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Abstract: This article presents the Network Empower and Prototyping Platform (NEP+), a flexible
framework purposefully crafted to simplify the process of interactive application development,
catering to both technical and non-technical users. The name ”NEP+” encapsulates the platform’s dual
mission: to empower the network-related capabilities of ZeroMQ and to provide software tools and
interfaces for prototyping and integration. NEP+ accomplishes this through a comprehensive quality
model and an integrated software ecosystem encompassing middleware, user-friendly graphical
interfaces, a command-line tool, and an accessible end-user programming interface. This article
primarily focuses on presenting the proposed quality model and software architecture, illustrating
how they can empower developers to craft cross-platform, accessible, and user-friendly interfaces
for various applications, with a particular emphasis on robotics and the Internet of Things (IoT).
Additionally, we provide practical insights into the applicability of NEP+ by briefly presenting
real-world user cases where human-centered projects have successfully utilized NEP+ to develop
robotics systems. To further emphasize the suitability of NEP+ tools and interfaces for developer
use, we conduct a pilot study that delves into usability and workload assessment. The outcomes of
this study highlight the user-friendly features of NEP+ tools, along with their ease of adoption and
cross-platform capabilities. The novelty of NEP+ fundamentally lies in its holistic approach, acting as
a bridge across diverse user groups, fostering inclusivity, and promoting collaboration.

Keywords: human-machine interaction; human-robot interaction; Industry 5.0; internet of robotic
things; robotics middleware; social robotic

1. Introduction

The rise of machine-centered approaches has led to innovations, sometimes neglecting
human considerations [1]. Emerging paradigms like Industry 5.0 [2], and Society 5.0 [3]
advocate a shift towards human-centric progress. The objective is to empower individuals,
bridge knowledge gaps, enhance technology acceptance, and foster innovation across
boundaries. In this context, our article addresses the challenge of deploying human-
machine interactive applications in Industry 5.0 and Society 5.0. This challenge is transdis-
ciplinary, involving diverse stakeholders from various fields and emphasizing accessible
and holistic approaches [1].

With the increasing accessibility of computers to the general public, there has been a
transition towards designing digital information systems for a more diverse user base. This
transformation underscores a heightened focus on accessibility and user experience [4].
However, there is still a common misconception among expert developers that all users
possess a high level of technological literacy. This can lead to creating complex tools
and interfaces that are difficult for many people to use. Moreover, many advanced tools
use complex jargon, posing challenges for even skilled users. Linux experts prefer such
tools for control and precision, but they can be arcane, particularly command-line in-
terfaces. This complexity hinders their use in applications for a broader, non-technical
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audience, especially non-technical stakeholders [5]. Traditionally, fields like robotics and
the Internet of Things (IoT) have favored export-oriented approaches. Robotics frame-
works are often tailored for Linux-based platforms and expert users, making them less
accessible to non-technical individuals. While various robotics frameworks exist, few
prioritize user experience and accessibility. Relevant export-oriented robotics frameworks
are TalKRoBots [6], ROS [7], ROS 2 [8], E2M [9], Zoro[10], PDRA [11], YARP [12], and the
RT-Middleware [13]. In contrast, recent developments in IoT have introduced user-friendly
tools like Node-RED [14], designed to simplify IoT application integration and democratize
technology for a broader audience. Similar tools under the end-user development [15]
area are comprehensively discussed in [16,17] for IoT and robotics. These tools are part
of an emergent transformation that seeks to democratize technology by enhancing the
accessibility of emergent technologies for a wider audience.

To foster the democratization of technology, this article introduces the preliminary
version of NEP+ (Network Empower and Prototyping Platform). We designed NEP+
as a comprehensive framework, seamlessly integrating a quality model and a software
platform purposefully designed to facilitate the development and design of interactive
applications involving both physical and digital agents. We aimed to make NEP+ acces-
sible to a wide-ranging audience, from novices to experts. To achieve this objective, we
present two pivotal contributions. Firstly, the NEP+ quality model lays down a set of
guiding principles for the creation of interactive systems, placing a strong emphasis on
prioritizing user experience (UX) and empowering potential users and co-designers of
human-machine interactive applications. Secondly, the NEP+ software platform builds
upon the communication libraries presented in [18,19]. What distinguishes NEP+ from
these previous works is the introduction of a platform encompassing a middleware layer,
a command line interface, and a comprehensive suite of user-friendly interfaces, providing
developers with the tools and resources needed to harness these libraries to create modular,
complex, and distributed applications.

It’s important to highlight that this article primarily focuses on presenting the func-
tional features and implementation architecture of NEP+. Consequently, evaluating NEP+
user interfaces with novice users is not within the immediate scope of this work. Nonethe-
less, this article incorporates vital pilot tests. These initial tests aim to identify potential
usability issues and gather valuable feedback. This feedback is instrumental in refining the
user interfaces for subsequent and more comprehensive experiments with broader users.

2. Contributions and Key Distinctions from Similar Solutions

NEP+ represents a significant departure from conventional frameworks like ROS and
ROS 2. Like in the case of Node-RED, NEP+ graphical user interfaces leverage Node.js,
a JavaScript runtime compatible with various operating systems, to provide support for
Windows, macOS, and different Linux users. Nevertheless, where Node-RED is bound
to Node.js and flow-based programming paradigms, NEP+ provides a more versatile
developer environment that accommodates multiple programming languages and can be
adapted to traditional and visual programming styles. The most recent version of NEP+
encompasses three essential elements: (i) a holistic and human-centered quality model
that guides software and application development, (ii) a middleware layer that facilitates
the seamless integration of software modules, and (iii) a set of interfaces that simplify
the utilization of sensing, human perception, and behavior orchestration algorithms with
minimal effort and experience required. Contributions of this article are presented and
organized as follows:

• Section 3 introduces the NEP+ development model.
• Section 4 provides an in-depth overview of the middleware layer and interfaces

offered by NEP+.
• Section 5 briefly describes ongoing research projects employing NEP+.
• Section 6 describes technical features of NEP+ and its comparison with state-of-the-art

robotics frameworks.
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• Section 7 reports a usability evaluation of the NEP+ interfaces and compares the effort
required to construct a basic application using NEP+ versus a modern state-of-the-art
robotics framework.

3. NEP+ Human-Centered Quality Model for Application Development

In this section, we introduce a quality model, defined in [20], which describes quality
aspects of software modules and applications designed for interactive systems from a
human-centered perspective. We start by clarifying the general meaning of human-centered.
Then, we present and explain the elements composing the proposed model.

3.1. What Is Human-Centered

Human-centered is a complex and multidimensional concept with overlapped defi-
nitions that produce disagreements in the scientific community [1]. Cooley states in [21]
that the central assertion of human centredness is that ”people must be always put before
machines, however complex or elegant that machine might be”. This requires a change
in the design philosophy from the traditional focus on increasing machine performance
and functionalities (an approach often omitting human factors) to new approaches focused
on the provision of tools supporting human skills, limitations, needs, and ingenuity [21].
Therefore, human-centered technologies must be able to empower humans rather than
replace them with machines. In this context, Industry 5.0 and Society 5.0 promote the use
of technology to empower and promote the talents and diversity of humans [1]. This article
proposes a quality model for developing interactive systems centered on humans, in line
with the vision of human-centered technology design.

3.2. Importance of User Experience (UX) in Human-Centered Approaches

Human-centered design seeks to develop products and services that prioritize func-
tionality, usability, accessibility, and user enjoyment [22]. The user experience (UX) is
pivotal in achieving this objective, enabling designers to comprehend and cater to users’
needs, preferences, and constraints [1]. Popular UX general-purpose models that serve
as guides for practitioners and researchers, and upon which research is built, include
the UX honeycomb [23] and Hancock’s Hedonomic Pyramid [24]. Other very recent UX
models for interactive systems have been introduced in [1,25] as an evolution of Hancock’s
Hedonomic Pyramid.

3.3. Proposed Human-Centered Model

This article formulates a holistic model for developing software for interactive systems,
summarized in Figure 1. Elements of this diagram represent the design goals or road-map of
the development of NEP+ and the modules developed with this framework. These design
goals are presented in a pyramid diagram, similar to Maslow’s Hierarchy of Needs [26]
and adapting some of the UX elements available in the UX honeycomb and [27]. At the
pyramid’s base are the machine-centered elements composing the basic functionalities for
enabling machines (e.g., robots) to achieve aimed tasks and re-use functionalities. Human-
centered factors aim to reduce the cognitive load that represents building interactive
applications. Finally, value-centered elements aim to greater user satisfaction by providing
meaningful and enjoyable interactions with graphical user interfaces. Some additional user
and research needs are described outside the pyramid of needs, which can be presented in
practical and academic scenarios. However, fulfilling these additional needs is outside the
scope of this article. Elements of the proposed model are described below.
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Figure 1. Proposed model of needs for interactive applications. The presented version of NEP+
focuses on the User Experience (UX) pyramid of needs. The support of research needs is left for
future iterations/publications.

3.3.1. Useful/Functional

Usefulness is an essential feature of any human-machine interaction and software
system. For this, it is required to provide a basic set of core functionalities that, after integra-
tion, enable users to achieve their goals. In advanced applications, software architectures
are built by integrating several building blocks. Each building block or node can embed one
or more functionality. In this direction, ISO/IEC 25010 [27] defines functional suitability
for software systems as ”the degree to which a product or system provides functions that
meet stated and implied needs when used under specified conditions”.

3.3.2. Maintainable

ISO/IEC 25010:2011 [27] defines maintainability as a characteristic that ”represents
the degree of effectiveness and efficiency with which a product or system can be modified
to improve it, correct it or adapt it to changes in the environment, and in requirements”.
A relevant approach for producing maintainable systems is the development of modular
(i.e., discrete and isolated) software components. In robotics, these components are often
identified as nodes. Ideally, these nodes must provide a correct abstraction level, enabling
their easy re-use in other systems (i.e., re-usability) and enabling users to produce high-
quality interactive applications with less effort [17,28]. If this abstraction is too high, it will
provide less control to developers. If this abstraction is too low, it will increase the expertise
and effort of novice programmers required to understand, build, modify, and execute
applications [28].

3.3.3. Usable

According to ISO 9241-11:2018 [29], usable systems are those capable of achieving a
task with effectiveness, efficiency, and satisfaction. Despite this standardized definition,
the Human-Computer Interaction (HCI) community lacks a consensus on the exact defini-
tion of usability [30]. In general, usability encompasses creating interactive systems that
are effective, efficient, engaging, error-tolerant, and easy to use [1].

3.3.4. Accessible

ISO 9241-11:2018 [29] defines accessibility as ”the extent to which products, systems,
services, environments, and facilities can be used by people from a population with the
widest range of user needs, characteristics and capabilities to achieve identified goals in
identified contexts of use”. We can differentiate two types of meaning for accessibility in
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software systems as inclusive and available. On the one hand, inclusive software often
refers to ensuring that places, products, and services are fully open to and usable by people
with special needs or different types of skills and preferences. On the other hand, accessible
software can also refer to available artifacts that users can download and use for free at
any time or on their preferred device and can be adapted to outside-laboratory contexts.
For the purpose of this article, we adopt the latter definition.

3.3.5. Convenient

Oxford dictionary defines convenient as ”useful, easy or quick to do; not causing
problems.” Therefore, the software that is convenient maximizes comfort, involves little
trouble, and is easy to get started (i.e., reducing training or learning). In this context, we
consider compatibility and portability as crucial elements for reducing troubles for users,
enabling them to use their preferred devices or current resources to execute or design
interactive applications. On the one hand, ISO/IEC 25010 [27] defines compatibility as the
”degree to which a product, system or component can exchange information with other
products, systems or components, and/or perform its required functions while sharing the
same hardware or software environment”. On the other hand, ISO/IEC 25010 [27] defined
portability as the ”degree of effectiveness and efficiency with which a system, product or
component can be transferred from one hardware, software or other operational or usage
environment to another”. Ideally, this feature requires developing software that adapts or
evolves to different operational or usage environments (i.e., adaptability) and provides an
easy, lightweight, and efficient installation and/or uninstallation (installability).

3.3.6. Transparent

Transparency is a relevant feature for enhancing users’ trust in interactive systems [31,32].
Transparency can be used as an umbrella for other overlapped concepts, such as human-
readable (i.e., display information that humans can naturally read and analyze), visibility
(informed users about the status of the system through appropriate feedback), and explain-
ability (i.e., users can understand why and how machines produce a result) [1]. Therefore,
software artifacts must produce predictable results and provide enough information to enable
users to be aware of the state of the system, recognize and recover from errors, and monitor
the interaction between robotics building blocks.

3.3.7. Pleasurable

Cognitive science studies suggest that humans emotionally connect the performance of
some interactive products with their visual appeal [33]. This phenomenon is the aesthetic-
usability effect [34] and suggests that providing relevant, life-enhancing, and valuable user
experiences must also consider emotional and user interface (UI) design aspects. However,
aesthetics must support functionalities instead of making usability issues more tolerant [34].
This argument is also supported by Helander et al. [35], which describes that ”in emotional
design, pleasure and usability should go hand in hand, as well as aesthetics, attractiveness,
and beauty”. Therefore, the main challenge is to create aesthetically pleasing interfaces
that, at the same time, are intuitive, consistent, and coherent.

3.3.8. Empower Rather than Replace

Labor is a fundamental and universal dignity aspect of humans regardless of social,
political, or economic contexts [36]. As described in [37], one of the main characteristics of
digitalization is its disruptive quality in areas such as the labor market. An alternative for
”disrupting disruption” of AI systems is to empower humans, such as is proposed with the
concept of digi-grasping [37], end-user development [38], human-robot collaboration [1]
and participatory design [39]. We believe that the design of emergent technologies must
put humans at the center. Therefore, humans must be able to select or personalize which
type of software, hardware, or AI model better satisfies their interests and needs (e.g., fully-
or semi-autonomous, multi- or single-purpose, black-box or white-box, complex or simple).
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Moreover, more advanced systems can learn from interacting with humans to improve job
satisfaction and performance (e.g., in a manufacturing environment) or to engage people
for more time (e.g., in a social setting).

3.3.9. Research Needs

In academic contexts, reproducibility is fundamental. For this, systems using the
same architecture, the same documentation for installation and configuration, and the
same code must obtain the same or similar results. This process requires collecting and
analyzing human data using objective or subjective methods. Therefore, research systems
will need tools to assess and validate studies based on metrics [1]. Portable code and
architectures that junior students can use and a common evaluation framework are desired
for facilitating research activities. Finally, systems collecting potentially sensitive data from
humans must provide solutions to ensure that data obtained from human experiments
remains confidential [1].

3.4. Satisfying Proposed Human-Centered Model Using NEP+ Software Platform

Table 1 provides an overview of how NEP+ addresses the dimensions discussed
in Section 3.3 and maps these dimensions to the corresponding sections of this article.
Many specific quality elements are primarily addressed through the provision of a robust
software architecture and accompanying tools, ensuring features such as usefulness and
maintainability. These aspects are facilitated by the NEP+ middleware layer, as described
in various sections of this article. Furthermore, value-centered dimensions can be assessed
by examining the impact and outcomes of the tools on the community. This is exemplified
in Section 5, where we demonstrate the real-world impact of NEP+ in the context of social
robotics. However, certain human-centered dimensions require an iterative interaction
design process for effective realization. This iterative process encompasses ideation, pro-
totyping, and testing stages. In this context, this article represents an initial effort toward
addressing the proposed quality elements, setting the stage for further exploration and
refinement in subsequent work.

Table 1. How NEP+ tools proposed in this work can be used to satisfy the quality model proposed in
this article.

Quality Aspect How NEP+ Tools Contribute?

Useful NEP+ middleware provides development tools enabling users to create low-level modules and execute
high-level functionalities (see Section 4)

Maintainable NEP+ middleware layer facilitates connection and re-use of software modules (see Section 4)

Usable NEP+ is designed under a iterative interaction design process to ensure usabily of user interfaces and software
tools (see Section 7)

Accessible NEP+ employs web-based frameworks for cross-platform accessibility, enable the use of many programming
languages and target diverse type of users (see Section 6)

Convenient NEP+ simplifies the development of interactive applications by offering user-friendly web-based interfaces,
reduced dependencies, and easy installation (see Sections 4 and 7)

Transparent
This can be achieved by simplifying navigation, maintaining interface simplicity, offering comprehensive
documentation, and providing visibility into the system’s operations. In this regard, visualization tools help
users understand the current status of the system (see Section 4)

Pleasurable Web-based frameworks used to build NEP+ tools enable the easy creation of modern, intuitive,
and aesthetically pleasing products with a familiar design for general users (see Sections 4 and 7)

Empower NEP+ tools has been used to empower users to create interactive applications with physical and digital agents,
offering adaptability and inclusivity (see Section 5)
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4. NEP+ Middleware Layer and Interfaces

Figure 2 presents a general overview of the current NEP+ tools, comprising three layers:
middleware, application, and end-user. The middleware layer facilitates the integration
of distributed systems using ZeroMQ sockets. The application layer provides a set of
libraries that developers can use to connect modules written in different programming
languages. The end-user layer consists of all user interfaces developed using the NEP+
software architecture, enabling non-programmers to prototype or execute applications.
This section describes the middleware capabilities and interfaces that compose NEP+.

Figure 2. General overview of NEP+ tools and description of their main functionalities.

4.1. NEP+ App

The core of NEP+ is built upon ZeroMQ [40], an open-source, lightweight, and high-
performance messaging library that provides a socket application programming interface
(API) and supports advanced messaging patterns. ZeroMQ utilizes the ZeroMQ Message
Transport Protocol (ZMTP) and is released under the GNU General Public License. One of
its key strengths is its portability and universality, enabling seamless socket-based commu-
nication between software modules across nearly all modern programming languages and
operating systems. ZeroMQ’s capabilities make it an ideal choice for constructing robotics
and IoT modules that can seamlessly run on various devices and programming languages
with minimal complexity. These attributes align well with the requirements outlined in our
quality model. NEP+ libraries and tools provide a level of abstraction that simplifies the
utilization of ZeroMQ, enabling straightforward development of interactive applications.
At the heart of the NEP+ framework lies the NEP+ App, serving as the central interface re-
sponsible for managing distributed system connections through ZeroMQ sockets. Figure 3
shows the main menu of NEP+ App in its version 0.0.4, which was used in the experimen-
tal section. Details of how to use the NEP+ App 0.0.4 are available online [41]. The most
relevant functionalities of NEP+ App are service discovery and message monitoring.
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Figure 3. NEP+ App interface version 0.0.4. The main elements of this interface are: (1) a main menu
allowing users to select various interface tool, (2) a list of registered topics in the NEP+ network, (3) a
set of visualization options for each topic, (4) additional network configuration choices specific to
each topic and (5) essential information regarding the computer’s IP address.

4.1.1. Service Discovery

Service discovery plays a critical role in enabling the automated detection, registra-
tion, and management of services within distributed systems. This feature, unavailable in
ZeroMQ, is essential for developing complex and heterogeneous software architectures.
In the realm of robotics, services are often referred to as nodes, each necessitating a unique
identifier. Nodes can encompass one or more channels or ports, serving as conduits for
communication with other nodes within the software architecture. These channels’ func-
tionalities are determined within each node’s code, designating them as either publishers
(input channels) or subscribers (output channels). Each channel is further identified by a
topic name. To enlist a publisher or subscriber within a distributed application, the corre-
sponding node must transmit a connection request to the NEP+ App in JSON format.

4.1.2. Message Monitoring

Messages sent between nodes can be visualized in separate windows. Depending on
the message type, they can be visualized in a hierarchically organized text format, as 2D
plots (Figure 4) or images.

Figure 4. Example of message monitor using 2D plost using NEP+ App 0.0.4. Blue dots display data
obtained in some specific topic over time. Blue dots visualize data acquired from a particular topic
over time.

4.2. NEP Libraries

Originally described in [18] and extended for supporting MATLAB in [19], NEP
libraries abstract low-level sockets implementations for enabling inter-process communica-
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tion functionalities in modern programming languages. For this initial version of NEP+,
we have chosen ZeroMQ as the primary back-end framework over other message libraries,
such as gRPC. However, we plan to provide solutions enabling the use and easy integration
of more message libraries, such as socket.io and MQTT, gRPC, and nanomsg. ZeroMQ’s
lightweight, low-latency messaging is ideal for our high-performance applications, specifi-
cally sensor networks. Its flexible communication patterns, including publisher-subscriber,
meet several messaging requirements, including robotics applications. Unlike other poten-
tially suitable alternatives, such as gRPC, ZeroMQ’s simplicity and transparency minimize
the need for frequent message debugging. Furthermore, ZeroMQ’s publisher-subscriber
pattern provides benefits such as separation of concerns, loose coupling, decentralized
error handling, and message filtering, reducing the debugging effort. Additionally, we
selected to build NEP+ on top of ZeroMQ due that do not require third-party software
or complex installation steps and is compatible with almost any modern programming
language and operating system. This includes Windows 11 and macOS Ventura, which
ROS does not currently support. These features make ZeroMQ sockets a suitable solution
for end-user software development. Some works, such as [42,43] have proved the tech-
nological suitability of ZeroMQ sockets. Furthermore, the literature reports some effort
comparing the communication performance of ZeroMQ against similar solutions in [44,45].
These studies proved the suitability of ZeroMQ sockets in performance-sensitive applica-
tions. Kang et al. in [46] recently evaluated ZeroMQ against Message Queuing Telemetry
Transport (MQTT) and OMG Data Distribution Service (DDS) for the deployment ”of
real-time applications and high-speed dissemination of massive data” in the Internet of
Things. On the one hand, MQTT is defined in [47] as a publish/subscribe protocol for
constrained devices requiring low-bandwidth and high-latency features under unreliable
networks. On the other hand, DDS is an Object Management Group (OMG) standard,
and middleware protocol designed to be used in critical domains requiring real-time and
fine-tuned communication through quality of service (QoS) policies [48]. Results of [46]
indicate that ZeroMQ has lower latency than DDS and MQTT for small (64B) and medium
(2KB) messages. However, DDS latency outperforms ZeroMQ for large messages (32KB).
We have also evaluated the communication performance of NEP libraries in [18].

4.3. NEP CLI

Node.js enables the creation of command-line tools that can be easily installed us-
ing the Node Package Manager (npm). We developed NEP CLI, a command line tool
distributed as a package for npm, which provides an alternative solution for more tradi-
tional developers. This tool is platform-agnostic and easy-to-install. The only third-party
dependency required to install NEP CLI is Node.js. After installing Node.js NEP CLI
can be installed with the command npm install -g nep-cli. After this, the user can use
execute nep commands in the preferred command line interface. A list of commands and a
description of their functionality is available online [41]. The most relevant command is
nep master. This command will provide the same service discovery capabilities as the NEP+
App. The main dependency of the NEP CLI package is the nep-js library. This JavaScript
library provides the main middleware functionalities for both NEP+ App and NEP CLI.
With nep-js, developers can create off-the-shelf software frameworks (i.e., ready-made soft-
ware platforms that users can download, set up, and use) that embed core the middleware
functionalities of NEP+ App and NEP CLI.

4.4. RIZE

The NEP+ interfaces are built upon the enhanced version of the Robot Interfaces from
Zero Experience (RIZE) software architecture [38]. RIZE is specifically developed to em-
power non-programmers to create robot applications. RIZE comprises various components,
including a visual programming environment, action-making modules, a blackboard for in-
formation sharing, and a decision-making engine based on Behavior Trees [49]. These com-
ponents collaborate to facilitate the creation of robot applications by individuals without



Sensors 2023, 23, 9136 10 of 22

programming experience, allowing them to utilize their domain expertise and preferences
in designing robot applications. A comprehensive description of RIZE is beyond the scope
of this article, and interested readers can refer to [38] for further details.

4.5. HXRI

In response to the feedback received in Section 7, this article introduces the initial
version of the Human-X Real-time Interaction (HXRI) interface. HXRI aims to simplify the
development and experimentation process of applications that require collecting data from
humans using a unified, user-friendly interface. Built on NEP+, HXRI enables the seamless
integration of sensing and perceptual algorithms, such as body, hand, face, and emo-
tion recognition, with other NEP+ interfaces or modules. The current version of HXRI
(0.0.0.1) primarily focuses on vision algorithms, utilizing libraries like MediaPipe, OpenCV,
and OpenVINO. It also facilitates the collection and transmission of sensory information
from smartwatches, tablets, or smartphones to the HXRI application through the NEP+
App. This enables real-time interaction and the incorporation of sensor data into the HXRI
framework for further processing and application development

4.6. Creating and Connecting Low-Level Components Using NEP+ Tools

In addition to its human-centered approach, NEP+ provides the flexibility to develop
applications using a more low-level and traditional approach. This allows users to leverage
NEP+ interfaces for common interaction tasks, such as emotion recognition, while still
having the capability to work with the intricacies of low-level development. NEP+ pri-
marily employs the Publisher-Subscriber pattern for module communication, and users
can manage and monitor the software architecture using either the NEP+ App or the NEP
CLI command lines. Users can easily add or replace nodes in the software architecture by
locating the script’s path containing the node’s code and specifying the required launching
commands and arguments. This approach can offer benefits such as rapid prototyping, fast
integration of software modules, minimal training and software installation, and portability
and compatibility with the newest (e.g., Windows 11 and macOS Ventura) or some older
(e.g., Windows 8) operating systems.

NEP+ is not intended to replace existing state-of-the-art middleware but rather ex-
tend the capabilities of current software architectures. An example is the combination of
NEP+ tools and ROS to build a complex Human-Robot Interaction (HRI) system using
both NEP+ tools (for sensing and perception) and ROS (for robot control), as proved in [50],
which uses a very early version of NEP libraries to integrate modules developed in ROS and
Windows. NEP+ App 0.0.4 for Linux can link communication channels (topics) with a ROS
architecture to facilitate compatibility and reuse of available ROS components. Currently,
NEP+ supports a subset of ROS standard messages, but future iterations will enhance
compatibility with ROS and other robotics middleware.

4.7. Creating Cross-Platform and Native Components Using NEP+ and Electron

The traditional motivation of most academic code and projects focuses on the per-
formance of proposed algorithms or systems. This focus often produces systems with
high computational costs or complex engineering requirements. Tools such as ROS and
Docker make robot prototyping faster for expert developers but not necessarily easier
in more human-centered scenarios [51]. In this context, off-the-shelf (i.e., ready-to-use)
components can be an alternative for facilitating human-centered research activities, such
as participatory design [51]. In fact, off-the-shelf or practical software provides a set of
advantages often neglected in academic code, such as installability, compatibility, and a
suitable user interface that facilitates their use for a wider audience. In the following para-
graphs, we explain how NEP+ tools can be convinced with web technologies to produce
off-the-shelf components for robotics that can be easily installed and used, such as most
everyday-life applications.
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Our proposed architecture for developing cross-platform and user-friendly compo-
nents utilizes Electron [52], a framework that enables the creation of native applications
for Windows, Linux, and OSX systems using web technologies like JavaScript, HTML,
and CSS. By using Electron to generate native executables for NEP+ interfaces, users are
not required to install additional third-party software. Figure 5 shows the software architec-
ture of NEP+ App, which is mainly developed using Javascript frameworks. An Electron
application comprises a single main process, which acts as the entry point and manages the
application’s lifecycle, and one or more render processes that provide the user interface.
Main and render windows communicate using an Electron feature denoted inter-process
communication (IPC). NEP+ App comprises the main render process that provides most of
the robotics middleware functionalities described in Section 4. This main render process
can send messages using the IPC future of Electron to open or close other render windows
when required by users. Each render window uses nep.js library to send messages between
them. Each render window can use different Javascript frameworks, for example, 2D
visualization of numerical data is performed using plotly.js [53]. We also developed the
nepplus.js library to provide some helper functions when developing NEP+ interfaces,
such as spawning non-node.js processes, such as a python script, setting the correct path of
executables, saving and loading configuration files, and converting strings to JSON format,
among others.

Figure 5. NEP+ App software architecture based in Electron and web-technologies. The main process
manages a set of render windows (user interfaces) embedding robotics middleware functionalities
(main interface) and other tools for helping in design robotics systems, such as data visualization and
configuration of robot parameters (e.g., IP address).

Figure 6 shows the software architecture of basic NEP+ interfaces using Electron.
In this architecture, the application comprises the main process, a render process, and an
external process. The external process can be developed in Python and integrate a robotics
functionality, such as getting images from a camera. The rendering process launches the
Python script attaching the arguments selected by the user in the user interface. This
script can be converted to an executable Windows program using tools such as [54]. This
approach will enable the execution of scripts developed in Python without a Python version
installed on the end-user computer. Furthermore, this script can send information about its
state to the render window using the Python version of NEP libraries. The render window
can use this information to suggest solutions to the user when an execution problem
occurs. In addition, the executable can subscribe or publish data to other modules or
NEP+ interfaces.
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Figure 6. Basic software architecture of a NEP+ interface based in Electron. This off-the-shelf
application embeds a robot functionality written in Python (external process).

5. Example of Human-Centered Projects Supported by NEP+ Tools

Traditional robotics design methodologies are often machine-centered, primarily
driven by technical considerations [1]. This approach typically involves teams of en-
gineers who may not fully grasp the practical applications and real-world implications of
the systems they create [55]. This leads to a disconnect from the needs and desires of end-
users and the potential for addressing societal issues effectively through technology [56].
Human-centered methodologies provide an alternative to traditional approaches, empha-
sizing that users are the true experts in their lives [56]. These methods also acknowledge
the value of domain experts in shaping design methodologies that result in better user
experiences and address emerging technology adoption challenges [57]. Many human-
centered methods promote the empowerment and inclusion of domain experts and users
in co-design activities, involving them at various stages of development. This section
introduces two real-world projects that utilize NEP+ to empower developers and domain
experts in the design of robotics systems and platforms.

5.1. Yokobo, a Robot Powered by NEP Libraries

Yokobo is a non-anthropomorphic, non-vocal robot designed to enhance the connec-
tion between couples [58]. It was created through a user-centered and agile methodology
inspired by the slow technology principle, earning recognition with the 2021 Kawaii Kansei
Design Excellence Award [59] from the Japan Society for Kansei Engineering. The current
software architecture involves two Raspberry Pi units, one for environmental sensing and
the other for robot behavior control, with data exchange facilitated by NEP libraries [60].
The integration of Yokobo’s components was largely carried out by junior students in Japan
with mechanical and electronics backgrounds but limited prior knowledge of software ar-
chitectures for robotics. To address this mobility barrier, we developed a mobile application
using NEP libraries to configure, monitor, and control Yokobo. This application, described
in [61], is also used to facilitate the integration of Yokobo in a Smart Home.

5.2. Supporting Human-Centered Research Using RIZE

RIZE has played a pivotal role in bridging disciplinary and knowledge gaps across
various Human-Robot Interaction (HRI) scenarios. It has facilitated collaboration among
service users, social researchers, designers, and robotics engineers. The preliminary version
of RIZE supported co-design activities using the Design Thinking (DT) methodology [62].
In this project, designers harnessed RIZE to create robot behaviors, contributing to a study
on young retirees’ perceptions of robots in their homes [38]. RIZE has also been employed
in co-design workshops using Participatory Design (PD) methodologies, actively engaging
end-users in the conceptualization and design process of new technologies [39]. These
workshops deepen users’ understanding of robotics technology and stimulate user-centered
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discussions. More insights into RIZE’s software architecture and its role in human-centered
co-design activities can be found in [38].

6. Accessibility Comparison with Robotics Frameworks

This section compares NEP+ and similar frameworks from a human-centered point of
view, specifically accessibility. Frameworks compared in this section have been selected
based on the following criteria:

• They have a research and robotics focus
• They have been widely used or have future potential and emergence
• They are free and have an open-source license

Table 2 offers a comprehensive comparison of accessibility aspects between NEP+ and
prominent robotics frameworks/middlewares, focusing on availability, interoperability,
and inclusion. Availability is assessed by the number of supported programming languages,
interoperability by the range of supported operating systems, and inclusion by the primary
or typical user groups for each framework. According to the table, NEP+ and ROS2 support
different programming languages, with NEP+ offering the potential for further language
extensions, including Python 2 support, which is still an essential requirement for some
robotics platforms like NAO/Pepper SDK. NEP+ also stands out in supporting a broader
array of operating systems compared to ROS, YARP, and ROS2. According to [63], working
with ROS frameworks implies some disadvantages. One of these disadvantages is that
”ROS is mainly used in Linux systems, and it is not fully supported in other operating
systems” [63]. While this issue can be trivial for many academic robotics researchers, it can
become relevant for people working in other environments. An example is described by [63],
which claims that ”industrial manufacturers normally have their manufacturing execution
system (MES) and the related infrastructures based on Windows”. ROS2 and YARP are
known to function on older macOS versions and new releases of ROS2 are often tailored to
specific operating system versions. This can create inconveniences for users who need to
update to the latest operating system versions to ensure security. NEP+ distinguishes itself
by offering cross-platform, portable, and interoperable libraries, enabling the development
of robotics systems on both older and modern operating systems. These advantages align
with NEP+’s core objective of making robotics technology accessible to a diverse range of
users with varying computational resources, backgrounds, and preferences.

Table 2. Integration comparisons related to accessibility aspects between NEP+ and the most popu-
lar robotics development frameworks/middlewares. The information displayed in this table was
obtained from the official documentation of each framework.

Name Programming Languages Operating Systems Target Users

ROS Noetic Ninjemy Primarily targets Python 3,
Lisp, and C++ Primarily targets Ubuntu 20.04 Robotics researchers

ROS 2 Humble Hawksbill

Primarily targets Python 3 and
C++. However, there are
community-maintained client
libraries for Ada, C, Java, C#,
Node.js and Rust

Primarily targets Ubuntu 22.04. However, ba-
sic versions have been confirmed to support
Windows 10, and macOS 10.14

Robotics researchers,
engineers

YARP 3.7.2

Primarily targets C++.
However, SWIG bindings for
Java, Python, Perl, C#,
and Ruby can also be used

Windows (supported version is not speci-
fied), and Ubuntu Linux (supported version
is not specified), have been confirmed to
work on macOS from 10.9

Robotics researchers

NEP+ 0.0.4

Support Python (2 and 3), Java,
Node.js, and C#. However,
any ZeroMQ compatible
programming language (e.g.,
Rust, Go, Objective-C, Swift)
can be supported in the future

Confirmed to work in Windows 10 and 11,
Ubuntu Linux 16, 18, 20, and 22, macOS
10, 11, 12 and 13 (including computers us-
ing Intel processors and Apple Silicon). NEP
Python libraries have been used in Windows
7 and 8

Engineers, novice and
non-programmers,
practitioners, and robotics
researchers
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7. Usability and Workload Evaluation of NEP+

In this section, we assess the usability of NEP+ tools to validate initial prototypes
and gather impartial user feedback. Additionally, we measure the cognitive workload
experienced by developers using NEP+. Due to COVID-19-related constraints and limited
participant availability, we conducted a pilot test involving five participants from diverse
nationalities. This approach aligns with the HCI community’s consensus that usability
insights are often most effectively obtained from testing no more than five users [64].

The majority of participants in this pilot study reported having over five years of
experience in programming software modules for robotics systems, with one exception
being participant P4, who indicated having at least three years of experience. Among the
participants, three individuals claimed to possess extensive experience using ROS, while the
remaining two participants (P1 and P5) stated that they had a basic understanding of ROS.
Since this pilot test was conducted within our institution and department, and the scope of
this article does not involve a comprehensive or full-scale study, obtaining informed consent
was not required, following our institution’s guidelines. The pre-questionnaire revealed an
interesting finding: while all participants are ROS users, which is commonly associated
with Linux/Ubuntu machines, most of them primarily utilize macOS and Windows for
their research, work, and study activities. Additionally, regarding general activities, macOS
is the preferred operating system among the participants. This highlights the diverse
computational preferences of the participants, demonstrating the relevance and importance
of providing cross-platform support. Therefore, participants of this experimental session
can select to perform the tasks composing the proposed activities on either Windows or
macOS. In most cases, participants used their computers for work (i.e., programming,
writing papers, working from home, and performing administrative tasks) to complete
the experiments. Otherwise, we provided them with a laptop with a clean installation of
Windows 10 (compatible with ROS 2).

The research questions guiding this pilot study are :

• RQ1: Which is the perceived usability and feelings towards the current version of
NEP+ interfaces?

• RQ2: Can developers create a basic robotic application from scratch using NEP+ tools
faster and easier than the state-of-the-art robotics framework?

To address RQ1, participants were tasked with installing and using the NEP+ App
along with two additional interfaces or modules, each embedding basic robotics functionali-
ties. The first interface captures and publishes images from a webcam to the NEP+ network,
while the second interface acquires and publishes human data, including skeleton, hand,
and face landmarks, to the NEP+ network. After exploring these interfaces, participants
completed the System Usability Scale (SUS), a technology-agnostic questionnaire widely
used for assessing perceived usability. SUS comprises 10 items (Table A1), rated on a scale
from 1 (strongly agree) to 5 (strongly disagree), resulting in a final score ranging from 0
to 100. Interfaces with a SUS score over 70 are considered acceptable [65]. Table A1 also
shows the mean and standard deviation (σ) of participants’ answers for each item. To
measure participant feelings toward NEP+ interfaces, we applied a semantic difference (SD)
self-reporting questionnaire following recommendations presented by the Kansei Engineer-
ing discipline [66]. The SD scale uses two bipolar adjectives with a scale between 1 and 5.
While answers closer to 1 reflect positive perceptions towards the proposed interfaces,
answers closer to 5 reflect negative ones. All bipolar adjectives and respective results from
participant answers are seen in Table A2. We selected a set of bipolar adjectives to evaluate
aspects of the model presented in Section 3.3, which are intrinsically subjective and very
complex to assess using objective metrics. For example, modern-old and attractive-ugly
pairs can be used to assess if the proposed are pleasurable.

Participants found NEP+ interfaces easy to use, straightforward, simple, and clear.
They praised the unified and cool design but noted difficulties closing interfaces. Sugges-
tions included a single interface for multiple modules and more information for creating
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complex systems. Moreover, participants expressed interest in NEP+ interfaces for tasks
such as obtaining hand poses and mentioned that their usefulness would depend on
potential expansions. They suggested specific robot skills, including data saving, object
detection, motion control, human-robot collaboration, motion recognition, and various
sensor interfaces for future implementation.

To address RQ2, two activities were designed to assess the workload of developers
using NEP+ and ROS2 on non-Linux operating systems. These activities, named activity 1
(involving ROS2) and activity 2 (involving NEP+), each consisted of two tasks. Task 1
required participants to install the respective robotics framework, while in task 2, they
needed to create a basic software architecture using the Publisher-Subscriber pattern with
the installed framework. Official tutorials for ROS2 and NEP+ were provided to guide
participants through these tasks.

Subjective workload measurements were obtained using the NASA Task Load Index
(TLX) questionnaire [67], which assesses mental demand, physical demand, temporal
demand, overall performance, frustration level, and effort. Part 1 of the TLX questionnaire
involves participants rating each dimension on bipolar scales. In part 2, participants make
paired comparisons to determine the relative importance of each dimension. The weighted
workload score for each dimension is calculated by multiplying the raw workload value
from part 1 by the weight value obtained in part 2. Overall workload scores (weighted
and unweighted) are classified as very low, low, medium, high, or very high. Mean
workload scores for each dimension and overall scores for activities 1 and 2 are presented
in Tables 3 and 4.

Table 3. NASA-TLX results for Activity 1: Installing and using ROS2.

Task 1: Installing ROS2 Task 2: Using ROS2

Dimension Weighted Unweighted Weighted

Mental 256.00 73.00 201.67
Physical 0.00 21.00 0.00

Temporal 206.25 63.00 166.67
Performance 230.00 75.00 287.67

Effort 108.00 49.00 216.67
Frustration 307.00 79.00 350.00

Overall 73.80 59.58 81.44

Interpretation High High Very High

Table 4. NASA-TLX results for Activity 2: Installing and using NEP+.

Task 1: Installing NEP+ Task 2: Using NEP+

Dimension Weighted Unweighted Weighted

Mental 67.00 15.00 103.00
Physical 10.00 6.00 0.00

Temporal 45.00 12.00 146.00
Performance 23.00 9.00 47.00

Effort 28.00 9.00 70.00
Frustration 58.75 14.00 44.00

Overall 13.20 10.83 27.33

Interpretation Low Low Low

Additionally, we registered the time required to complete a task and the number of
tasks performed successfully as objective metrics. We give participants at least 5 min to
rest and recover from any mental and physical workload between each task of activities
1 and 2. To reduce potential bias, pair participants (P1, P3, P5) were asked to perform
activity 1 and then activity 2, and odd participants (P2 and P4) were asked to perform
activity 2 and then activity 1. The total time allotted for task 1 was 40 min, and for task 2
was 20 min of each activity. Tables 5 and 6 show the objective data obtained in activities 1
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and 2, respectively. In the case of P3, he decided to use Windows for activity 1 and macOS
for activity 2. The other participants used the same computer for performing activities 1
and 2.

Table 5. Results of task 1 (installing ROS2) and task 2 (using ROS2) of Activity 1. When the task is
not completed successfully, time is registered as n/a. The time limit for this activity is 40 min for task
1 and 20 min for task 2.

Task 1 Task 2

Participant Selected OS Time Result Time Result

P1 macOS n/a Failure n/a Failure, the participant was not able to
complete the previous task

P2 Windows 40 min Success 10 min Partial success, completed most steps
but encountered an installation error
preventing Python script execution.

P3 Windows 35 min Success 18 min Partial success, completed several steps
but noted issues with ROS2 implemen-
tation on Windows.

P4 Windows 38 min Success n/a Failure, basic ROS2 commands did not
work, preventing task completion.

P5 macOS n/a Failure n/a Failure, the participant was not able to
complete the previous task.

Table 6. Results of task 1 (installing NEP+) and task 2 (use NEP+) of Activity 2. The time limit of this
activity is 40 min for task 1 and 20 min for task 2.

Task 1 Task 2

Participant Selected OS Time Result Time Result

P1 macOS 16 min Success 13 min Success
P2 macOS 3 min Success 10 min Success
P3 Windows 4 min Success 3 min Success
P4 Windows 4 min Success 4 min Success
P5 macOS 10 min Success 12 min Success

8. Results and Discussion

This section discusses the results and answers research questions RQ1 and RQ2
according to the data obtained in the experimental evaluations.

8.1. Perceived Usability and Feelings about NEP+ Interfaces

The average SUS score obtained from the evaluation was 81, which falls under the
rank A usability score category. This result indicates that the overall usability of the NEP+
interfaces is acceptable, as suggested by [68]. The SUS scores obtained for each participant
showed that P1 had a SUS score of 82.5, corresponding to category A, while P2 received
a score of 65.0, indicating a category of C. P3 achieved a SUS score of 90.0, falling under
category A+, and participant P4 received a score of 92.5, resulting in a category of A+. P5’s
SUS score was 75.0, placing them in category B+. Table A1 results indicate that participants
find NEP+ interfaces easy to use and believe they can be learned quickly. However, some
functions, particularly closing interfaces, raised usability concerns. This issue is identified
as a usability error and will be addressed in future iterations. Additionally, the semantic
analysis results in Table A2 reveal that NEP+ interfaces are perceived as modern, attractive,
useful, simple, convenient, and clear.

8.2. Can Developers Create Robotic Applications Faster and Easier with NEP+?

Results from objective metrics (time and the number of tasks completed by success),
shown in Tables 5 and 6, suggest that NEP+ tools enable developers to create simple robotic
applications faster and more effectively than ROS2 in Windows and macOS systems. More
details of this result are described below.
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8.2.1. Installing and Using ROS2

In Table 5, two participants failed to install ROS2 on macOS, attributing it to com-
patibility issues with modern macOS versions. In these cases, the task is considered a
failure, the time and NASA-TLX is not registered, and the activity is finished.The remaining
three participants using Windows 10 successfully installed ROS2 by following official
documentation, but they encountered various bugs, likely related to installation errors
when attempting a specific task involving creating and running a Python-based Publisher-
Subscriber application. Participant P3, who claimed to have a lot of experience with ROS,
considered that ”to discover how to fix the bug, it seems like it would take hours” and
that ”I don’t think that novice users can solve the bug easily”. It is relevant to highlight
that all participants declared to have several years of experience using ROS. Therefore,
results suggest that getting started with ROS2 in non-Linux could be a complex task for
most users, including those with experience using ROS in Linux.

8.2.2. Installing and Using NEP+

As shown in Table 6, all participants could install and create a simple Publisher-
Subscriber application using NEP+ tools without issues and far behind the time limit.
Notably, for participants P1, P2, P3, and P5, it was their first experience using any NEP+ tool
or library. Participant P4 was an exception, having previously used the NEP+ library in C#
to connect a non-ROS-compatible script with a laptop through ROS over a Wi-Fi network.

8.3. Workload Comparison between NEP+ and ROS2

The results from the unweighted workload scores in Table 3 indicate that installing
ROS2 in non-Linux environments is associated with high mental demand, time pressure,
effort, frustration, and poor performance or satisfaction in task completion. Additionally,
using ROS2 results in very high mental demand, time pressure, effort, frustration, and self-
performance issues. Conversely, Table 3 suggests that installing NEP+ tools is linked to
very low mental demand, effort, frustration, temporal demand, and good performance.
However, using NEP+ requires a moderate level of mental demand, temporal demand,
and effort since some programming skills are necessary to complete task 2. The findings in
Table 3 indicate that the overall workload (both weighted and unweighted) associated with
ROS2 in non-Linux environments is high for experienced robotics researchers, while NEP+
results in a lower workload levels.

This pilot test demonstrated that traditional or skilled robotics researchers could
benefit from using NEP+ tools. We will use the lesson learned in this pilot test to adapt
these evaluations to novice users (such as undergraduate or master students) and non-
programmers. For example, while most participants could install NEP+ and ROS2 beyond
the time limit, this time must be longer when considering novice users. Moreover, assess-
ment with non-programmers will require using end-user programming tools such as RIZE
and tasks with higher abstractions.

9. Conclusions and Future Work

We presented an innovative approach to interactive systems development, centering
on human aspects and user experiences. The NEP+ framework combines a holistic UI/UX-
focused quality model with a software development platform. We illustrated our vision
through two real user cases emphasizing collaboration and a human-centered approach.
In these user cases, NEP+ tools have to involve individuals from diverse backgrounds in
the design of technological advancements.

The model we presented in this article is based on our experience working in multidis-
ciplinary and transdisciplinary teams. However, providing evidence of how this and other
similar human-centered initiatives, such as Industry 5.0, have contributed to improving
human UX and well-being is a very complex challenge that will require several years to
be answered through new collaborations and iterative development. In this direction, this
article can be considered as the initial effort.
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Results from the pilot test with experienced robotics developers suggested that NEP+
tools enable the creation of software modules faster, easier, and with less mental load and
frustration than the state-of-the-art solution in macOS and Windows. Posterior iterations
will focus on assessing new versions of NEP+ tools in different contexts and users, such as
novice developers and domain experts.

NEP+ is still in its initial development stages. Therefore, it provides few but essential
functionalities compared with well-established robotics and IoT middleware. However,
NEP+ is designed to empower and coexist with other distributed robotics frameworks using
platform-agnostic and high-performance ZeroMQ sockets and interfaces that facilitate their
use. Moreover, we proposed a novel vision that can inspire researchers to create robotics
modules that novice and expert users can install and use with less effort. Future work will
be focused on (i) developing mechanisms enabling the link and easy integration of robotics
and IoT middlewares, (ii) proposing workflows and templates for easy development
of portable and compatible modules implementing graphical interfaces using Electron
and Docker, and (iii) provide solutions able meet the additional user and research needs
proposed in the NEP+ design model (i.e., personalization, inclusiveness, data security and
use of metrics), (iv) use and evaluate NEP+ middleware features to create Industry 5.0
applications, such as robotic digital twins and Human-Robot Collaboration. Furthermore,
we intend to utilize NEP+ interfaces, such as RIZE, to empower and motivate stakeholders
and users with different backgrounds to help successfully appropriate or adopt robots
in heterogeneous contexts. Updates, interfaces, tools and documentation of NEP+ are
available online [41].
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Appendix A. Additional Tables

Usability and Semantic Difference Questionnaires

Table A1. SUS questions and results.

N Question Mean Std Dev (σ)

1
I think that I would like
to use these interfaces

frequently
4.2 0.40

2 I found these interfaces
unnecessarily complex 2.8 1.83

3
I thought these

interfaces were easy to
use

4.0 0.00
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Table A1. Cont.

N Question Mean Std Dev (σ)

4

I think that I would need
the support of a

technical person to be
able to use these

interfaces

1.6 0.80

5

I found the various
functions in these

interfaces were
well-integrated

4.2 0.40

6
I thought there was too
much inconsistency in

these interfaces
1.4 0.48

7

I would imagine that
most people would learn

to use these interfaces
very quickly

4.6 0.48

8 I found these interfaces
very cumbersome to use 1.6 0.80

9 I felt very confident
using these interfaces 4.0 0.63

10

I needed to learn a lot of
things before I could get

going with these
interfaces

1.2 0.40

Table A2. Semantic analysis results. Feelings/perceptions of participants regarding NEP+ interfaces.

Dimension Semantic Evaluation

Positive (1) Negative (5) Mean Standard Deviation (σ)

Modern Old 1.6 0.49
Attractive Ugly 1.6 0.49

Simple Complex 1.2 0.40
Clear Ambiguous 1.4 0.80

Convenient Problematic 1.8 0.40
Useful Useless 1.4 0.49
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