 20 of 33

In terms of the loss function, we employ the weighted binary cross-entropy loss as our
primary loss function, which is defined as follows:

E(z, Y) =
k

∑
i=1

[αiyi log(zi) + (1− αi)(1− yi) log(1− zi)] (49)

where Y ∈ {0, 1}k is the ground truth label vector as introduced in Section 2.3, z ∈ Rk is
the prediction vector calculated from Equation (44), yi ∈ {0, 1} and zi ∈ R are individual
elements in Y and z, respectively, αi is a weighting factor to compensate the sample
imbalance in each label, which ranges between 0 and 1, and k denotes the number of unique
labels, as introduced in Section 2.3.

In addition to the primary loss, in practice, we often introduce a regularization loss
on the network parameters to avoid the so-called overfitting of the network [73]. In this
paper, we utilize the well-known L2 parameter norm penalty (also known as weight decay)
as the regularization loss [47,48,60]. Assume θθθ is a vector representation of the network
parameters W and b, then the final loss function can be defined as:

Ẽ(z, Y) = E(z, Y) +
β

2
θθθ>θθθ (50)

where β is a regularization coefficient which acts as a weighting factor. It should be noted
that the loss function in Equation (50) only calculates the loss of a single training sample,
and one may need to sum up multiple such single losses to form a batch loss, e.g., the loss
L(W, b) in Equations (47) and (48).

From the above introduction, we see that the depth (i.e., the number of layers) and
width (i.e., the number of nodes in a specific layer) are two major considerations when
designing a multilayer perceptron. Existing research has shown that deeper networks
with fewer nodes have better generalization capability than shallow networks with wider
layers, but deeper networks are often harder to optimize [47]. Therefore, to achieve a
good balance, usually, intensive fine-tuning on network depth and width is performed.
Furthermore, the flexible network design enables us to adapt the network architecture
freely and quickly in practice. For example, we can easily modify the MLP in Figure 9 to
the proposed independent inference strategy, e.g., by reducing the number of input nodes
from 4k to 4, and keeping only a single node in the output layer.

3. Implementation and Experimental Setups
3.1. Implementation

Due to the curse of dimensionality challenge introduced in Section 2.4.2, the implemen-
tation of FIS-based inference engine follows the independent inference strategy. In total,
we implement five MF-specific inference engines, where each inference engine consists of
five FIS-based classifiers to address the five driving environments correspondingly. The
implementation of a Fuzzy Inference System is graphically illustrated in Figure 10. Once the
type of membership function is specified, a default parameter set will be used to initialize
all membership functions. Based on that, a Fuzzy Inference System is built. Then, the built
Fuzzy Inference System will be trained using the given training samples. The training of a
Fuzzy Inference System mainly includes learning a fuzzy rule base and fine-tuning all MF
parameters. The trained Fuzzy Inference System can finally be used to make predictions
for the testing samples during evaluation. To facilitate the training and evaluation, we
use MATLAB as the programming language and leverage the existing MATLAB Fuzzy
Logic Toolbox [59]. To learn a proper fuzzy rule base and to fine-tune the MF parameters in
each classifier, MATLAB utilizes the genetic algorithm [53] as the optimizer. To guide the
learning process, we employ the weighted binary cross-entropy loss in Equation (49) as
the qualification measure. Furthermore, we set the threshold in Equation (25) to 0.5 for the
final classification.

Sensors 2023, 23, 9156 21 of 33

Start

Training Samples

Testing Samples

Initialize Membership
Functions

Build Fuzzy Inference
System

Learn Fuzzy rule base

Fine-tune MF
parameters

Weighted binary
cross-entropy loss

Trained Fuzzy
Inference System

Predictions

Specify Membership
Function

Figure 10. Implementation flowchart of a Fuzzy Inference System.

Given the discussions in Section 2.4.3, the implementation of an SVM-based inference
engine also follows the independent inference strategy. In particular, we implement four
kernel-specific inference engines, where each inference engine consists of five SVM-based
classifiers to address the five driving environments correspondingly. All these SVM-
based classifiers are implemented in Python, and the training and testing are achieved by
leveraging the scikit-learn library (version 1.2.2) [74]. Figure 11 depicts the implementation
flowchart of a Support Vector Machine. Since each SVM kernel function contains only
nonlearnable hyperparameters, we conduct the so-called grid search to determine the
optimal kernel hyperparameters and the regularization coefficient C [75]. The basic idea of
grid search is that by evaluating the model performance over all possible hyperparameter
combinations, we can finally find an optimal hyperparameter configuration that yields
the best model performance. Therefore, for a chosen kernel function, the first step is to
define the search ranges for the kernel hyperparameters and also for the regularization
coefficient C. Once this is done, grid search will be conducted, and this is followed by
the training process that finds support vectors from the training samples. As the quality
indicator during these two processes, we utilize the F1 score introduced in Equation (59).
Finally, the trained Support Vector Machine can predict the existence of a specific driving
environment for a given testing sample.

Sensors 2023, 23, 9156 22 of 33

Start

Training Samples

Testing Samples

Define search ranges for
kernel hyperparameters

and the coefficient 𝐶

Build Support Vector
Machine

Grid search to find the
optimal hyperparameters

Train to find support
vectors

𝐹1 score as the
quality indicator

Trained Support Vector
Machine

Predictions

Specify kernel function

Figure 11. Implementation flowchart of a Support Vector Machine.

As for the multilayer perceptron, in addition to the unified inference engine depicted
in Figure 9, we also implement an independent inference engine which comprises five
independent MLP-based classifiers for five driving environments, correspondingly. As
discussed in Section 2.4.4, the structural difference between a unified MLP and an indepen-
dent MLP is on the number of input and output-nodes. Therefore, as shown in Figure 12,
during the first implementation step, the number of input and output nodes should be
defined. From Section 2.4.4, we also know that the depth and width of a network are the
major architecture-relevant hyperparameters in MLP. To simplify our evaluation, in this
paper, we fix the network’s depth as 4 (i.e., 1 input layer + 2 hidden layers + 1 output
layer), and fine-tune only the widths (n1 and n2) of two hidden layers using grid search.
Once the optimal n1 and n2 are found, a Multilayer Perceptron will be built. To train this
Multilayer Perceptron, the gradient and momentum-based Adam algorithm is utilized
as the optimizer, and the weighted binary cross-entropy loss as the loss function. Both
the independent and the unified inference engines are implemented in Python, and we
utilize the PyTorch library (version 2.0.0) [76] to facilitate the network design, training and
evaluation. In terms of the threshold in Equation (46), we choose the same value 0.5 as in
the Fuzzy Inference System.

In total, we implement 11 inference engines, which can be seen as 11 realization
variants of the proposed inference framework. Despite the difference in programming
languages, all the relevant training and testing tasks are performed on a laptop platform
which runs an Intel Core i7-8750H CPU.

Sensors 2023, 23, 9156 23 of 33

Start

Training Samples

Testing Samples

Define the number of input-
and output-nodes, and the
search ranges of 𝑛1 and 𝑛2

Grid search to find the
optimal 𝑛1 and 𝑛2

Build Multilayer Perceptron
with the optimal 𝑛1 and 𝑛2

Train with Adam optimizer

Trained Multilayer Perceptron

Predictions

Weighted binary
cross-entropy loss

Figure 12. Implementation flowchart of a Multilayer Perceptron.

3.2. Evaluation Metrics

Since the driving environment inference task is solved as a multilabel classification
problem, we employ standard multilabel classification metrics for the subsequent quan-
titative evaluation. Ref. [30] provides an overview of the commonly applied evaluation
metrics in multilabel classification. In this paper, we consider the following five metrics:
accuracy, precision, recall, F1 score, and the false positive rate (FPR). Based on the notations
introduced in Sections 2.3 and 2.4.1, and assuming Y and Ŷ are the set representations
of the ground truth and the predicted label vectors Y and Ŷ, correspondingly, these five
metrics can be defined as follows.

For a single sample, the accuracy is defined as the proportion of the correctly predicted
labels over the total number (predicted and actual) of labels. The overall accuracy is then
calculated as the average across all samples:

Accuracy: A =
1
n

n

∑
i=1

|Yi ∩ Ŷi|
|Yi ∪ Ŷi|

(51)

where Yi and Ŷi are the ground truth and the predicted label sets of a single sample indexed
by i and n is the total number of samples under evaluation.

For a single sample, the precision is defined as the proportion of the correctly predicted
labels over the total number of predicted labels. The overall precision is then calculated
as the average across all samples; note that Yi, Ŷi, and n have the same meaning as in
Equation (51):

Precision: P =
1
n

n

∑
i=1

|Yi ∩ Ŷi|
|Ŷi|

(52)

Similar to the precision, the recall for a single sample is defined as the proportion of
the correctly predicted labels over the total number of actual labels, and the overall recall is
then calculated as the average:

Recall: R =
1
n

n

∑
i=1

|Yi ∩ Ŷi|
|Yi|

(53)

Sensors 2023, 23, 9156 24 of 33

As a representative measure of both the precision and the recall, F1 score is the
harmonic mean of precision and recall, which is calculated according to:

F1 score: F1 =
1
n

n

∑
i=1

2|Yi ∩ Ŷi|
|Yi|+ |Ŷi|

(54)

Accuracy, precision, recall, and F1 score are “goodness” measures, i.e., the higher their
values, the better the performance of the investigated inference engine. In contrast, the false
positive rate is a “weakness” measure, i.e., it reflects the probability to wrongly classify
a negative label as positive for a given sample. The overall false positive rate across all
samples can be calculated according to:

False Positive Rate: FPR =
1
n

n

∑
i=1

|Yi ∩ Ŷi|
|Yi|

(55)

where Yi is the complement set of Yi, which represents all the negative ground truth labels
on the sample indexed by i.

It should be noted that the metrics in Equations (51) to (55) are dedicated to reflect
the overall classification performance across all k labels. In order to qualify the classifier
capability on predicting a specific label, similar evaluation metrics are also needed. Assume
Y j, 1 ≤ j ≤ k is the ground truth label set on label λj across n total number of samples, and
correspondingly, Ŷ j is the predicted label set on label λj across n total number of samples.
Then, the individual evaluation metrics on single label λj can be calculated analogously:

Accuracy on label λj: Aj =
|Y j ∩ Ŷ j|
|Y j ∪ Ŷ j|

(56)

Precision on label λj: Pj =
|Y j ∩ Ŷ j|
|Ŷ j|

(57)

Recall on label λj: Rj =
|Y j ∩ Ŷ j|
|Y j|

(58)

F1 score on label λj: Fj
1 =

2|Y j ∩ Ŷ j|
|Y j|+ |Ŷ j|

(59)

False Positive Rate on label λj: FPRj =
|Y j ∩ Ŷ j|
|Y j|

(60)

In addition to these introduced metrics, we also report the model size (measured by
number of parameters) and the inference time of each inference engine as an indicator of
its computational efficiency.

3.3. Dataset

As the primary focus of the subsequent experiment is on the validation of the proposed
POI feature calculation approach and the comparison of all implemented inference engines,
therefore, we define each sample in the dataset as a pair of the POI feature vector X, X ∈
R20 and the corresponding binary ground truth label vector Y, Y ∈ {0, 1}5. Specifically,
in the first step, we manually collected and labelled 242 road samples in the area of
Stuttgart, Germany. Then, we matched each road sample onto a NDS map by leveraging
an existing map matching software. Once this matching is completed, we then extracted
the corresponding POI objects for each road sample from the NDS map database using the
approach introduced in Section 2.2. The NDS map used in this paper was compiled and
released in 2017, which contains approximately 89 unique POI categories in total. Finally,

Sensors 2023, 23, 9156 25 of 33

based on the extracted POI objects, we calculated the POI feature vector X for each road
sample following the proposed approach in Section 2.3.

As a result, our dataset contains 242 samples: (Xi, Yi), 1 ≤ i ≤ 242. During the
following experiments, we split these 242 samples into 162 training samples and 80 testing
samples. To improve the numerical stability during training and testing, we standardize
each calculated POI feature in the training dataset to have 0-mean and the unit variance 1.
Using the same standardization factors, we standardize the testing dataset as well.

4. Results and Discussion
4.1. Fuzzy-Logic-Based Driving Environment Inference

The training of each FIS-based classifier comprises two steps: learning a fuzzy rule
base and tuning the parameters for all membership functions. In our experiment, we use
the first 50 epochs to learn the fuzzy rule base. During this process, in order to keep the most
principal fuzzy rules and to reduce the unnecessary computations on minor fuzzy rules,
we limit the size of the target rule base to 30. After that, we fine-tune all MF parameters for
500 epochs. To avoid overfitting, we utilize the overall F1 score as the quality indicator for
early stopping. The evaluation results on testing dataset are summarized in Table 1, where
the overall evaluation metrics correspond to the metrics introduced in Equations (51)–(55),
and the individual evaluation metrics are calculated as the averages of Equations (56)–(60)
across all five labels.

From Table 1, we can see that the inference engine specified by the combined Gaussian
(cG) MF achieves the best performance across most of the “goodness” measures, both in
terms of the overall and the individual evaluation metrics. Next to it is the Gaussian MF,
which achieves 0.7850 and 0.8261 F1 scores in the overall and the individual evaluation
metrics, correspondingly. In fact, the Gaussian MF can be seen as a special case of the
combined Gaussian MF, i.e., when m1 = m2 and σ1 = σ2, the combined Gaussian MF in
Equation (17) will degenerate to the Gaussian MF in Equation (16). The Bell-shaped MF is,
however, the worst-performing choice among the three nonlinear membership functions.

Table 1. Performance of the FIS-based inference engines.

Inference Engine
Specified by

Overall Evaluation Metrics Individual Evaluation Metrics (Averaged)

Accuracy Precision Recall F1 Score FPR Accuracy Precision Recall F1 Score FPR

Triangular MF 0.6438 0.7288 0.6928 0.6882 0.0363 0.6287 0.8875 0.6742 0.7610 0.0327
Trapezoidal MF 0.6716 0.7369 0.7190 0.7083 0.0394 0.6372 0.8857 0.7011 0.7717 0.0319
Gaussian MF 0.7059 0.8105 0.8301 0.7850 0.0713 0.7122 0.8633 0.8061 0.8261 0.0737
cG MF 0.7565 0.8284 0.9085 0.8318 0.0977 0.7495 0.8485 0.8662 0.8497 0.1054
Bell-shaped MF 0.6977 0.8121 0.7810 0.7645 0.0638 0.6595 0.8358 0.7529 0.7894 0.0566

Compared with these three nonlinear membership functions, the two piecewise linear
membership functions Triangular MF and Trapezoidal MF yield generally poor results
on “goodness” measures, even though they have relatively better FPR measures both in
the overall and the individual evaluation metrics. Moreover, the Trapezoidal MF based
inference engine performs slightly better than that of the Triangular MF. In fact, Triangular
MF can also be seen as a special case of the Trapezoidal MF, i.e., both membership functions
are identical when b = c holds true in Equation (15).

In addition to the F1 score, one may also focus on other quality indicators, such
as precision, recall, and accuracy. Moreover, different applications may have special
requirement on one set of evaluation metrics than the other. In these cases, Table 1 provides
a reference for choosing the proper membership function for the driving environment
inference task.

4.2. Support-Vector-Machine-Based Driving Environment Inference

The training of the SVM-based classifier is equivalent to solving the optimization
problem in Equation (32), which is essentially a process to find all support vectors from

Sensors 2023, 23, 9156 26 of 33

the given training samples. In addition to that, another important aspect in SVM is to find
the optimal model hyperparameters, which is usually achieved by grid search. Take the
RBF Kernel based SVM classifier as an example; the model hyperparameters consist of the
regularization coefficient C and the kernel-specific parameter γ. Following the suggestions
in [75], we set the search ranges for C and γ as the exponentially growing sequences:
C = 10−1, 100, . . . , 1011, and γ = 10−8, 10−7, . . . , 10−1, correspondingly. We use F1 as the
scoring method, and calculate the mean F1 score over three-fold cross-validations on the
training dataset as the quality indicator at each grid. Figure 13 shows the grid search result
of the SVM classifier trained for the label “shopping zone”, where the optimal values for C
and γ are finally determined as C = 107 and γ = 10−3.

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Figure 13. Grid search to find the optimal parameters C and γ for the RBF-Kernel-based SVM classifier.

This grid search has to be conducted for each single SVM classifier. Thus, in order to
calibrate the five independent classifiers in each SVM-based inference engine, we need to
run the grid search five times. Table 2 summarizes the performance of SVM-based inference
engines on the testing dataset. It is notable that the overall performances of these four
variants are generally close to each other. Nevertheless, the RBF Kernel yields relatively
better results on the overall evaluation metrics, with the best achieved overall F1 score of
0.8161. The Sigmoid-Kernel-based inference engine achieves the second best overall F1
score of 0.8139, even though its individual F1 score is lower than other three kernels. It
is also worth to note that even the simple Linear Kernel based inference engine achieves
comparatively good results among most evaluation metrics. When the F1 score in the
overall evaluation metrics is concerned, the worst performance of 0.8008 is achieved by the
Polynomial-Kernel-based inference engine, but only with a difference of 0.0153 from the
best overall F1 score achieved by the RBF-Kernel-based inference engine.

Table 2. Performance of the SVM-based inference engines.

Inference Engine
Specified by

Overall Evaluation Metrics Individual Evaluation Metrics (Averaged)

Accuracy Precision Recall F1 Score FPR Accuracy Precision Recall F1 Score FPR

Linear Kernel 0.7194 0.8095 0.9031 0.8121 0.0807 0.7537 0.8524 0.8753 0.8504 0.0941
Polynomial Kernel 0.7100 0.7933 0.8883 0.8008 0.0823 0.7310 0.8239 0.8687 0.8354 0.1159
RBF Kernel 0.7279 0.8299 0.8827 0.8161 0.0788 0.7402 0.8593 0.8452 0.8399 0.0949
Sigmoid Kernel 0.7206 0.8056 0.9069 0.8139 0.0899 0.7216 0.8000 0.8786 0.8269 0.1196

4.3. Multilayer-Perceptron-Based Driving Environment Inference

During the training process, we start with a learning rate η of 0.0005, and reduce it by
a factor of 5 once the learning stagnates. The target training epochs is set to 1500, during

Sensors 2023, 23, 9156 27 of 33

which the overall F1 score is utilized for early stopping to avoid overfitting. As introduced
in Section 3.1, to find an optimal MLP architecture, we conduct a grid search on the widths
n1 and n2 of two hidden layers. During the grid search, we set the search ranges for n1 and
n2 to be the same sequence: (3, 5, . . . , 23, 25), and we use the overall F1 score on training
dataset as the quality measure. In our experiment, each search iteration is implemented
as a standard training process with 1000 training epochs. Figure 14 shows the grid search
result on the unified inference engine depicted in Figure 9, where the optimal values for n1
and n2 are finally determined as n1 = 23 and n2 = 25. Intuitively, the grid search result
in Figure 14 shows slightly larger diversity along n2 axis, e.g., the combination (n1 = 21,
n2 = 7) yields almost the same performance as the combination (n1 = 23, n2 = 25). This
implies that the optimal search of n2 is comparatively harder than that of n1. In practice,
one can also increase the search ranges to have a broader overview of the F1 landscape.
However, increasing the search ranges also means the increase in computation demand.

3 5 7 9 11 13 15 17 19 21 23 25
n2

3

5

7

9

11

13

15

17

19

21

23

25

n 1

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

F1 score

Figure 14. Grid search to find the optimal n1 and n2 for the unified inference engine in Figure 9.

Similar to the SVM-based inference engine, this grid search has to be done for each
MLP classifier in order to find its optimal network architecture. Thus, we need to run
this grid search five times for the independent inference engine and once for the unified
inference engine. The performances of these two inference engines are summarized in
Table 3. It is noticeable that the implemented unified inference engine surpasses the
independent inference engine in all evaluation metrics. In fact, one implicit assumption of
the proposed independent inference strategy is that the inferences of all target labels are
mutually independent. However, in practice, this assumption might not always hold true
according to the discussion in [30], and the result in Table 3 provides evidence for this. The
proposed unified inference strategy yields better result, as it overcomes this assumption by
implicitly modeling the label dependency within a single classifier.

Table 3. Performance of the MLP-based inference engines.

Inference
Engine

Overall Evaluation Metrics Individual Evaluation Metrics (Averaged)

Accuracy Precision Recall F1 Score FPR Accuracy Precision Recall F1 Score FPR

Independent 0.7647 0.8529 0.8922 0.8359 0.0706 0.7764 0.8846 0.8699 0.8680 0.0739
Unified 0.8170 0.8824 0.9020 0.8699 0.0696 0.7986 0.8881 0.8895 0.8844 0.0674

Sensors 2023, 23, 9156 28 of 33

4.4. Comparison of Inference Engines

From the results in Tables 1–3, we can draw the following conclusions:

• The MLP-based unified inference engine achieves the best overall performance among
the 11 implemented inference engines, and the MLP-based independent inference
engine generally yields better results than other independent inference engines. This
shows, as a universal approximator, the superiority of the MLP-based inference system
over the other two investigated inference systems.

• Both the FIS-based and the SVM-based inference engines show performance variances
caused by the choice of different hyperparameters, e.g., the membership function in FIS
and the kernel function in SVM. However, the performance variance in the FIS-based
inference engines is comparatively larger than that in the SVM-based inference engines.

• Despite the aforementioned performance variances, with the calculated POI features,
all three investigated inference systems are able to achieve a best individual F1 score
of more than 84%. This verifies the effectiveness of the proposed statistical POI feature
calculation approach.

• Similarly, with the proposed inference framework, all the three investigated inference
systems are able to achieve a best overall F1 score of more than 81%. This proves the
generalization ability of the proposed inference framework.

In addition to inference capability, Table 4 provides further comparisons regarding
the inference efficiency. Here, the runtime is measured as the averaged inference time per
sample, which is given in milliseconds. With the aforementioned software toolboxes, we
see that the fastest inference engine (MLP-Unified) is about three orders of magnitude faster
than the slowest inference engine (FIS-Triangular MF), even though it has about five times
more trainable parameters. In general, the two MLP-based inference engines achieve the
best runtime efficiency, and next to them are the SVM-based inference engines, where the
linear kernel function tends to run faster than the nonlinear kernel functions. Conversely, all
FIS-based inference engines show slower inference time than other two groups, which may
be caused by the difference in the corresponding programming environments and software
toolboxes. Given the fact that most of the current onboard vehicle positioning and map
matching system has an update rate less than 50 Hz, and both the POI extraction and the
POI feature calculation can be efficiently implemented on modern computer chips, we can
conclude that even the slowest FIS-based inference engine (0.9310 ms/sample) is real-time
capable. Thus, the proposed inference framework meets the real-time requirement.

Table 4. Efficiency of the implemented inference engines.

Inference Engine
Number of Parameters

Runtime (ms/Sample)
Trainable Hyperparameter

FIS (Triangular MF) 225 0 0.9310
FIS (Trapezoidal MF) 300 0 0.8897
FIS (Gaussian MF) 150 0 0.5387
FIS (cG MF) 300 0 0.5376
FIS (Bell-shaped MF) 225 0 0.5056
SVM (Linear Kernel) 0 0 0.0083
SVM (Polynomial Kernel) 0 20 0.0098
SVM (RBF Kernel) 0 10 0.0294
SVM (Sigmoid Kernel) 0 15 0.0120
MLP (Independent) 817 10 0.0007
MLP (Unified) 1213 2 0.0002

In summary, MLP-based inference engine will be the primary choice for our inference
task, when both the capability and the efficiency are desired. However, if the choice is a
fuzzy inference system, then it is important to find the proper membership function in
order to achieve the best inference result. In terms of the SVM-based inference engine, one
may use the RBF Kernel function as a good starting point, while the simple Linear Kernel
may achieve similar result but with less computational demand.

Sensors 2023, 23, 9156 29 of 33

5. Conclusions

In this paper, we propose an inference framework to explore the feasibility of utilizing
POI data for the driving environment inference task. The proposed inference framework
mainly comprises four modules: map matching, POI extraction, POI feature calculation,
and inference engine. The first two modules are designed to leverage the data structure of
the utilized map, so that the purity of the extracted POI objects is guaranteed. Instead of
working with discrete POI objects directly, we introduce a statistical approach to transform
the input into semantically meaningful and numerically manageable POI features. Based
on these POI features, an inference engine is built to solve the actual inference task. To
realize that, we investigate the following three inference systems in this work: FIS, SVM,
and MLP. Particularly, we detail the composition of inference engines from these three in-
ference systems by following one of the two inference strategies: the independent inference
strategy and the unified inference strategy. To examine the proposed inference framework,
we implement 11 inference engines and evaluate them on a manually prepared dataset.
The result shows that the proposed inference framework generalizes well over different
inference systems, especially the configuration MLP-Unified achieves the best performance
(overall F1 score of 0.8699, with 0.0002 milliseconds of inference time per sample) among
all implemented inference engines. Moreover, the effectiveness of the proposed POI feature
calculation approach is also justified by the best-achieved individual evaluation metrics
in each inference system. Last but not the least, the efficiency of the proposed inference
framework is quantitatively demonstrated by the final efficiency comparison.

To correctly retrieve POI objects for the ego road being travelled, the proposed frame-
work heavily relies on the map matching module. However, if map matching fails to match
the vehicle location to the correct road link, then the inference result will no longer be
reliable. As a potential solution, in the future we may try another POI extraction method,
e.g., brute extraction of all POI objects within a certain range around a vehicle’s ego lo-
cation. Besides, the proposed POI feature calculation method is essentially a data-driven
approach. Similar to other data-driven approaches, a representative and unambiguous
dataset is the key to success. However, obtaining such a dataset is usually challenging.
To a certain degree, the introduced two inference strategies ensure the flexibility of the
proposed framework, i.e., one can freely adapt existing inference systems to the proposed
inference framework by following one of these two strategies. However, due to the intro-
duced limitations adhere to FIS and SVM, currently, we only implement an MLP-based
unified inference engine. As a future work, it is worth to validate the proposed inference
framework using more inference systems, and also to investigate the extensibility of the
introduced unified inference strategy to other inference systems. In addition to the current
investigations on the three inference systems studied in this work, we will conduct more
ablation experiments to further inspect the influence of other model-related hyperparam-
eters on the final inference performance. For example, we can also apply the symmetric
implicational method introduced in [77] to the fuzzy inference system. Finally, the POI
source utilized in this paper is a commercial navigation map, although there exists other
POI sources such as Google Maps and OpenStreetMap [78]. Therefore, another future topic
is to further verify the proposed inference framework using other POI sources.

Author Contributions: Conceptualization, Y.L., M.M. and V.S.; methodology, Y.L., M.M. and
V.S.; software, Y.L.; investigation, Y.L.; resources, Y.L.; writing—original draft preparation, Y.L.;
writing—review and editing, M.M. and V.S.; supervision, M.M. and V.S.; project administration,
M.M. and V.S. All authors have read and agreed to the published version of the manuscript.

Funding: The investigations published in this article are granted by the GSA (European GNSS
Agency) within the H2020-GALILEO-GSA-2017 Innovation Action with Grant Agreement Nr.:776355;
therefore, the authors cordially thank the funding agency. The publication of this article was funded
by the Open Access fund of Universität Stuttgart.

Institutional Review Board Statement: Not applicable.

Sensors 2023, 23, 9156 30 of 33

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ACC Adaptive Cruise Control
ADAS Advanced Driver Assistance Systems
AEB Automatic Emergency Braking
ANN Artificial Neural Network
CAN Controller Area Network
cG combined Gaussian
CNN Convolutional Neural Network
CPU Central Processing Unit
FIS Fuzzy Inference System
GNSS Global Navigation Satellite System
MF Membership Function
MLP Multilayer Perceptron
MPP Most Probable Path
NDS Navigation Data Standard
POI Point of Interest
RBF Radial Basis Function
ReLU Rectified Linear Unit
SGD Stochastic Gradient Descent
SVM Support Vector Machine

References
1. Advanced Driver Assistance Systems (ADAS) Committee. Adaptive Cruise Control (ACC) Operating Characteristics and User

Interface; SAE International: Warrendale, PA, USA, 2021. [CrossRef]
2. Active Safety Systems Standards Committee. Automatic Emergency Braking (AEB) System Performance Testing; SAE International:

Warrendale, PA, USA, 2017. [CrossRef]
3. Murphey, Y.L.; Chen, Z.; Kiliaris, L.; Park, J.; Kuang, M.; Masrur, A.; Phillips, A. Neural learning of driving environment

prediction for vehicle power management. In Proceedings of the 2008 IEEE International Joint Conference on Neural Networks
(IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–8 June 2008; pp. 3755–3761. [CrossRef]

4. He, H.; Sun, C.; Zhang, X. A Method for Identification of Driving Patterns in Hybrid Electric Vehicles Based on a LVQ Neural
Network. Energies 2012, 5, 3363–3380. [CrossRef]

5. Qi, W. Development of Real-time Optimal Control Strategy of Hybrid Transit Bus Based on Predicted Driving Pattern. Ph.D. Thesis,
West Virginia University, Morgantown, WV, USA, 2016.

6. Zhang, C.; Vahidi, A.; Pisu, P.; Li, X.; Tennant, K. Role of Terrain Preview in Energy Management of Hybrid Electric Vehicles.
IEEE Trans. Veh. Technol. 2010, 59, 1139–1147. [CrossRef]

7. Tang, I.; Breckon, T.P. Automatic Road Environment Classification. IEEE Trans. Intell. Transp. Syst. 2011, 12, 476–484. [CrossRef]
8. Taylor, P.; Anand, S.S.; Griffiths, N.; Adamu-Fika, F.; Dunoyer, A.; Popham, T. Road Type Classification through Data Mining. In

Proceedings of the 4th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, New
York, NY, USA, 17–19 October 2012; AutomotiveUI ’12, pp. 233–240. [CrossRef]

9. Mioulet, L.; Breckon, T.P.; Mouton, A.; Liang, H.; Morie, T. Gabor features for real-time road environment classification. In
Proceedings of the 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town, South Africa, 25–28 February
2013; pp. 1117–1121. [CrossRef]

10. Teichmann, M.; Weber, M.; Zöllner, M.; Cipolla, R.; Urtasun, R. MultiNet: Real-time Joint Semantic Reasoning for Autonomous
Driving. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1013–1020.
[CrossRef]

11. Marina, L.A.; Trasnea, B.; Cocias, T.; Vasilcoi, A.; Moldoveanu, F.; Grigorescu, S.M. Deep Grid Net (DGN): A Deep Learning
System for Real-Time Driving Context Understanding. In Proceedings of the 2019 Third IEEE International Conference on
Robotic Computing (IRC), Naples, Italy, 25–27 February 2019; pp. 399–402. [CrossRef]

12. Seeger, C. Obstacle Fusion and Scene Interpretation for Autonomous Driving with Occupancy Grids. Ph.D. Thesis, Friedrich-
Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, 2023.

http://doi.org/10.4271/J2399_202110
http://dx.doi.org/10.4271/J3087_201710
http://dx.doi.org/10.1109/IJCNN.2008.4634337
http://dx.doi.org/10.3390/en5093363
http://dx.doi.org/10.1109/TVT.2009.2038707
http://dx.doi.org/10.1109/TITS.2010.2095499
http://dx.doi.org/10.1145/2390256.2390295
http://dx.doi.org/10.1109/ICIT.2013.6505829
http://dx.doi.org/10.1109/IVS.2018.8500504
http://dx.doi.org/10.1109/IRC.2019.00073

Sensors 2023, 23, 9156 31 of 33

13. Wang, Y.; Liu, P.; Zhu, X.; Jin, X.; Liu, Q.; Qian, J. Environment Recognition Based on Temporal Filtering SVM. In China Satellite
Navigation Conference (CSNC) 2018 Proceedings; Sun, J., Yang, C., Guo, S., Eds.; Springer: Singapore, 2018; pp. 403–414.

14. Wang, Y.; Liu, P.; Liu, Q.; Adeel, M.; Qian, J.; Jin, X.; Ying, R. Urban environment recognition based on the GNSS signal
characteristics. Navigation 2019, 66, 211–225. [CrossRef]

15. Liu, H.; Zhang, M.; Pei, L.; Wang, W.; Li, L.; Pan, C.; Li, Z. Environment Classification for Global Navigation Satellite Systems
Using Attention-Based Recurrent Neural Networks. In Proceedings of the Spatial Data and Intelligence; Meng, X., Xie, X., Yue, Y.,
Ding, Z., Eds.; Springer: Cham, Switzerland, 2021; pp. 60–71.

16. Marques, O.; Barenholtz, E.; Charvillat, V. Context modeling in computer vision: techniques, implications, and applications.
Multimed. Tools Appl. 2011, 51, 303–339. [CrossRef]

17. Torralba, A.; Murphy, K.P.; Freeman, W.T. Using the Forest to See the Trees: Exploiting Context for Visual Object Detection and
Localization. Commun. ACM 2010, 53, 107–114. [CrossRef]

18. Sikirić, I.; Brkić, K.; Bevandić, P.; Krešo, I.; Krapac, J.; Šegvić, S. Traffic Scene Classification on a Representation Budget. IEEE
Trans. Intell. Transp. Syst. 2020, 21, 336–345. [CrossRef]

19. TransSec. TransSec–Road Transport Security. Available online: https://transsec.eu/ (accessed on 1 July 2023).
20. Henriksson, M. Driving Context Classification Using Pattern Recognition. Master Thesis, Chalmers University of Technology,

Gothenburg, Sweden, 2016.
21. Garefalakis, T.; Katrakazas, C.; Yannis, G. Data-Driven Estimation of a Driving Safety Tolerance Zone Using Imbalanced Machine

Learning. Sensors 2022, 22, 5309. [CrossRef] [PubMed]
22. Gong, Q.; Li, Y.; Peng, Z. Power management of plug-in hybrid electric vehicles using neural network based trip modeling. In

Proceedings of the 2009 American Control Conference, St. Louis, MO, USA, 10–12 June 2009; pp. 4601–4606. [CrossRef]
23. Musardo, C.; Rizzoni, G.; Guezennec, Y.; Staccia, B. A-ECMS: An Adaptive Algorithm for Hybrid Electric Vehicle Energy

Management. Eur. J. Control 2005, 11, 509–524. [CrossRef]
24. Brühwiler, L.; Fu, C.; Huang, H.; Longhi, L.; Weibel, R. Predicting individuals’ car accident risk by trajectory, driving events, and

geographical context. Comput. Environ. Urban Syst. 2022, 93, 101760. [CrossRef]
25. Sikirić, I.; Brkić, K.; Krapac, J.; Šegvić, S. Image representations on a budget: Traffic scene classification in a restricted bandwidth

scenario. In Proceedings of the 2014 IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI, USA, 8–11 June 2014;
pp. 845–852. [CrossRef]

26. Ma, W.C.; Wang, S.; Brubaker, M.A.; Fidler, S.; Urtasun, R. Find your Way by Observing the Sun and Other Semantic Cues. arXiv
2016, arXiv:1606.07415.

27. Yuan, J.; Zheng, Y.; Xie, X. Discovering Regions of Different Functions in a City Using Human Mobility and POIs. In Proceedings
of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August
2012; KDD ’12, pp. 186–194. [CrossRef]

28. Gao, S.; Janowicz, K.; Couclelis, H. Extracting urban functional regions from points of interest and human activities on
location-based social networks. Trans. GIS 2017, 21, 446–467. [CrossRef]

29. Papadakis, E.; Resch, B.; Blaschke, T. Composition of place: towards a compositional view of functional space. Cartogr. Geogr. Inf.
Sci. 2020, 47, 28–45. [CrossRef] [PubMed]

30. Sorower, M.S. A Literature Survey on Algorithms for Multi-Label Learning; Oregon State University, Corvallis OR, USA, 2010;
Volume 18, p. 25.

31. Carniel, A.C.; Schneider, M. A Survey of Fuzzy Approaches in Spatial Data Science. In Proceedings of the 2021 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), Luxembourg, Luxembourg, 11–14 July 2021; pp. 1–6. [CrossRef]

32. Yin, H.; Liu, C.; Wu, W.; Song, K.; Dan, Y.; Cheng, G. An integrated framework for criticality evaluation of oil & gas pipelines
based on fuzzy logic inference and machine learning. J. Nat. Gas Sci. Eng. 2021, 96, 104264. [CrossRef]

33. Tabbussum, R.; Dar, A.Q. Performance evaluation of artificial intelligence paradigms-artificial neural networks, fuzzy logic, and
adaptive neuro-fuzzy inference system for flood prediction. Environ. Sci. Pollut. Res. 2021, 28, 25265–25282. [CrossRef] [PubMed]

34. Tang, Y.; Huang, J.; Pedrycz, W.; Li, B.; Ren, F. A Fuzzy Clustering Validity Index Induced by Triple Center Relation. IEEE Trans.
Cybern. 2023, 53, 5024–5036. [CrossRef]

35. Kleine-Besten, T.; Behrens, R.; Pöchmüller, W.; Engelsberg, A. Digital Maps for ADAS. In Handbook of Driver Assistance Systems:
Basic Information, Components and Systems for Active Safety and Comfort; Winner, H., Hakuli, S., Lotz, F., Singer, C., Eds.; Springer
International Publishing: Cham, Switzerland, 2016; pp. 647–661. [CrossRef]

36. Zang, A.; Li, Z.; Doria, D.; Trajcevski, G. Accurate Vehicle Self-Localization in High Definition Map Dataset. In Proceedings of
the 1st ACM SIGSPATIAL Workshop on High-Precision Maps and Intelligent Applications for Autonomous Vehicles, Redondo
Beach, CA, USA, 7–10 November 2017; AutonomousGIS ’17. [CrossRef]

37. Kang, Y.; Magdy, A. HiDaM: A Unified Data Model for High-definition (HD) Map Data. In Proceedings of the 2020 IEEE 36th
International Conference on Data Engineering Workshops (ICDEW), Dallas, TX, USA, 20–24 April 2020; pp. 26–32. [CrossRef]

38. HERE. ADAS & HAD: Automotive Maps & Location Data. Available online: https://www.here.com/platform/adas-had
(accessed on 1 June 2023).

39. TomTom. Navigation Map. Available online: https://www.tomtom.com/products/navigation-map/ (accessed on 1 June 2023).
40. Luz, P.; Zhang, L.; Wang, J.; Schwieger, V. Lane-Level Map-Aiding Approach Based on Non-Lane-Level Digital Map Data in

Road Transport Security. Sustainability 2021, 13, 9724. [CrossRef]

http://dx.doi.org/10.1002/navi.280
http://dx.doi.org/10.1007/s11042-010-0631-y
http://dx.doi.org/10.1145/1666420.1666446
http://dx.doi.org/10.1109/TITS.2019.2891995
https://transsec.eu/
http://dx.doi.org/10.3390/s22145309
http://www.ncbi.nlm.nih.gov/pubmed/35890990
http://dx.doi.org/10.1109/ACC.2009.5160623
http://dx.doi.org/10.3166/ejc.11.509-524
http://dx.doi.org/10.1016/j.compenvurbsys.2022.101760
http://dx.doi.org/10.1109/IVS.2014.6856569
http://dx.doi.org/10.1145/2339530.2339561
http://dx.doi.org/10.1111/tgis.12289
http://dx.doi.org/10.1080/15230406.2019.1598894
http://www.ncbi.nlm.nih.gov/pubmed/32104165
http://dx.doi.org/10.1109/FUZZ45933.2021.9494437
http://dx.doi.org/10.1016/j.jngse.2021.104264
http://dx.doi.org/10.1007/s11356-021-12410-1
http://www.ncbi.nlm.nih.gov/pubmed/33453033
http://dx.doi.org/10.1109/TCYB.2023.3263215
http://dx.doi.org/10.1007/978-3-319-12352-3_27
http://dx.doi.org/10.1145/3149092.3149094
http://dx.doi.org/10.1109/ICDEW49219.2020.00-11
https://www.here.com/platform/adas-had
https://www.tomtom.com/products/navigation-map/
http://dx.doi.org/10.3390/su13179724

Sensors 2023, 23, 9156 32 of 33

41. Zang, A.; Chen, X.; Trajcevski, G. High Definition Maps in Urban Context. Sigspatial Spec. 2018, 10, 15–20. [CrossRef]
42. Goh, C.; Dauwels, J.; Mitrovic, N.; Asif, M.T.; Oran, A.; Jaillet, P. Online map-matching based on Hidden Markov model for

real-time traffic sensing applications. In Proceedings of the 2012 15th International IEEE Conference on Intelligent Transportation
Systems, Anchorage, AK, USA, 16–19 September 2012; pp. 776–781. [CrossRef]

43. Quddus, M.A.; Noland, R.B.; Ochieng, W.Y. A High Accuracy Fuzzy Logic Based Map Matching Algorithm for Road Transport.
J. Intell. Transp. Syst. 2006, 10, 103–115. [CrossRef]

44. Burgstahler, D.M. Collaborative Sensing in Automotive Scenarios: Enhancement of the Vehicular Electronic Horizon through
Collaboratively Sensed Knowledge. Ph.D. Thesis, Technische Universität, Darmstadt, Germany, 2017.

45. Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer New York: New York, NY, USA, 2013. [CrossRef]
46. Brownlee, J. Data Preparation for Machine Learning: Data Cleaning, Feature Selection, and Data Transforms in Python; Machine

Learning Mastery; 2020; p. 22. Available online: https://machinelearningmastery.com/data-preparation-for-machine-learning/
(accessed on 1 June 2023).

47. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. http://www.deeplearningbook.org
(accessed on 1 June 2023).

48. Zhang, A.; Lipton, Z.C.; Li, M.; Smola, A.J. Dive into Deep Learning. arXiv 2021, arXiv:2106.11342.
49. Papadakis, E.; Gao, S.; Baryannis, G. Combining Design Patterns and Topic Modeling to Discover Regions That Support Particular

Functionality. ISPRS Int. J. Geo-Inf. 2019, 8, 385. [CrossRef]
50. Ross, T.J. Fuzzy Logic with Engineering Applications; John Wiley & Sons, Ltd.: Chichester, West Sussex, United Kingdom, 2010.

[CrossRef]
51. Zadeh, L.A. The role of fuzzy logic in modeling, identification and control. In Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected

Papers by Lotfi A Zadeh; World Scientific: Singapore, 1996; pp. 783–795.
52. Nguyen, A.T.; Taniguchi, T.; Eciolaza, L.; Campos, V.; Palhares, R.; Sugeno, M. Fuzzy Control Systems: Past, Present and Future.

IEEE Comput. Intell. Mag. 2019, 14, 56–68. [CrossRef]
53. Siddique, N.; Adeli, H. Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing; John

Wiley & Sons, Ltd.: Chichester, West Sussex, United Kingdom, 2013. [CrossRef]
54. Torres-García, A.A.; Reyes-García, C.A.; Villaseñor-Pineda, L.; Mendoza-Montoya, O. Biosignal Processing and Classification Using

Computational Learning and Intelligence; Academic Press: London, UK, 2022. [CrossRef]
55. Mamdani, E.; Assilian, S. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. -Man–Mach. Stud. 1975, 7, 1–13.

[CrossRef]
56. Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern.

1985, SMC-15, 116–132. [CrossRef]
57. Garibaldi, J.; John, R. Choosing membership functions of linguistic terms. In Proceedings of the The 12th IEEE International

Conference on Fuzzy Systems, St. Louis, MO, USA, 25–28 May 2003; FUZZ ’03.; Volume 1, pp. 578–583. [CrossRef]
58. Ocampo-Duque, W.; Ferré-Huguet, N.; Domingo, J.L.; Schuhmacher, M. Assessing water quality in rivers with fuzzy inference

systems: A case study. Environ. Int. 2006, 32, 733–742. [CrossRef]
59. MATLAB Fuzzy Logic Toolbox; The MathWorks: Natick, MA, USA, 2022.
60. Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006; Volume 4.
61. Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A Training Algorithm for Optimal Margin Classifiers. In Proceedings of the Fifth Annual

Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; COLT ’92, pp. 144–152. [CrossRef]
62. Vapnik, V.N. Methods of Pattern Recognition. In The Nature of Statistical Learning Theory; Springer New York: New York, NY,

USA, 2000; pp. 123–180. [CrossRef]
63. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366.

[CrossRef]
64. Bottou, L. Stochastic Gradient Learning in Neural Networks. Proc. Neuro-Nîmes 1991, 91, 12.
65. Bottou, L. Online Algorithms and Stochastic Approximations. In Online Learning and Neural Networks; Saad, D., Ed.; Cambridge

University Press: Cambridge, UK, 1998.
66. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
67. Nesterov, Y. A method of solving a convex programming problem with convergence rate O(1/k2). Proc. USSR Acad. Sci.

1983, 269, 543–547.
68. Nesterov, Y. Introductory Lectures on Convex Optimization: A Basic Course; Springer New York: New York, NY, USA, 2004. [CrossRef]
69. Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the Importance of Initialization and Momentum in Deep Learning. In Proceedings

of the 30th International Conference on International Conference on Machine Learning, Atlanta, GA, USA, 17–19 June 2013; ICML’13;
Volume 28, pp. III-1139–III-1147.

70. Duchi, J.; Hazan, E.; Singer, Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. J. Mach. Learn.
Res. 2011, 12, 2121–2159.

71. Hinton, G.; Srivastava, N.; Swersky, K. Neural Networks for Machine Learning–Lecture 6a: Overview of Mini-Batch Gradient
Descent. Available online: https://cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf (accessed on 1 June 2023).

http://dx.doi.org/10.1145/3231541.3231546
http://dx.doi.org/10.1109/ITSC.2012.6338627
http://dx.doi.org/10.1080/15472450600793560
http://dx.doi.org/10.1007/978-1-4614-6849-3
https://machinelearningmastery.com/data-preparation-for-machine-learning/
http://www.deeplearningbook.org
http://dx.doi.org/10.3390/ijgi8090385
http://dx.doi.org/10.1002/9781119994374
http://dx.doi.org/10.1109/MCI.2018.2881644
http://dx.doi.org/10.1002/9781118534823
http://dx.doi.org/10.1016/C2019-0-00985-5
http://dx.doi.org/10.1016/S0020-7373(75)80002-2
http://dx.doi.org/10.1109/TSMC.1985.6313399
http://dx.doi.org/10.1109/FUZZ.2003.1209428
http://dx.doi.org/10.1016/j.envint.2006.03.009
http://dx.doi.org/10.1145/130385.130401
http://dx.doi.org/10.1007/978-1-4757-3264-1_6
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1007/978-1-4419-8853-9
https://cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Sensors 2023, 23, 9156 33 of 33

72. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015.

73. Hawkins, D.M. The Problem of Overfitting. J. Chem. Inf. Comput. Sci. 2004, 44, 1–12. [CrossRef] [PubMed]
74. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,

V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
75. Hsu, C.W.; Chang, C.C.; Lin, C.J. A Practical Guide to Support Vector Classification. Available online: https://www.csie.ntu.edu.

tw/~cjlin/papers/guide/guide.pdf (accessed on 1 June 2023).
76. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems; Curran Associates Inc.: Red Hook, NY, USA, 2019.

77. Tang, Y.; Pedrycz, W.; Ren, F. Granular Symmetric Implicational Method. IEEE Trans. Emerg. Top. Comput. Intell. 2022, 6, 710–723.
[CrossRef]

78. OpenStreetMap Wiki contributors. Points of interest. OpenStreetMap Wiki. https://wiki.openstreetmap.org/w/index.php?title=
Points_of_interest&oldid=2417843 (accessed on 1 June 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1021/ci0342472
http://www.ncbi.nlm.nih.gov/pubmed/14741005
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://dx.doi.org/10.1109/TETCI.2021.3100597
https://wiki.openstreetmap.org/w/index.php?title=Points_of_interest&oldid=2417843
https://wiki.openstreetmap.org/w/index.php?title=Points_of_interest&oldid=2417843

	Introduction
	Framework for Driving Environment Inference
	Overview
	Navigation Map and Point of Interest Object
	POI Feature Calculation: A Statistical Approach
	Conceptual Definition of POI Features
	Mathematical Calculation of POI Features

	Inference Engine
	Driving Environment Inference as a Multi-Label Classification Problem
	Fuzzy-Inference-System-Based Inference Engine
	Support-Vector-Machine-Based Inference Engine
	Multilayer-Perceptron-Based Inference Engine

	Implementation and Experimental Setups
	Implementation
	Evaluation Metrics
	Dataset

	Results and Discussion
	Fuzzy-Logic-Based Driving Environment Inference
	Support-Vector-Machine-Based Driving Environment Inference
	Multilayer-Perceptron-Based Driving Environment Inference
	Comparison of Inference Engines

	Conclusions
	References

