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Abstract: The utilization of Artificial Intelligence (AI) for assessing motor performance in Parkinson’s
Disease (PD) offers substantial potential, particularly if the results can be integrated into clinical
decision-making processes. However, the precise quantification of PD symptoms remains a persistent
challenge. The current standard Unified Parkinson’s Disease Rating Scale (UPDRS) and its variations
serve as the primary clinical tools for evaluating motor symptoms in PD, but are time-intensive and
prone to inter-rater variability. Recent work has applied data-driven machine learning techniques
to analyze videos of PD patients performing motor tasks, such as finger tapping, a UPDRS task to
assess bradykinesia. However, these methods often use abstract features that are not closely related
to clinical experience. In this paper, we introduce a customized machine learning approach for the
automated scoring of UPDRS bradykinesia using single-view RGB videos of finger tapping, based
on the extraction of detailed features that rigorously conform to the established UPDRS guidelines.
We applied the method to 75 videos from 50 PD patients collected in both a laboratory and a
realistic clinic environment. The classification performance agreed well with expert assessors, and
the features selected by the Decision Tree aligned with clinical knowledge. Our proposed framework
was designed to remain relevant amid ongoing patient recruitment and technological progress. The
proposed approach incorporates features that closely resonate with clinical reasoning and shows
promise for clinical implementation in the foreseeable future.

Keywords: Parkinson’s disease; finger tapping; UDPRS quantification; data-driven; machine learning

1. Introduction

Parkinson’s Disease (PD) is the most-common neurodegenerative movement disor-
der characterized by various motor symptoms, including resting tremor, bradykinesia,
muscular rigidity, and postural instability [1]. Among these symptoms, bradykinesia,
the slowness of movement often associated with a reduced movement amplitude, is a
fundamental feature and a key diagnostic criterion for Parkinsonism [2].

The Unified Parkinson’s Disease Rating Scale (UPDRS) is recognized as the definitive
standard for assessing the severity of Parkinson’s Disease (PD). This scale has undergone a
partial revision via the Movement Disorder Society (MDS), resulting in the MDS-UPDRS [3].
An essential element of the MDS-UPDRS is the motor examination (Part III), encompassing
18 motor tasks performed by the patient and evaluated by a rater, who scores each task
based on the observed level of impairment.

A significant task in this scale, Item 4, is finger tapping, which is used to gauge
bradykinesia. In this test, patients are instructed to tap their index finger to their thumb
as quickly and widely as possible, completing ten taps. The rater observes and evaluates
several aspects of this action, such as the speed and amplitude, any noticeable decrease
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in speed or amplitude, and the presence of hesitations or stops. Each side of the body is
evaluated separately, and scores are assigned on a scale from 0 (normal) to 4 (severe), as
outlined in Table 1.

Table 1. MDS-UDPRS criteria for the finger tapping task.

UPDRS Score Symptoms

0: Normal No problems.

1: Slight Any of the following:
a. one or two interruptions or hesitations;
b. slight slowing;
c. the amplitude decrements near the end.

2: Mild Any of the following:
a. 3 to 5 interruptions during tapping;
b. mild slowing;
c. the amplitude decrements midway in the 10-tap sequence.

3: Moderate Any of the following:
a. more than 5 interruptions or at least one longer arrest (freeze)
in ongoing movement;
b. moderate slowing;
c. the amplitude decrements starting after the 1st tap.

4: Severe Cannot or can only barely perform the task because of slowing,
interruptions, or decrements.

While the transition from the UPDRS to the MDS-UPDRS addressed several uncertain-
ties and shortcomings of the original version, it did not completely overcome all challenges.
Notably, the subjective nature of this manually administered clinical scale persists, resulting
in potential scoring discrepancies by the same (intra-rater) or different (inter-rater) evalua-
tors. Moreover, human assessments of this nature can be both time-intensive and costly.

Advancements in machine learning technologies have greatly improved the objective
and automated assessment of Parkinson’s Disease (PD) [4–7]. Notably, wearable sensor
technology has been utilized to measure bradykinesia during finger tapping [8,9], with
several of these sensors now available for clinical use [10,11]. The use of machine learning
in the assessment of Parkinsonism holds promise for clinical care, potentially providing a
more-efficient, extensive, and remote monitoring system. Additionally, machine learning
approaches could greatly benefit clinical trials by offering a quantitative, objective digital
biomarker for Parkinsonism.

However, concerns regarding costs and potential issues with patient compliance
regarding wearable sensors have led to growing interest in video-based analysis. This
method offers a non-contact, unobtrusive alternative for the automated assessment of
motor symptoms in PD [12,13]. That said, there are technical challenges associated with
the remote interpretation of video recordings [5]. A significant limitation of existing video-
based assessments of PD is their focus on only a subset of the clinically relevant features
detailed in the UPDRS instructions, often resulting in limited clinical interpretation of the
models. Given that UPDRS is grounded in decades of clinical expertise and encompasses
a wide range of bradykinesia symptoms in Parkinsonism, both the comprehensiveness
and explainability of any model are vital. Furthermore, many studies have relied on solely
collecting data in a standardized video collection environment, raising concerns about the
sustainability and adaptability of these models. Addressing these gaps, our study aimed to
develop a machine-learning model for the automatic prediction of UPDRS bradykinesia
scores from finger tapping videos. We focused on enhancing the robustness of our model by
extracting features that are in strict accordance with the clinical guidelines provided in the
UPDRS, employing a white-box model for better explainability. This approach also involves
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incorporating a variety of video collection environments to ensure broader applicability
and resilience of the model in diverse settings.

2. Related Work

In this section, we examine the existing literature on the automated assessment of
Parkinson’s Disease (PD) severity using Machine Learning (ML) techniques. The subse-
quent subsections offer a comprehensive overview of cutting-edge methodologies and their
respective contributions to this field.

2.1. Advances in Automated Assessment of Parkinson’s Disease with Machine Learning Approach

The majority of ML-based automated assessment of PD approaches utilize body-worn
inertial sensors, such as accelerometers and gyroscopes. These sensors include independent
devices integrated with short-range communication capabilities [8], as well as sensors
embedded in smartphones or smartwatches that facilitate data collection using the patients’
own mobile devices [14]. AI technology using sensor signals has been used to investigate a
wide range of PD symptoms, both motor and non-motor, including bradykinesia, tremor,
rigidity, gait disturbances, freezing of gait, falls, sweating, and sleep disturbances [8].
Bradykinesia, a key symptom for diagnosing PD, is the most extensively investigated
symptom [8]. Various studies exploring bradykinesia, resting tremor, or rigidity in the
upper limbs have employed commercially available sensors placed on the arms, wrists, or
fingertips, yielding diverse outcome measures [8,15,16]. The use of sensor technology for
detailed gait analysis, particularly for measuring parameters like stride length, velocity,
and cadence, has been emphasized due to the debilitating nature of gait and balance
impairments in PD [17,18]. Additionally, focused research has been conducted on specific
PD motor symptoms such as dysarthria and micrographia [19–21]. However, there are
significant limitations associated with wearable-sensor-based monitoring. First, the need for
patients to wear these devices can be intrusive, potentially leading to reduced compliance,
particularly in the elderly population, primarily impacted by PD. Additionally, the diverse
levels of digital literacy among older adults pose further challenges. Consequently, there
have been suggestions for alternative approaches to wearable inertial sensors. Notable
among these alternatives are techniques employing electromagnetic signals [22], with video-
based assessment also gaining prominence as a major competitor to wearable sensors.

2.2. The Current Landscape of Video-Based Assessment for Parkinson’s Disease

Capitalizing on the remarkable advancements in computer vision technology, a mul-
titude of studies have focused on analyzing the motor symptoms of Parkinson’s Disease
(PD) using video data. While the precise methodologies vary across these studies, they
typically adhere to a four-step process: (i) recording symptoms with a camera, (ii) estimat-
ing human poses, (iii) extracting pertinent kinematic features of the motor symptom, and
(iv) implementing machine learning models for analysis.

In the realm of video-based Parkinson’s Disease (PD) assessment, studies generally
fall into two categories based on their initial video acquisition approach: those employing
advanced video recording technologies and those using standard consumer-grade RGB
cameras. Advanced technologies include RGB–depth cameras like Microsoft Kinect, which,
by providing 3D data indicating the distance between the captured subject and the camera,
are used to assess the bradykinesia of the arms or gait impairment in PD [23–25].

Examples also encompass innovations like the Leap Motion controller, a virtual reality
tool for upper limb rehabilitation in PD patients through serious games [26]. The first-
generation system utilized three LEDs and two infrared cameras, capturing data at a
resolution of 640× 240 at 120 frames per second, designed to function optimally within
a 60 cm range. This system is now being integrated into automatic PD classification
research [27–29]. However, a large portion of research still relies on readily available
consumer cameras, such as standard camcorders and smartphone cameras, for daily clinical
practice [4,30–32]. Regarding the categorization of these studies, they can be either marker-
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based Motion Capture systems (MoCaps) or markerless, determined by whether or not
they use body-attached markers. Infrared MoCaps, while the gold standard for clinical
gait analysis, require extensive space and equipment, limiting their accessibility. Recent
studies, therefore, are exploring the viability of markerless systems as a feasible alternative
to MoCaps [33,34].

For the human pose estimation step, various studies incorporate specialized or generic
3D or 2D pose estimation algorithms. Popular open-source libraries like OpenPose [35],
Google MediaPipe [36], and AlphaPose [37] are frequently employed for systems designed
to assess PD motor symptoms. Here, we chose MediaPipe for its efficiency, effectiveness in
diverse environments, and regular updates by the GoogleAI team.

In terms of kinematic feature extraction and their application in machine learning
models, there is a range of utilized features and models. Park et al. [32] extracted kinematic
features related to the amplitude, velocity, and decremental response of bradykinesia from
110 videos of finger tapping and utilized a Support Vector Machine (SVM) classifier to
show good reliability with clinical ratings. Vignoud et al. [38] proposed a method using
seven parameters extracted from finger tapping and hand movement videos representing
speed, amplitude, fatigue, and periodicity to predict the appropriate UDPRS score with
linear regression and Decision Tree models. Liu et al. [39] incorporated a more-novel
network architecture, a Global Temporal-difference Shift Network (GTSN), to estimate
the MDS-UPDRS tremor scores from video recordings. A Convolutional Neural Network
(CNN) examining location, velocity, and inter-joint relationship information derived from
video recordings has also been proposed [40].

It should be noted that, while the Unified Parkinson’s Disease Rating Scale (UPDRS)
advises evaluators to consider factors such as amplitude, velocity, decrement, and pauses or
hesitations, numerous studies have focused on a limited subset of these attributes. Recogniz-
ing this, recent research has increasingly prioritized the extraction of more-comprehensive
features and the interpretability of the resulting models. Morinan et al. [4,30] introduced
a Random Forest algorithm for classifying bradykinesia, utilizing 11 kinetic features de-
rived from video recordings of 1156 MDS-UPDRS assessments across five medical centers.
Similarly, Islam et al. [31] selected clinically pertinent features from an initial set of 53,
explaining their model’s performance by employing the Shapley Additive Explanations
method, alongside various regression models. Within the extensive array of pertinent
research, we have distilled and summarized the four most-current and -relevant studies
that align closely with our investigation in Table 2.

In light of the trends identified in previous research, our analysis utilized standard
RGB cameras in two different recording environments, combined with MediaPipe for
human pose estimation. We fine-tuned our methodology for extracting kinematic features
to better correspond with the clinical characteristics of bradykinesia. Furthermore, we
opted for a Decision Tree model to improve the interpretability of our findings.
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Table 2. Overview of selected studies on video-based bradykinesia assessment in Parkinson’s disease: “Input” specifies the type of video format utilized; “Pose
Estimation” indicates the software library employed for human pose analysis; “Extracted Features” pertains to the kinematic attributes obtained from the pose
estimation data over time; “Method” details the specific machine learning approach used for categorizing the data; “Result” summarizes the outcomes of the
classification process; “Tasks” outlines the specific UPDRS activities evaluated in each study.

Authors, Year [Ref] Input Pose Estimation Extracted Features Method Results Tasks

Z. Guo et al., 2022 [23] RGB–depth A2J Amplitude, velocity SVM Severity level Finger tapping

Morinan et al., 2023 [4] RGB Openpose
11 features representing speed,
amplitude, hesitations, and
decrement

Random Forest Binary/ordinal
classification Finger tapping

Sarapata et al., 2023 [30] RGB Openpose
Region of interest extraction of
motor tasks, followed by kinetic
feature extraction for each task

Random Forest Binary/ordinal
classification

Finger tapping, hand
movement,
pronation/supination, toe
tapping, leg agility, rising
from a chair, gait

Islam et al., 2023 [31] RGB MediaPipe
53 features representing speed,
amplitude, hesitations, and
decrement

LightGBM Regression Finger tapping

Proposed method RGB MediaPipe
15 features representing
demographics, amplitude, velocity,
halt and hesitations, and decrement

Decision Tree Severity level Finger tapping



Sensors 2023, 23, 9149 6 of 19

3. Method

Recognizing that data collection is a persistent and long-term pursuit, with our data
repository steadily growing, we present a framework, illustrated in Figure 1, to maintain
the lifecycle of the proposed system. Our framework consists of three sequential and inde-
pendent cycles: a data cycle, a model learning cycle, and an algorithm deployment cycle.
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Figure 1. The main structure of the proposed framework. The pipeline consists of three distinct
cycles: data cycle, model learning cycle, and algorithm deployment cycle.

3.1. Data Cycle

The data cycle consists of three parts; data collection, data preprocessing, and data annotation.
Data collection: Patient-generated videos can be sourced from diverse platforms,

comprising self-recorded, home-based footage and professionally captured videos within
laboratory settings by healthcare practitioners. This compilation may include a range of
data forms: structured and unstructured data (encompassing text, images, and videos), as
well as external data acquired via Application Programming Interfaces (APIs).

Data preprocessing: Following data collection, the preprocessing phase is undertaken
to transform the data into a format suitable for further analysis and model training. This
phase includes handling missing values, eliminating outliers, normalizing or scaling fea-
tures, and ensuring data format uniformity. We employed a range of methods to process
the initial video data, as illustrated in Figure 2.

Image sequence

Upscaling

Resolution

Interpolation

Deblur &
Denoising

FPS

Output

Figure 2. Data preprocessing flowchart.
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• Upscaling: Upscaling is employed to increase the resolution or dimensions of images
or videos. This enhancement improves the quality of low-resolution data, thereby
strengthening the model’s ability to extract significant features [41,42].

• Removing motion blur: Motion blur occurs in images or videos as a result of camera
wobble or object motion [43]. When collecting multi-source data from various devices
and environments, it is essential to remove motion blur to regain the sharpness and
clarity of the data.

• Denoising: Noise may be introduced during the image- or video-acquisition process,
leading to a degradation in quality and potentially hindering the capacity to extract
meaningful features. A denoising step is often employed to reduce noise from the
data while retaining the details.

• Frame interpolation: This technique generates additional frames in videos with low frame
rates [44]. This process estimates the motion between existing frames and synthesizes new
ones, thereby smoothing the motion and enhancing the temporal resolution.

These measures are designed to enhance data quality and facilitate the extraction of
meaningful information for more-effective model training.

Data annotation: In this step, domain experts, typically clinicians, are involved in
providing UPDRS scores or labels for the patient’s data, which serve as a reference for
model training and evaluation [45]. It is imperative to establish precise and uniform
guidelines for the scoring criteria in the annotation process. As shown in Table 1, the
UPDRS documentation offers detailed instructions on how clinicians should allocate scores
to patients’ data. Our study adopted a dual-annotator system. The primary annotator,
an experienced Movement Disorder Specialist, annotated all the videos. In parallel, a
secondary annotator, also skilled in movement disorders, was tasked with validation,
acting as a quality control to guarantee the accuracy of the annotations. These annotators
were blind to each other’s ratings throughout the process. To ascertain the annotations’
quality and reliability, we evaluated the inter-annotator agreement. It is essential to manage
any discrepancies and disagreements among clinicians during the data-annotation process.
This control is necessary to maintain the reliability and consistency of the annotated data.

In practice, the data cycle is iterative to allow the data repository to grow. As the
data volume increases, this repetitive method facilitates continuous improvements and
modifications to the models, leading to enhanced performance over time [45].

3.2. Model Learning Cycle

The model learning cycle consists of three key stages: hand pose estimation, feature
extraction, and machine learning.

Initially, the 3D hand pose is extracted using the most-recent version of MediaPipe,
updated in February 2023, to generate time series data of crucial joint positions [36].
MediaPipe was selected over other deep learning libraries for hand pose estimation due
to its efficient performance in various recording contexts and its relatively lightweight
architecture. The raw time series data of key joint positions are represented as K = {Kj(t)},
where j means the j-th key point, j = 1, 2, .., 20, and t denotes the image frame index (for
t = 1, 2, ..., L). We calculated the time series of the thumb–index finger distance, denoted
as I with length L, which corresponds to the distance between points K4 and K8 in the
finger tapping task. In the second stage, we extracted 15 specific features for each video, as
detailed in Table 3. These features encompass two demographic elements and 13 kinematic
features, which were extracted through signal processing of the time series data. These
kinematic features are aligned with the guidelines of the UPDRS instructions.

Lastly, based on these features, we trained a machine learning model.
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Table 3. Fifteen features extracted from the finger tapping time series.

Features Description
Fage Age of the patients
Fgen Gender of the patients
Famp−var Variance of the amplitude
Famp−avg Mean of the amplitude
Famp−bp Breakpoint of the amplitude
Famp−α1 Slope 1 of the amplitude
Famp−α2 Slope 2 of the amplitude
Fvel−var Variance of the velocity
Fvel−avg Mean velocity of the finger movement
Fvel−bp Breakpoint of the velocity
Fvel−α1 Slope 1 of the velocity
Fvel−α2 Slope 2 of the velocity
Ff req Frequency of finger tapping
Fhh Number of halts and hesitations
Fp Number of peaks of the time series

3.2.1. Time Series Preprocessing

For the time series input I , p = [p1, p2, ..., pn, ..., pN ] represents the peaks, pn represents
the n-th peak, and An represents the amplitude of the corresponding peak pn. Given a
hand model, as shown in Figure 3, Kj = (kx,j, ky,j, kz,j) represents the position of the j-th
keypoint. The palm size at time t is estimated using K0 and K9 as:

Palmt =
√
(kx,0 − kx,9)2 + (ky,0 − ky,9)2 + (kz,0 − kz,9)2|t (1)

Then, normalization is performed to make Palmt more suitable for subjectwise com-
parison, as below:

Inorm =
I

Palmt
(2)

Following this, we applied Empirical Mode Decomposition (EMD) to decompose Inorm
into a series of Intrinsic Mode Functions (IMFs) and a residual component, as depicted
in Figure 4. Each IMF captures a distinct oscillatory mode characterized by variable
frequencies and amplitudes. In our approach, we selected the first three IMFs as the primary
components of the signal, striking a balance between simplifying the data and preserving
vital information. However, even after EMD-based decomposition, the signal may contain
noise or unwanted artifacts, such as those arising from finger tremors. To address this, we
employed a denoising and smoothing process to eliminate such disturbances.

After preprocessing and cleaning the time series data, the subsequent step involved
the detection of peaks or specific events of interest within the signal. The peak-detection
module was applied to find local maxima or minima, which served as key points in the data.

3.2.2. Feature Extraction

Feature vector: demographics. In our model, we incorporated two demographic
factors: age and sex. This inclusion was based on the observation that older individuals
may exhibit signs of bradykinesia related to aging, independent of Parkinson’s Disease
(PD), and that both age and sex can influence the progression of PD [1,46,47]. While the
Unified Parkinson’s Disease Rating Scale (UPDRS) instructs raters to evaluate based on
observable symptoms, there is a possibility that human annotators may subconsciously
consider these demographic characteristics. Therefore, we chose to include age and sex as
features in our model. Furthermore, given our goal of assessing the model’s explainability,
incorporating these demographic factors may offer a more-comprehensive understanding
that might not be immediately evident through the UPDRS guidelines alone.
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Figure 3. Illustration of the hand keypoints.

normalization

denoise

peak detection

smooth

Figure 4. Depiction of the time series data preprocessing pipeline. The input time series, denoted
as I , corresponds to the distance between K4 and K8 during the finger tapping task. The X−axis
indicates the frame index within an image sequence, reflecting the duration of the finger tapping
action. The Y−axis represents the normalized amplitude of finger movement, adjusted according to
the palm size of each subject.

Feature vector: amplitude. Based on the time series data, we extracted 5 amplitude-
related features. First, according to Equations (3) and (4), we extracted Famp−avg and
Famp−var as:

Famp−avg =
∑N

n=1 An

N
(3)

Famp−var =
∑N

n=1 (An − Famp−avg)2

N
(4)
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Then, based on the peaks P, we applied piecewise linear regression to model the
distinct patterns of different regions of the data, as shown in Figure 5:

y = α0 + Famp−α1x + Famp−α2(x− Famp−bp)I(x > Famp−bp) + ε (5)

where α0 is the intercept, Famp−α1 and Famp−α2 represent the slope coefficients of two seg-
ments, respectively, and ε represents the error term or residual, accounting for the devia-
tions of the actual data points from the fitted model. I(·) is an indicator function that takes
a value of 1 if x is greater than a specific breakpoint Famp−bp and 0 otherwise.

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0
Piecewise Linear Regression - Amplitude

Figure 5. Extraction of Famp−α1, Famp−α2, and Famp−bp.

Feature vector: velocity. We extracted 5 velocity-related features. Here, we have

Vn =
An + An−1

∆tn
(6)

where ∆tn = tn − tn−1 is the time interval between the n-th and (n− 1)-th peak. Then,
we have

Fvel−avg =
∑N−1

n=1 Vn

N − 1
(7)

Fvel−var =
∑N−1

n=1 (Vn − Fvel−avg)
2

N − 1
(8)

We also extracted another 3 features, Fvel−α1, Fvel−α2, and Fvel−bp, from the piecewise
linear regression fitting of the velocity time series, to estimate the velocity trend.

y = α0 + Fvel−α1x + Fvel−α2(x− Fvel−bp)I(x > Fvel−bp) + ε (9)

Feature vector: halt and hesitation. In PD, “halts or hesitations” are characterized by
brief instances of freezing or a delayed ability to initiate movements, often seen during
repetitive actions. While the concept of the freezing of gait, essentially halts and hesitations
during walking, is well-documented in PD [48], there is a scarcity of detailed definitions
and quantitative assessments of “halts and hesitations” in upper limb movements during
repetitive tasks.

Through extensive discussions to clarify “halts” and “hesitation” within our study,
we defined “halts” as moments of complete stoppage, characterized by zero amplitude. In
contrast, “hesitation” was identified as a noticeable reduction in velocity, registering values
above zero, but significantly below a predefined empirical threshold. This distinction was
quantitatively established in Equation (11), where the “hesitation” threshold was set at
20% of the average amplitude observed immediately before and after the occurrence. More
specifically, we define the “halt and hesitation” in finger tapping tasks as follows: given
a time series of the distance between the keypoints K4 and K8, p = [p1, p2, ..., pn, ..., pN ]
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represents the detected peaks. A curve fitting was applied to p, aiming to estimate the
trend of the peaks. Assuming pn to be the peak when halt and hesitation happened (the
red arrow in Figure 6), p̂n represents the predicted peak based on the fitted model. The
residual between the observed value and the predicted value is denoted by | p̂n − pn|. Then,
the feature “halt and hesitation” could be defined as:

Fhh ≡
{
1 if | p̂n − pn| ≥ θ

0 if | p̂n − pn| < θ .
(10)

As demonstrated in Figure 6, in this situation, the patient may experience a sudden
interruption or drop in his/her ability to perform repetitive finger tapping movements.
The threshold θ is defined as:

θ = α · An+1 + An−1

2
(11)

where α is a parameter controlling the detection threshold. In our framework, we empiri-
cally set α to 0.2.

Figure 6. Illustration of halt and hesitation. The red row indicates the precise moment when the halt
and hesitation occur.

3.2.3. Machine Learning

We chose the Decision Tree approach as our primary classification method to improve
the interpretability and quantification of assessments tailored to our specific task. Decision
Trees offer clear interpretability and the ability to visually represent the model, facilitating
an uncomplicated explanation of the decision-making process. Inherently proficient in
managing categorical data, Decision Tree models are particularly suitable for modeling
ordinal UPDRS scores. Additionally, the inherent transparency and interpretability of
Decision Tree models correspond well with the explicit criteria set forth by the UPDRS.
This alignment ensures that our model’s predictions are not only easily understandable,
but also hold clinical relevance.

The Pearson correlation coefficients between the 15 features and the UPDRS scores are
presented in Figure 7. Redundant or overlapping features can lead to inefficient splits and
diminished predictive capability in the model. However, as we identified a high correlation
solely between the frequency and velocity of tapping, we decided to maintain all 15 original
features in our analysis. This approach was chosen to ensure that the unique contribution
of each feature is preserved.
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Figure 7. Correlations between the 15 extracted features and UPDRS scores.

3.3. Algorithm Deployment Cycle

Model experimentation: This initial phase involved the training and evaluation of
various models using different algorithms, hyperparameters, and subsets of data. The
purpose of model experimentation is to identify the most-promising model based on its
performance across various evaluation metrics.

Model updating: After selecting a suitable model, further refinement and improvement
are often necessary. This updating process includes retraining the chosen model with
additional data or altered hyperparameters to boost its performance. The goal of this
iterative procedure is to enhance the model’s accuracy, robustness, and ability to generalize.

Deployment: The deployment phase involves making the refined and updated model
accessible in a production setting. This stage encompasses establishing the required in-
frastructure to host and operate the model, which may involve servers, cloud services, or
containerization platforms. Additionally, it includes the development of the necessary APIs
or interfaces to enable the user or system access to the model for predictions or analyses.

The deployment cycle in MLOps begins with model experimentation, where a variety
of models are trained and assessed. Following the selection of the most-effective model, it
enters the updating stage for further improvement. The enhanced model is then deployed
in a production environment, ready for practical application.

It is crucial to recognize that this deployment cycle is often iterative and ongoing.
As new data are introduced, models require updates and redeployment to meet shifting
demands. Continuous monitoring, testing, and feedback are integral to the deployment
cycle, ensuring the deployed model maintains its performance, reliability, and efficacy in
real-world settings.

4. Experiments
4.1. Participants and Dataset

RGB, single-view videos were collected in two settings with different camera and
supervision setups: in-lab and in-clinic. In the laboratory setting, patients were invited
to perform the finger tapping task as outlined in the MDS-UPDRS guidelines. This task
was carried out in a spacious laboratory room. A research assistant was present to guide
the patients through the task, which was captured by eight cameras (Lorex 4K Bullet IP
Camera/E841CA-E from Lorex Technology Inc., Toronto, ON, Canada ) mounted on the
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walls. The raw data from these cameras had a resolution of 3840× 2160 px and a frame rate
of 15/s. Of the eight camera angles, our primary focus was on the single camera view that
provided the clearest, most-unobstructed perspective of the hand movements. While not a
central aspect of this study, an inertial sensor was also attached to the patient’s hand during
recording, visible as a black band on the palm in Figure 1. In the clinic setting, patients
were recruited to perform various tasks from the MDS-UPDRS, including finger tapping, in
a designated room within the waiting area of the Movement Disorders Clinic. These tasks
were recorded using an AI camera, OAK-D (Luxonis, Littleton, CO, USA), installed on an
iMac 24” desktop (Apple, Cupertino, CA, USA). In this setting, patients received little or
no assistance from a research assistant in using the app for recording. The raw RGB data
collected in the clinic had a resolution of 1920× 1080 px and a frame rate of 60 fps.

A total of 65 patients diagnosed with PD were recruited to do the UDPRS assessment.
The clinical diagnosis for each patient was confirmed based on the United Kingdom
Parkinson’s Disease Society Brain Bank clinical diagnostic criteria. To ensure the quality of
the data, specialists manually inspected the videos, applying several criteria to evaluate
their suitability. Videos were excluded if they exhibited poor visibility of motion, such as
the hands frequently moving out of the camera frame, a significant distance between the
hands and the camera, inconsistent execution of tasks, or frequent interruptions (verbal
or physical) either by the patients or bystanders. After the exclusion process based on
these quality criteria, 75 videos from 50 patients were deemed suitable for assessing the
effectiveness of the proposed method. This dataset comprised 20 subjects recorded in a
laboratory setting and 30 subjects in a clinic environment, as detailed in Table 4. For the
purposes of our study, 60 videos were designated for the training set and 15 videos for
the testing set. The selection of testing subjects was randomized, ensuring a balanced
representation of different categories. The Research Ethics Board of the University of
British Columbia approved this study, and all participants provided written consent. All
individuals were evaluated using the MDS-UPDRS, with the entire evaluation process
captured on video. Due to regulations safeguarding patient privacy, these videos are not
permitted to be made publicly available.

Table 4. Baseline characteristics of the participants (n = 50) and the videos (n = 75).

Baseline Characteristics
Age, years

Median 71
Mean (SD) 69.65

Sex
Female/Male, n/n (%/%) 19/31(38/62)

Need assistance for walking, n (%) 2 (4)

Dominant side of Parkinsonism
Left 23
Right 27

UPDRS Score
0/1/2/3/4, n 8/21/18/17/11

4.2. Evaluation Matrix

To evaluate the performance of our model, we employed well-known metrics such as
accuracy, precision, recall, and the F1-score. These metrics are defined as follows:

Accuracy =
TP + TN

TP + FN + FP + TN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)



Sensors 2023, 23, 9149 14 of 19

where TP, TN, FP, and FN represent “true positive”, “true negative”, “false positive”,
and “false negative”, respectively, and the F score (F1 when β = 1 and F2 when β = 2) is
defined as:

Fβ =
(

1 + β2
)
· Precision · Recall

β2 · Precision + Recall
(15)

In our evaluation matrix for accuracy, we considered two scenarios:

• ypred = ygt, which is reported as “Accuracy(t1)”, represents that the prediction ypred is
equal to the ground truth ygt.

• ypred ∈ [ygt − 1, ygt, ygt + 1], reported as “Accuracy(t2)”, represents that the prediction
is within a range of the ground truth, which could also be called “acceptable” accuracy.
This situation takes the inter-annotator agreement into consideration, and we will
further analyze this situation in the result part.

4.3. Method for Comparison

To assess the performance of our proposed method, we compared it against two recent
studies: AEMPD-FCN [49] and FTTST [23]. It is important to note that there might be
significant differences in data quality, volume, and time series length between our study
and those in the referenced work, which could potentially influence the comparative results.
Additionally, we explored the effectiveness of different classifiers by including results from
three other methods. These methods all employ the same feature-extraction framework,
but differ in their classification approaches, such as Support Vector Machine (SVM) and
Random Forest (RF). Specifically, baseline-SP is the baseline model that follows the UDPRS
criteria precisely. To some extent, this criterion is overly strict for some data points situated
at the boundaries. For example, a slight decrease in amplitude or velocity could be classified
as decrementing features. F15-SVM-GA uses the 15 features as the input vector to the SVM
classifier, where the Genetic Algorithm is used to search for the best parameters. F15-RF
uses Random Forest for classification, and in F15-DT, the DT represents a Decision Tree.

5. Results and Discussion
5.1. Labeling UPDRS Finger Tapping Videos

In our study, we calculated the level of agreement between annotators, as shown in
Table 5. “Complete”: This term refers to the percentage of instances where both annotators
assigned an identical score to a specific piece of data. “Acceptable”: This category covers
cases where the scores given by the two annotators differed by either 0 or 1. It represents a
more-lenient agreement threshold. “None”: This indicates the percentage of cases where
the discrepancy in scoring between the two annotators was more than 1. The data presented
in Table 5 highlights the inherent difficulty in achieving complete consensus among human
annotators, even when they are experts in their field, as has been previously observed [50].
Acknowledging this challenge, we report two types of accuracy metrics in our experiments,
namely Accuracy(t1) and Accuracy(t2), as defined in Section 4.2. These metrics are intended
to evaluate the efficacy of our proposed method, taking into account the varying levels of
agreement among annotators.

Table 5. Inter-annotator agreement analysis in the proposed task.

Complete Acceptable None

52% 97% 3%

5.2. Classification of UPDRS Finger Tapping Score

First, the main classification task was performed on the finger tapping features using
the clinical ratings. The proposed method achieved a high accuracy rate, an Accuracy(t1)
of 80% and an Accuracy(t2) of 93.3%. Table 6 lists the specific accuracy(t1 and t2), precision,
recall, and F-score of the final prediction results on five UPDRS scores. The structure of the
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Decision Tree and the confusion matrix of the classification results are shown in Figure 8
and Figure 9, respectively.
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Figure 8. Structure of the proposed Decision Tree.

Figure 9. Confusion matrix of the predicted score labels and the true labels.

Table 6. Performance results of UPDRS classification using different classifiers.

Method
Evaluation Metric

Accuracy(t1) Accuracy(t2) Precision Recall F1

AEMPD-FCN [49] 0.267 0.60 0.18 0.19 0.173
FTTST [23] 0.467 0.80 0.50 0.60 0.513

baseline-SP 0.467 0.733 0.480 0.60 0.509
F15-SVM-GA 0.533 0.867 0.553 0.590 0.556

F15-RF 0.533 0.867 0.533 0.552 0.540
F15-DT 0.80 0.933 0.843 0.80 0.797
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Clinical interpretation: Overall, the Decision Tree our model produced (as shown in
(Figure 8)) aligns well with the MDS-UPDRS rating guidelines. These guidelines instruct
raters to evaluate finger tapping based on: (i) amplitude, (ii) velocity, (iii) decrement in
amplitude or velocity during repetitive tapping, and (iv) the presence of halts or hesita-
tions [3]. The root node in our Decision Tree (Node 0) utilizes the “mean amplitude” feature,
dividing the data into two paths and indicating amplitude as a pivotal factor in the finger
tapping assessment. In the second layer, the nodes “vel_alpha2” and “vel_alpha1” reflect
the velocity decrement, suggesting that greater decrements often correspond with lower
UPDRS scores. This points to the relevance of the “decrement in amplitude or velocity”
criterion in cases of mild bradykinesia, while in more-severe cases, the velocity notably
reduces from the beginning of the task. Further nodes incorporate amplitude, velocity,
and decrement aspects, aligning conceptually with the MDS-UPDRS guidelines, highlight-
ing the model’s ability to offer more-quantifiable data and reduce intra-rater variability
compared to human ratings.

Additional clinical insights emerged from the Decision Tree. Notably, “halts and
hesitations” had minimal impact on the model. This could be due to the rarity and
lesser correlation of upper limb freezing with PD severity compared to gait freezing. Our
model’s interpretation suggests a non-linear relationship between these halts and overall
bradykinesia severity [51]. It is important to recognize the limitations posed by the relatively
small video dataset used for the AI training, potentially under-representing upper limb
freezing episodes Furthermore, our study’s definition of halts and hesitations, based purely
on significant amplitude reduction without a time duration criterion, may not fully align
with clinical descriptions of a halt as a prolonged pause. Future studies, especially with
larger datasets, might need a more-refined definition, possibly incorporating time-based
thresholds for a better characterization of these phenomena. Lastly, while we considered
demographic variables like age and gender, their absence in the Decision Tree underscores
that UPDRS ratings focus on motor performance irrespective of demographic factors.

6. Limitations and Future Work

Our study marks a step forward in automated Parkinson’s Disease (PD) symptom
assessment, yet it is important to recognize its limitations. Firstly, the limited number
of patient videos used for training the model, though yielding promising accuracy, may
not fully represent the broad spectrum of PD symptoms, including pronounced halts
or hesitation phenomena. A more-extensive dataset will be critical for enhancing the
model’s generalizability and robustness. Secondly, the study’s focus was solely on the
finger tapping task, an important, but not complete aspect of bradykinesia evaluation.
Other key tasks in assessing bradykinesia, such as hand movements and leg agility, were
not included. Furthermore, PD involves a variety of motor symptoms beyond bradykinesia.
Future research will aim to extend our video-based approach to cover a broader range of
motor tasks from the UPDRS, enabling a more-comprehensive assessment of PD motor
symptoms. Thirdly, the study’s setting was restricted to controlled clinical environments,
which may not fully replicate the varied conditions in which the model might be used.
Factors like changing lighting, patient positioning, and camera quality or angles, crucial
for video quality, were not thoroughly examined. Additionally, our approach of manually
excluding low-quality videos needs to be replaced by automated algorithms in future
work. These algorithms should be capable of distinguishing between low- and high-
quality videos based on predefined quality thresholds. Finally, while not directly related
to our scientific methodology, the ethical aspects of patient privacy and data security are
crucial. As we move towards real-world applications of this technology, a multidisciplinary
approach involving legal, ethical, clinical, engineering, and patient stakeholders is essential.
This collaborative effort is key to addressing the complex ethical landscape, ensuring the
protection of patient privacy and data security.
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7. Conclusions

The proposed innovative vision-based classification model offers a promising solution
to automate UPDRS scoring accurately during the finger tapping test, a crucial aspect
of motor evaluation in Parkinson’s Disease (PD). Our approach adheres to the UPDRS
guidelines by extracting the relevant features and quantifying them, enabling a thorough
analysis. The proposed method was designed to adapt to future changes in patient demo-
graphics, disease subtypes, and technological advancements. We are actively working to
expand our data collection using a variety of devices and in different settings. This effort is
crucial to enhance the model’s applicability and effectiveness across diverse contexts and
technological platforms.

Our comprehensive experiments demonstrated the effectiveness and reliability of the
proposed method, producing robust results with datasets obtained both in laboratory and
clinical settings.
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