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Abstract: In the realm of aviation, trajectory data play a crucial role in determining the target’s flight
intentions and guaranteeing flight safety. However, the data collection process can be hindered
by noise or signal interruptions, thus diminishing the precision of the data. This paper uses the
bidirectional encoder representations from transformers (BERT) model to solve the problem by
masking the high-precision automatic dependent survey broadcast (ADS-B) trajectory data and
estimating the mask position value based on the front and rear trajectory points during BERT model
training. Through this process, the model acquires knowledge of intricate motion patterns within
the trajectory data and acquires the BERT pre-training Model. Afterwards, a refined particle filter
algorithm is utilized to generate alternative trajectory sets for observation trajectory data that is prone
to noise. Ultimately, the BERT trajectory pre-training model is supplied with the alternative trajectory
set, and the optimal trajectory is determined by computing the maximum posterior probability.
The results of the experiment show that the model has good performance and is stronger than
traditional algorithms.
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1. Introduction

In recent times, due to the advancement of high-precision positioning devices and
target tracking technology [1], a great deal of trajectory data have been generated. Extensive
research has been conducted in this direction in order to gain insight into target behavior,
as trajectory data are the primary source of information [2]. By delving into the depths of
data, people have made great strides in many areas, such as trajectory classification [3,4],
prediction [5–7], tracking [8,9], and blind filling [10]. The aviation industry has seen a
dramatic increase in air traffic, making it difficult for a single radar system to keep up
with the changing regulations. Air traffic management and traffic control research [11–13]
considers trajectory data to be an important reference point and therefore an in-depth
analysis of trajectory data is essential.

In the context of receiving trajectory data, it is common for the quality of the received
data is usually below standard, and there are a lot of noises and gaps in the data. The ob-
jective of this paper is to acquire the estimated trajectory that closely resembles the actual
trajectory using the designed model, in cases where a trajectory with noise and missing
points is acquired. Artificial modeling methods, such as Markov [14], Kalman filter [15],
interacting multiple model [16] algorithm, etc., are used to pre-defined the motion model
of the target in traditional methods. The trajectory data are then estimated and processed
by calculating the maneuvering information such as velocity, acceleration, and steering rate
in the data [17]. The validity of these features and the effectiveness of trajectory estimations
will be influenced by the researchers’ experience. At the same time, due to the complexity
of the target motion law, it is difficult to depict it accurately by artificial modeling.

The swift advancement of machine learning and deep learning has prompted numer-
ous investigations into trajectory data mining. Xin Liu initially employed the technique in
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natural language processing (NLP) as a point of reference [18], treating trajectory points as
“words”, trajectories as “sentences”, and constructing all trajectory points as “dictionaries”.
The skip-gram model was employed to link the context and fill in the gaps in the trajectory
points. Alessandro Crivellari employed the trajectory-to-vector approach [19] to transform
the trajectory into a high-dimensional vector representation using Word2vec, and instructed
the model to comprehend the correlation between trajectory points, thereby facilitating
trajectory blind filling. Asif Nawaz employs a convolutional neural network to divide the
map into grids [20], and utilizes a bidirectional convolutional recurrent encoder based on
the attention mechanism to obtain trajectory feature information and anticipate the absent
trajectory points. Alessandro Crivellari utilized the mask partial trajectory points [21]
technique to train the BERT model, taking advantage of the Transformer’s impressive
bidirectional representation capability, to anticipate and estimate the absent trajectory.
Mashaal divided the region into hexagonal grids [22] and trained the BERT model to better
capture the relationship between the six edges of each grid, so as to achieve the purpose of
optimizing the missing trajectory.

Then, whether the above methods predict the trajectory by constructing a “dictionary”
in the field of NLP, or predict the position after dividing the region into grids, they all
belong to the training of discrete data. In the aviation field, aircraft motion has continuity,
and treating aircraft motion as a discrete sequence obviously does not fit the realistic
scenario. Based on the above problems, this paper proposes to use the BERT model to train
the continuous trajectory sequence, and make the model learn the hidden motion law in
the trajectory by masking part of the trajectory points. Then the particle filter algorithm
is used to construct a trajectory candidate set for the observed noisy trajectory, and the
candidate trajectory is sent to the model, which is determined by the maximum a posteriori
criterion. The trajectory that best fits the true motion state is obtained.

The main contributions of this paper are as follows:

• The BERT model has been adapted to train sequences of continuous trajectory, and the
pre-training model for the BERT trajectory has been acquired;

• For the task scenario, the BERT trajectory pre-training model and the particle filter
algorithm are combined to construct a candidate trajectory set for the observed trajectory;

• The BERT trajectory pre-training model is used to calculate the maximum posterior
probability of trajectory under trajectory sets and obtain the optimal trajectory estimation.

2. Methodology
2.1. The Task Scenario

In the actual trajectory signal receiving scenario, there will be errors in locating the
target by existing means, as shown in Equation (1), where Y is the observed trajectory, X
is the true trajectory, and W is the observation noise. To simplify the calculation, in this
paper, the error W is treated as Gaussian noise with mean 0 and variance σ2, as shown in
Equation (2). The final application goal of this paper is to obtain an estimated trajectory X
that is closest to the true trajectory through the BERT trajectory pre-training model based
on an incomplete or noisy observed trajectory Y.

Y = X + W (1)

W ∼ N(0, σ2) (2)

2.2. Decision Criteria

In trajectory estimation problems, the theoretical basis is the maximum a posteriori
criterion, which maximizes the posterior probability by combining observations to calculate
the likelihood probability. This criterion is widely used in the field of trajectory estimation,
as shown in Equation (3).

maxP(X|Y) = P(Y|X)× P(X)

P(Y)
(3)
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The maximum a posteriori probability is mainly determined by two parts: the like-
lihood probability P(Y|X) and the prior probability P(X). The denominator P(Y) can be
regarded as a constant, which does not affect the decision result. The aim of this paper
is to utilize deep learning to train the BERT model and express P(X). The clarity of the
fact that Y represents the observed data is crucial, and when employing the BERT trajec-
tory pre-training model to estimate the observed trajectory Y, X signifies the alternative
trajectory set generated by Y through particle filter. X1, X2, · · · , Xn denotes a subset of
the collection of alternative trajectories, as illustrated in Equation (4), where x denotes a
point in the trajectory sequence and is a two-dimensional vector encompassing latitude
and longitude, thus Xi can be articulated as Xi : {x1, x2, · · · , xn}, where xi : {loni, lati}.
After the candidate trajectory set is obtained, the trajectory is fed into the BERT trajectory
pre-training model by masking the trajectory point by point, and the corresponding prior
probability P(xi|x\i) is generated, where x\i denotes all other points except point xi. Exten-
sive discussions have taken place in previous papers regarding the relationship between the
prior joint distribution produced by BERT and the continuous multiplication of conditional
probabilities [23–25], as illustrated in Equation (5). Once the BERT model is provided with
an alternative trajectory and subjected to meticulous mask-by-mask validation, we can
ultimately derive P(X) from the pre-training BERT trajectory model.

maxP(X|Y) = max{P(X1|Y), P(X2|Y), · · · , P(Xn|Y)} (4)

P(X) ≈ P(x1|x2 · · · xi)·P(x2|x1, x3 · · · xi) · · · P(xi|x1 · · · xi−1) (5)

In this task scenario, the estimated value is a two-dimensional (latitude and longitude)
distribution problem, and the probability distribution of the estimated value of the model is
assumed to conform to the Gaussian distribution. Therefore, the prior probability P(X) can
be expressed in Equation (6), where Llon, Llat is the label, Plon and Plat is the estimated
value of the model, and ∑ is the covariance matrix, as shown in Equation (7).

P(X) =
1

(2π)
2
2 |∑ |

1
2

exp{−
1
2 (Llon−Plon,Llat−Plat)T ∑−1(Llon−Plon,Llat−Plat)} (6)

∑ =

(
σlonlon σlonlat
σlatlon σlatlat

)
(7)

In summary, the procedure for calculating the maximum a posteriori probability is
shown in Algorithm 1.

Algorithm 1: Procedure for calculating the maximum a posteriori probability

1: Input an alternative trajectory X1 and compute its prior probability p(X1);
2: The input trajectory sequence is masked point by point and fed into the BERT trajectory
pre-training model to calculate the prior probability of trajectory points:
p(x1) : Bert(mask, x2, x3, · · · , xn), · · · , p(xn) : Bert(x1, x2, x3, · · · , mask);
3: The prior probability of the entire trajectory is estimated by multiplying the conditional
probabilities one by one: p(X1) ≈ p(x1)× p(x2)× · · · × p(xn);
4: Calculate the Likelihood:
p(Y|X1) = ∏

i
P(yi|xi) =

n
∑

i=1
logP(yi|xi) =

n
∑

i=1
log 1√

2πσ2
exp(− (yi−xi)

2σ2 );

5: Calculate the posterior probability: p(X1|Y) =
p(Y|X1)×p(X1)

p(Y) .

2.3. Trajectory Pre-Processing

In order to ensure that the BERT trajectory pre-training model achieves the desired
training outcome, it is necessary to mask the trajectory data with a certain probability,
as per the techniques employed in the realm of natural language processing. By hiding
certain trajectory points in the input, specifically by substituting them with distinctive
symbols, the model is able to anticipate the masked data by analyzing the data preceding
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and succeeding the mask. This training technique assists the model in understanding
the relationship between the data, and by utilizing this approach, the BERT model can
continuously modify weights to improve its learning efficiency and ability.

Using trajectory Xn as a case in point, as depicted in Figure 1, where n signifies the
trajectory’s length. To find the quantity of masks in this paper, consult paper [26] and
apply a 15% probability to mask the trajectory sequence. In contrast with other discrete
sequences, the model is a continuously sequenced process, making it impossible to use a
special symbol to represent the position of the mask. In this article, the mask point is set
to −9999 for the task scenario in this paper, and to comply with the unified requirements
for sequence length when calculating the BERT model, the position where padding must
be 0 is specified. The BERT model is expected to be able to learn the meanings of mask
and padding represented by −9999 and 0 respectively through training. The purpose of
training is to learn how to estimate missing positions based on contextual information
by processing the input trajectory with the mask and producing the corresponding mask
position as the output.
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Figure 1. Trajectory preprocessing.

3. Train Model
3.1. Model Structure

The encoder module of the transformer, or BERT model, as illustrated in Figure 2, is
the model employed in this situation. It is important to remember that when it comes to
natural language processing, the BERT model only processes discrete data. The output
value is the maximum probability value in the dictionary when predicting the output,
which can be classified as a classification problem. This chapter’s data are continuous, and
the output is an estimated value. Consequently, to achieve the goal of trajectory estimation,
this chapter modifies the module to better suit the task scenario.
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Referring to the mask language model (MLM) method [26] when using BERT to train
language models, this paper proposes a mask trajectory model (MTM) training method
suitable for this application scenario, as shown in Figure 3. The mask trajectory data are
fed into the model. Thus, the model can predict the missing trajectory through the front
and back trajectory. Simultaneously, in order to enhance the training effect of the model,
we add a fully connected layer on the basis of MTM in parallel. The fully connected layer is
similar to the traditional encoder-decoder method, which realizes the function of mapping
low-dimensional features to high-dimensional and then restoring low-dimensional features
from high-dimensional to low-dimensional, so as to better extract data features. MTM is to
restore the position of the mask, that is, the local trajectory, which has certain limitations,
while the parallel FC-decoder layer can extract the feature of the trajectory from a global
perspective. The combination of the two makes the model training better, which is verified
in the subsequent experimental link.
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Figure 3. Structure of BERT trajectory pre-training model.

In the expected goal, the output of the BERT model set in this paper is the estimated
latitude and longitude value. Compared with Equation (6), it can be found that the model
cannot express the covariance matrix, so the output of the model needs to be further
modified. The solution of this paper is to send the output of FC-decoder into a one-layer
fully connected layer, as shown in Figure 4. The 2-dimensional output is extended to 6-
dimensional output, which is used to generate the prediction value and covariance matrix.
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3.2. Loss Function

Considering that the function of the model is a prediction problem rather than a
classification problem, this paper uses the SmoothL1Loss (SML1Loss) commonly used in
prediction tasks, as shown in Equation (8).

SML1Loss =

{
0.5(xi − xp

i )
2
, i f |xi − xp

i | < 1
|xi − xp

i | − 0.5, otherwise
(8)
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where xi is the true value, xp
i is the predicted value, when |xi − xp

i | is less than 1, the square
error is used, otherwise the linear error is used, which makes the SML1Loss can punish
outliers (such as too large or too small outliers) less than the mean square error (MSE)
and mean absolute error (MAE) loss function, so that the model is more robust. To avoid
zero non-differentiable and gradient explosion, the training effects of the above three loss
functions are compared in the subsequent chapters. The overall loss of the model is divided
into three parts: covariance matrix (Loss1), decoder (Loss2), and MTM (Loss3), as shown in
Equation (9).

Loss = Loss1 + Loss2 + Loss3 (9)

Among these three loss functions, Loss1 is the loss function of the covariance matrix
generated by the model, which needs to be constructed by ourselves. Here, this paper
proposes two solutions. The first one is shown in Equation (10).

Loss1.1 = SmL1Loss(cov− seq_cov) (10)

where cov is the covariance generated by the model and seq _cov is the covariance of the
training data; The second method is given in Equation (11).

Loss1.2 = SML1oss(cov− seq_cov) + SML1oss(decoder_cov− seq_cov) (11)

where decoder _cov is the covariance generated by the FC-decoder layer. It can be seen
from the formula that the first loss function is more targeted, while the second loss is
more restrictive from a global perspective, but the expected convergence effect is not
as good as the first loss function. In this paper, for these two different loss functions,
comparative experiments are carried out under the same conditions in the subsequent
experimental sections.

4. Set of Alternative Trajectories
4.1. Particle Filter

When using the particle filter algorithm, the state equation and the observation equa-
tion should be clarified first, as shown in Equations (12) and (13), where f (x) is called the
state transition function, h(x) is called the observation function, Qk is the process noise,
and Rk is the observation noise, Qk and Rk are treated as Gaussian noise with mean 0 and
variance σ2.

Xk = f (Xk−1) + Qk (12)

Yk = h(Xk) + Rk (13)

The basic concept of particle filter is to depict the posterior distribution of states
utilizing a set of random samples with corresponding weights (commonly referred to
as “particles”). The posterior distribution in this application scenario pertains to the
distribution of every trajectory point along the observation trajectory. The weights and
positions of the particles are adjusted based on the state observations after obtaining some
random samples with corresponding weights. These samples are then used to approximate
the posterior distribution of the state. Finally, the state is estimated by considering the
weighted sum of these samples. Particle filters are not limited by the linear and Gaussian
assumptions of the system model and describe the probability density of state variables
in a sample rather than a function. This means that it does not need too many constraints
on the probability distribution of the state variables, so it is widely used in nonlinear and
non-Gaussian dynamic systems.

This paper postulates that the probability distribution of the observed trajectory points
follows a Gaussian distribution, allowing for the representation of the probability density
of the trajectory points by employing a particle filter to approximate the probability density.
Over the course of this duration, the particles generated can be regarded as potential
points of trajectory that were formed in close proximity to the observed points of trajectory.
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Through the consolidation and amalgamation of multiple potential trajectory points, a
collection of trajectory candidates is generated, and the real trajectory is incorporated into
the collection of trajectory candidates. Algorithm 2 provides a comprehensive outline of
the entire process for the traditional particle filter.

Algorithm 2: Process of traditional particle filter algorithm

1: Setting initial values: X0 ∼ N(µ, σ2);
2: Generate particles and initial weights, and set the number of generated particles as n:

X(i)
0 , W(i)

0 = 1
n ;

3: Prediction step: X(i)
1 = f (X(i)

0 ) + V, V ∼ N(0, Q);

4: Update step: the observation is assumed to be y1, W(i)
1 = fR(y1 − h(x(i)1 )) ·W(i)

0 ,
fR is the probability density function of the observation noise;

5: Weights are normalized: W(i)
1 =

W(i)
1

∑ W(i)
1

;

6: The new particle X(i)
1 and the new weight W(i)

1 are calculated;
7: Repeat steps 3, 4, and 5 to obtain new particles and weights in a cycle

In the follow-up work of this paper, the equation of state in traditional particle filter
algorithm is not involved. The purpose of training the BERT trajectory pre-training model
in this paper is to learn the change law between trajectory points in the way of deep
learning. Therefore, after the initial n particles are obtained, these particles are sent to
the BERT trajectory pre-training model respectively, and the BERT trajectory pre-training
model is used to replace the state transition equation f (x) to generate the particles at the
next moment, so as to complete the work of predicting and updating particles.

If m points are collected when sampling the probability density of each observation
point and the length of the observed trajectory is n, then there are mn alternative sets of
trajectories, as shown in Figure 5 for simple effect. It can be inferred that when there are
enough sampling points, the real trajectory will be included. The goal of this paper is to
determine which trajectory is the closest to the real trajectory through the BERT trajectory
pre-training model.
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4.2. Construct the Set of Alternative Trajectories

In this paper, BERT pre-training model is used to replace the state transition equation
in the traditional particle filter algorithm. In order to explore what method is used to
generate the best particle effect, this paper makes two improvements to the traditional
particle algorithm, among which Algorithm A is shown in Algorithm 3.
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Algorithm 3: Improved particle filter Algorithm A

Trajectory of observation: Y : {y1, y2, · · · , yn};
1: Create the primary particles: x(1,m) = y1 + random(m);
2: Obtain m trajectories with varying initial observations:
Y1 : {x1

(1,m)
, y2, · · · , yn}, Y2 : {x2

(1,m)
, y2, · · · , yn}, · · · , Ym : {xm

(1,m)
, y2, · · · , yn};

3: Mask the trajectory data: Y1 : {x1
(1,m)

, mask, · · · , yn};
4: The second batch of particles is generated by the BERT trajectory pre-training model:
Y1 : {x1

(1,m)
, x1

(2,m)
, · · · , yn};

5: Mask the trajectory data: Y1 : {y1, x1
(2,m)

, mask, · · · , yn};
6: The third batch of particles is generated by the BERT trajectory pre-training model:
Y1 : {y1, x1

(2,m)
, x1

(3,m)
, · · · , yn};

7: Alternate trajectories are obtained by generating particles one by one in order:
X1 : {x1

(1,m)
, x1

(2,m)
, · · · , x1

(n,m)
}.

In Algorithm A, the first batch of particles is obtained by adding random noise (Gaus-
sian distribution with mean 0 and variance 0.3) to the first trajectory point of observation
trajectory data, where m represents the number of generated particles, and the first ob-
servation point is replaced by m particles, respectively, so that different trajectories of m
initial observation points are obtained, where xi

(1,m)
(i = 1, 2, · · · , m) represents the ith

particle in the first batch of m particles, and Yi(i = 1, 2, · · · , m) represents the ith trajectory
constructed. Taking the first trajectory Y1 as an example, in order to generate the next batch
of particles, the observation trajectory point after the first batch of particles is masked and
sent to the BERT trajectory pre-training model, and the prediction data generated by the
model is the second batch of particles. In the subsequent process, the above operations are
repeated to obtain all particles in order. It should be noted here that when generating the
particle at the next time, only the particles at the previous time are used, and the rest of
the data in the sequence are still the observation data. Algorithm A is adjusted to obtain
Algorithm B as shown in Algorithm 4.

Algorithm 4: Improved particle filter Algorithm B

Trajectory of Observation: Y : {y1, y2, · · · , yn};
1: Create the primary particles: x(1,m) = y1 + random(m);
2: Obtain m trajectories with varying initial observations:
Y1 : {x1

(1,m)
, y2, · · · , yn}, Y2 : {x2

(1,m)
, y2, · · · , yn}, · · · , Ym : {xm

(1,m)
, y2, · · · , yn};

3: Mask the trajectory data: Y1 : {x1
(1,m)

, mask, · · · , yn};
4: The second batch of particles is generated by the BERT trajectory pre-training model:
Y1 : {x1

(1,m)
, x1

(2,m)
, · · · , yn};

5: Mask the trajectory data: Y1 : {x1
(1,m)

, x1
(2,m)

, mask, · · · , yn};
6: The third batch of particles is generated by the BERT trajectory pre-training model:
Y1 : {x1

(1,m)
, x1

(2,m)
, x1

(3,m)
, · · · , yn};

7: Alternate trajectories are obtained by generating particles one by one in order:
X1 : {x1

(1,m)
, x1

(2,m)
, · · · , x1

(n,m)
}.

In Algorithm B, the first and second particles are generated in the same method as in
Algorithm A, but the third batch is generated in a different way, with the resulting particles
constantly replacing the observed data. Therefore, when predicting the particles the next
time, all the generated particles before the current time and the observed data after the
current time are involved in the prediction. Figure 6 shows the process of constructing
the set of alternative trajectories using the particle filter algorithm. After all the particles
are obtained, the Cartesian product algorithm is used to cross-arrange and combine the
particles to obtain the alternative trajectory set.
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5. Experimental Analysis
5.1. Evaluation Indicators

Considering that the problem studied in this paper is trajectory estimation, the mean
absolute error (MAE), which is widely used in this field, is used as an evaluation index
to measure the quality of trajectory prediction. At the same time, in order to compare
the intuitive difference between the estimated trajectory and the real trajectory, this paper
defines the average distance deviation (MEDV) to more intuitively show the accuracy of
the model, as shown in Equations (14) and (15).

MAE =
1
n

n

∑
i=1

(|Ai,Lat − Ei,Lat|+ |Ai,Lon − Ei,Lon|) (14)

MEDV =
1
n

n

∑
1

distance(Ai, Ei) (15)

where n is the number of samples, Ai is the predicted trajectory, Ei is the actual trajectory,
and distance is the algorithm used to calculate the geographical distance between different
latitude and longitude. The smaller the values of these two evaluation indexes are, the
closer the estimated trajectory is to the actual trajectory, and the estimation effect is better.

5.2. Datasets

Based on the development of deep learning, neural networks can model complex
motion laws, and can estimate trajectory more accurately than traditional methods. In order
to train the trajectory pre-training model with better performance and enable the model
to learn the complex motion laws contained in the trajectory, it is necessary to select high-
precision trajectory data. The data used in this paper are from the public ADS-B data set
from January to May 2021 provided by the OpenSky website, which meets the requirements
of the model for data accuracy. By analyzing this dataset, it is found that there are problems
of duplication and missing trajectory points, so it is necessary to clean and reconstruct
this dataset first. Related work mainly includes trajectory selection in specific regions,
outlier cleaning, trajectory segmentation, linear interpolation, data normalization, sliding
window data segmentation, etc. Paper [27] has made a detailed explanation, and is not
repeated here.

The experimental data use the L2J model data in the real ADS-B data, which is a civil
aircraft. The data scale is large, the trajectory is relatively complete, and the maneuvering
law is diverse, which can fully support the training of the model. After cleaning and
reconstruction, a total of 3600 trajectory data were obtained, and 300,000 training data were
obtained after sliding window partition, of which 65% of the sample trajectory data were
used as the training set, 25% of the data were used as the validation set, and 10% of the
data were used as the test set. In the construction of observation data, Gaussian noise with
mean 0 and variance 0.3 is added to the real ADS-B in this paper.



Sensors 2023, 23, 9120 10 of 18

5.3. Experimental Parameter Settings

The Adam optimizer is used in model training, weight decay is set to l−5, learning
rate is l−3, training batch size is set to 1024, and a graphics card with 24 G video memory is
used for training, the detailed parameters of the experiment are shown in Table 1.

Table 1. Experimental parameter.

Parameter The Numerical

Optimizer Adam
Rate of learning l−3

Weight decline l−5

Epoch 100
Batch Size 1024
Dropout 0.1

Sequence length 100

5.4. Analysis of Experimental Results
5.4.1. Comparison of Different Loss Functions

Figure 7 compares the training effects of three loss functions. It can be seen that the
variable loss function SML1Loss has the best effect, which is more suitable for the task
scenario of this chapter. At the same time, in order to verify the performance of calculating
covariance loss function, a comparison experiment is carried out under the condition of
using SML1Loss loss function. The experimental results are shown in Figure 8. It is easy
to see that the training effect of simple and direct calculation of covariance loss function
is better, and the learning of the model for covariance is more focused on the data at the
position of the mask. In the subsequent experiments, the above two loss functions are used.
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5.4.2. Functional Analysis of the FC-Decode Layer

In this subsection, in order to verify the effect of the FC-decoder layer on BERT model
training, the comparison experiment of removing the FC-decoder layer and only retaining
the MTM layer is performed. The results are shown in Figure 9. It can be seen that MTM
combined with FC-decoder can effectively improve the training effect. The analysis is
because FC-decoder can focus on the characteristics of the trajectory at the global level
and pay more attention to the global characteristics of the trajectory, while MTM focuses
on restoring the information of the masked position and pays more attention to the local
characteristics of the trajectory. The combination of the two can extract trajectory features
more effectively, and improve the performance of the model.
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5.4.3. Effect Analysis of Positional Embedding and Token Embedding

In order to verify the role of positional embedding and token embedding, the following
comparative experiment is performed, as shown in Figure 10. It can be seen that the use of
token embedding plays a great positive role in model training. For deep learning, a small
dimension means insufficient description of the inherent laws of data, while dimension
expansion after token embedding can better describe the characteristics of data [28]. In
addition, there is time correlation between trajectory points, and the time characteristics
cannot be well captured due to parallel calculation during model training. Therefore, by
adding positional embedding, the model can learn the location information between data
to improve the training performance of the model.

5.4.4. Determine the Optimal Parameters of the Model

After determining the loss function and structure of the model, this paper conducts a
combination exploration of the input dimension, output dimension, the number of heads
and the number of encoder layers of the model, and makes the following eight sets of
comparison experiments to find the optimal model parameters, as shown in Table 2. The
experimental results are shown in Figure 11. As can be seen, parameter 6 is the best.
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Table 2. Parameter Setting.

Parameter Setting

LossInput
Dimensions

Output
Dimensions

Number
of Heads

Number of
Encoder

Parameter 1 128 256 4 4 0.2619
Parameter 2 256 256 4 4 0.2547
Parameter 3 128 128 4 4 0.3783
Parameter 4 64 128 4 4 0.3956
Parameter 5 256 128 4 4 0.3653
Parameter 6 256 256 2 4 0.2387
Parameter 7 256 256 4 2 0.2657
Parameter 8 256 256 2 2 0.2734
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5.4.5. Verify the Model Training Effect

The BERT trajectory pre-training model proposed in this paper is trained on 15% of
the trajectory points in the mask sequence, so that the model can predict the value of the
mask position from the rest of the trajectory points. In order to verify whether the model
has learned the inherent movement law of the data during the training, the verification
experiment in this section selects a test track and removes part of the data according to
the proportion of 20%, 40% and 80%, to simulate the situation that the receiving track is
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interrupted due to signal interruption and other factors in the actual signal receiving scene.
It needs to be explained that this is only to verify whether the model training is effective.
In the verification, the incomplete trajectory is fed into the BERT trajectory pre-training
model to see whether the model can complete the missing points through the incomplete
trajectory. The experimental results are shown in Figure 12.
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The experimental results show that the model can fill the missing points through the
incomplete trajectory, and even in the case of the trajectory missing 80% of points, it can still
obtain more accurate estimation results through the front and back trajectories, and restore
the trajectory in line with the real movement trend. Therefore, it can be determined that
the training of the model is effective. It is proved that the model can learn the movement
law of the data by masking the trajectory points. In this section, MAE and MEDV are used
as evaluation indicators to show the performance of the model more intuitively, as shown
in Table 3.

Table 3. Trajectory evaluation metrics for different proportions of missing points.

Percentage of Missing Points
Evaluation Indicators

MAE MEDV/km

20% 0.00319 0.484
40% 0.00873 1.358
80% 0.02123 3.391
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5.4.6. Comparison of Performance of Two Particle Filter Algorithms

According to the above experiments, the optimal parameters of the model are deter-
mined and the model is trained according to these parameters, and the BERT trajectory
pre-training model is obtained. The effectiveness of model training is verified by exper-
iments. In order to compare the performance of the two particle filter algorithms, this
section makes an experimental comparison between the two algorithms and without par-
ticle filter candidates. In the experiment, a lot of memory space will be occupied when
constructing the candidate trajectory set. Limited by the computer memory, 500,000 candi-
date trajectories are finally constructed with the particle number of 15, and the candidate
trajectories are sent to the model and the maximum a posteriori is calculated. Finally, the
trajectory with the largest posterior probability value is selected as the final estimated
trajectory, and the experimental results are shown in Figure 13. It can be seen that the
performance of Algorithm A is better than that of Algorithm B. In Algorithm B, the analysis
is due to the fact that when predicting the particle at the next time, the model cannot make
good use of the observation data to correct the particle, which leads to the accumulation
of errors and the performance degradation. The observed trajectory also belongs to the
candidate trajectory set in essence, and because it is more consistent with the movement
trend of the real trajectory, it will also show good performance when using BERT alone.
However, as the number of particles increases, we can infer that the performance of BERT
combined with particle filtering will be further improved. In order to visually compare
the performance differences, MAE and MEDV are selected as the evaluation indicators to
measure the performance of the algorithm in the experiment in this section, as shown in
Table 4.
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5.4.7. Compare Kalman Filter Algorithms

In order to evaluate the performance of the BERT trajectory pre-training model, this
section makes a comparison experiment with the Kalman filter method which is widely
used in the field of trajectory optimization. The key idea of the Kalman filter is to combine
the state equation with the observation equation, obtain the optimal solution, use the final
optimal solution to predict the current value, and modify the current value and the current
covariance matrix with the observation value. The observed value is understood as the
co-ordinates obtained in practice, and there is observation error; the predicted value is the
motion law obtained by the mathematical model, and there is a situation inconsistent with
the actual situation. It uses the covariance matrix of the state estimation error to measure
the reliability of the estimation (Kalman gain). If the predicted state is reliable, the Kalman
gain is small; if the observed state is reliable, the Kalman gain is large, and the estimated
value and covariance matrix are updated in an optimized way. The Kalman filter algorithm
is shown in Algorithm 5.

Algorithm 5: Kalman filter algorithm process

1: A priori estimate: x−k = A · x+k−1 + B · µk−1 + Qk

2: The covariance of the prior estimate: P−k = AP+
k−1 AT + Qk

3: Calculate Kalman gain: Kk =
HT P−k

HP−k HT+Rk

4: Update the estimate: x+k = Kk(yk − Hx−k ) + x−k
5: Update the covariance matrix: P+

k = (1− Kk H)P−k

When using the Kalman filter algorithm, the state equation in line with the motion
scene should be constructed first. Considering that only latitude and longitude are used
as input data when training the BERT trajectory pre-training model, the Kalman filter
algorithm with constant velocity is selected as a comparison for experimental verification.
Its state equation and observation equation are as follows:

xk+1
yk+1

vx,k+1
vy,k+1

 =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1




xk
yk

vx,k
vy,k

+


0.5axT2 0

0 0.5ayT2

axT 0
0 ayT

+ Qk (16)

zk =

[
1 0 0 0
0 1 0 0

]
·


xk+1
yk+1

vx,k+1
vy,k+1

+ Rk (17)

By comparing the experimental results shown in Figure 14, it can be seen that the
optimized trajectory of the Kalman filter is more dependent on the observed data, that is,
the optimization is carried out on the basis of the observed data, and is also affected by
the equation of motion. The state equation is used to express the law of motion, which
is equivalent to adding constraints to the motion and restricting the regional scope when
locating the next point. Although this method can lead to more accurate positioning
accuracy, there are still many errors when describing the motion state of the aircraft. The
BERT trajectory pre-training model is obtained by training a large number of historical
trajectories. Its internal parameters have been able to better express the trajectory motion
law when dealing with noisy observation data, so the real trajectory can be smoothly
and accurately optimized from the observation data, meaning the performance is more
prominent, as shown in Table 5.
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Table 5. Comparison of the evaluation indicators of BERT trajectory pre-training model and Kalman
filter algorithm in trajectory 1.

Parameter
Trajectory Data MAE MEDV/km

Number of Particles Number of Alternative Trajectories

\ \ Observe Trajectory 0.05342 8.301
15 500,000 Trajectory estimation by BERT 0.03104 4.913
\ \ Trajectory estimation by Kalman filter 0.03522 5.529

Because the BERT pre-training model uses a variety of data during training, it can also
perform well in the face of the trajectory of different sports types. Kalman filters do not
work well when trajectories are in complex and variable motion patterns, such as heading
mutations, as shown in Figure 15. Their generalization performance is poor due to their
heavy reliance on observations and state equations, while the BERT pre-training models
can still optimize trajectories well, demonstrating the validity of the methods presented in
this chapter, as shown in Table 6.
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Table 6. Comparison of the evaluation indicators of BERT trajectory pre-training model and Kalman
filter algorithm in trajectory 2.

Parameter
Trajectory Data MAE MEDV/km

Number of Particles Number of Alternative Trajectories

\ \ Observe Trajectory 0.04665 7.390
15 500,000 Trajectory estimation by BERT 0.03508 5.435
\ \ Trajectory estimation by Kalman filter 0.03887 6.267

6. Conclusions

Aiming at a key problem—the difficulty of manually modeling complex trajectories
in real scenarios—this paper proposes a trajectory-estimation method based on a BERT
trajectory pre-training model combined with a particle filter algorithm. Firstly, the real
ADS-B data were cleaned and reconstructed, and then sent to the BERT model with adjusted
structure for training after mask processing. Then, it explored the optimal parameters
of the model and verified the training effect of the model through a series of verification
experiments. Then, the particle filter algorithm was used to construct the trajectory set
to verify the performance of the model. Finally, the comparison experiment with the
traditional Kalman filter algorithm shows the advantages of the BERT trajectory pre-
training model. However, due to the limitation of hardware conditions, it is impossible
to traverse all possible candidate trajectories. In theory, when the number of particles
is enough and the set of candidate trajectories is complete enough, the true trajectory
can be restored by calculating the maximum a posteriori. The experiments in this paper
prove the feasibility of the method, which provides a new research idea for the problem of
trajectory estimation.
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