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Abstract: Nowadays, sparse arrays have been a hotspot for research in the direction of arrival (DOA).
In order to achieve a big value for degrees of freedom (DOFs) using spatial smoothing methods,
researchers try to use multiple uniform linear arrays (ULAs) to construct sparse arrays. But, with the
number of subarrays increasing, the complexity also increases. Hence, in this paper, a design method,
named as the cross-coarray consecutive-connected (4C) criterion, and the sparse array using Q ULAs
(SA-UQ) are proposed. We first analyze the virtual sensor distribution of SA-U2 and extend the
conclusions to SA-UQ, which is the 4C criterion. Then, we give an algorithm to solve the displacement
between subarrays under the given Q ULAs. At last, we consider a special case, SA-U3. Through
the analysis of DOFs, SA-UQ can find underdetermined signals. Moreover, SA-U3 can obtain DOFs
close to other sparse arrays using three ULAs. The simulation experiments prove the performance of
SA-UQ.

Keywords: sparse array; uniform linear array; cross-coarray consecutive-connected criterion;
direction-of-arrival estimation

1. Introduction

Direction of arrival (DOA) is one of the main research hotspots in array signal pro-
cessing, which is widely used in radar, sonar, and radio astronomy applications [1–3].
Traditional DOA estimation is applied in almost-uniform arrays, and then subspace meth-
ods are applied to obtain super-resolution results. The subspace methods, like the multiple
signal classifications (MUSIC) algorithm [4], root-MUSIC algorithm [5], and estimation of
signal parameters via rotational invariance techniques (ESPRIT) [6], are generally suitable
for uniform arrays. But, due to the limitation of the inter-element spacing, which is no
more than the half-wavelength of impinging signals, the accuracy is not high enough under
the number of definite sensors.

In recent years, many sparse array structures, whose inter-element spacing can be set more
than the half-wavelength of impinging signals, have been proposed. Typical sparse arrays include
the minimum redundancy array (MRA) [7,8], the minimum hole array (MHA) [9,10], the nested
linear array (NLA) [11–13], and the coprime linear array (CLA) [14–16]. Correspondingly, the
spatial smoothing MUSIC (SS-MUSIC) and direct augmentation approach (DAA) [17]
were introduced for DOA estimation. Those algorithms use the covariance matrix and
construct a virtual array, which much improved the degrees of freedom (DOFs) [18], but
they can only be applied to consecutive virtual sensors. Moreover, ref. [19] proved that
they have the same performance. Both MRA and MHA can give the biggest aperture for a
continuous virtual array. But, it was difficult to give an analytical expression about sensor
location, which increased the complexity of the array design. The NLA and CLA were
both composed of two uniform linear arrays (ULAs) that had the expression of the array
configuration. The NLA was a hole-free array, but the CLA suffered from discontinuous
virtual sensors.

Sensors 2023, 23, 9116. https://doi.org/10.3390/s23229116 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23229116
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3795-1745
https://orcid.org/0000-0001-8630-9049
https://orcid.org/0000-0002-7302-2994
https://orcid.org/0000-0002-4994-8586
https://doi.org/10.3390/s23229116
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23229116?type=check_update&version=2


Sensors 2023, 23, 9116 2 of 13

In order to increase the number of consecutive virtual sensors in the CLA, a coprime
array with compressed inter-element spacing (CACIS) [20] and a coprime array with
displaced subarrays (CADiS) [21] were proposed. They revealed that compressing the
inter-element spacing of one subarray and setting the displacement of two subarrays
can improve the DOFs. Next, the shifted coprime array (SCA) [22], the coprime array
with multi-period subarrays (CAMpS) [23], and the novel sparse array with two ULAs
(NSA-U2) [24] were designed to find the optimal solutions for the maximum DOFs under
different inter-element spacing and displacement. In conclusion, Nested CADiS [21] can
have the maximum number of consecutive virtual sensors among the sparse arrays using
two ULAs.

In addition to compressing and shifting processing, based on CADiS, some thoughts
for filling the holes in the virtual array were proposed. The coprime array with a filled dif-
ference coarray (CAFDC), the coprime array with a two-hole difference coarray (CATHDC)
in [25], and the coprime array with prime integer 3 (CAP-3) in [26] were proposed. By
setting additional sensors or subarrays, the holes in CADiS can be filled. Some consid-
ered the NLA by dividing the dense subarray into several subarrays, and then gave the
configurations, named the super-nested array (SNA) [27,28], the augmented nested array
(ANA) [29], and the maximum inter-element spacing constraint (MISC) [30]. All these
arrays had bigger DOFs than Nested CADiS. Hence, using multiple ULAs to design a
sparse array can improve the DOFs compared with those only using two ULAs. But, in [29],
the paper remarked that it was much more difficult to solve the sensor location when the
number of subarrays was bigger than three.

Some researchers have tried to use multiple sparse arrays to construct a new sparse
array. Nested MRA (NMRA) [31,32] presented the model using multiple MRAs, while
the generalized nested subarray (GNSA) [33] and displaced multistage cascade subarrays
(MSC-DiSA) [34] showed the models using any kind of sparse arrays. But, due to the
redundancy of the same subarrays, the DOFs of this type of sparse array are lower than
ANA and MISC.

Based on the analysis of the existing sparse array configurations, in this paper, we
propose a sparse array design method, named the cross-coarray consecutive-connected
(4C) criterion, which uses multiple ULAs. We first consider the consecutive virtual sensor
distribution for any two ULAs. Then, we describe the 4C criterion and add processing for
solving the displacement between subarrays under Q given ULAs, defined as a sparse array
using Q ULAs (SA-UQ). At last, we propose a special case, SA-U3. The main contributions
of this paper are as follows:

1. The property of consecutive virtual sensors in SA-U2 is considered, which gives the
conclusions corresponding to any values of sensor number and the inter-element
spacing of the two subarrays.

2. The 4C criterion is described, and one algorithm for solving displacement between
subarrays under Q given ULAs is presented. The 4C criterion is less complicated
than the ANA and more flexible than the GNSA. SA-UQ can estimate underdeter-
mined signals.

3. Based on the 4C criterion, SA-U3 is presented, which can obtain a higher DOFs than
that using two ULAs and achieves DOFs close to the GNSA. Moreover, through the
analysis of the design method, the order of cross-co-subarrays can influence the DOFs.

The remainder of this paper is arranged as follows. Section 2 introduces the signal
model and the DOA estimation algorithm. Section 3 describes the criterion. The perfor-
mance analysis and simulation experiments are presented in Section 4. Section 5 presents
the conclusions of this paper.

2. Preliminary
2.1. Signal Model

Assume that a sparse array has T sensors located D = {0, d1, d2, · · · , dT−1}, where the
unit inter-element spacing is λ/2, and λ is the wavelength of the signals. And, there are K
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far-field narrow-band uncorrelated signals from θk(k = 1, · · · , K) with power σ2
k impinging

on the array. Thus, the received data are given by

X = AS(t) + N, (1)

where the manifold matrix is

A = [a(θ1), · · · , a(θK)],

a(θk) =[1, ejπd1 sin(θk), · · · , ejπdT−1 sin(θk)]T ,
(2)

S(t) is the signals, where t = 1, · · · , J and J is the snapshots, and N is usually Gaussian
random variables with zero means and variance σ2

n . Thus, the covariance matrix is given by

RX = XX H/J = ARS AH + σ2
n IT , (3)

where RS = diag[σ2
1 , · · · , σ2

K]. The classical DOA estimation, like SS-MUSIC, indicates that
the covariance matrix RX can be vectorized to the vector as

Z = vec(RX) = Bp + σ2
ne, (4)

where B = A∗ ◦ A, ◦ is the Khatri–Rao product, e = vec(I), and p is the diagonal elements
of RS. Hence, the vector Z can be seen as the received data of a virtual linear array, whose
location is defined as the difference coarray, given by

Dv = {dm − dn|dm, dn ∈ D}. (5)

And, we define the weight function, which shows the distribution of values in Dv.

Definition 1. The weight function of Dv is defined as the number of coarray lag index `, where
< · > is cardinality of set and

w(`) =< {(dm, dn)|dm − dn = `} > , dm, dn ∈ D. (6)

2.2. SS-MUSIC

We can apply SS-MUSIC [17,19] to the virtual sensors and solve the DOA estimation.
We rearrange and select the elements in Z and then have

Z′ = FZ, (7)

where F is the selection matrix with size (2Sv + 1) × M2, and 2Sv + 1 is the maximum
number of the consecutive lags. The selection matrix is given by

[F]m,a+(b−1)M =

{
1/w(m− Sv − 1) m− Sv − 1 = da − db

0 otherwise
, (8)

where m = 1, 2, · · · , 2Sv + 1, a = 1, 2, · · · , T, and b = 1, 2, · · · , T. Thus, Z′ can be
rewritten as

Z′ = B′p + σ2
ne′ (9)

where
B′ = [b′(θ1), · · · , b′(θK)],

b′(θk) =[e−jπSv sin(θk), · · · , 1, · · · , ejπSv sin(θk)]T ,
(10)

and e′ is an all-zero vector except 1 located at Sv + 1. Then, we divide Z′ into Sv + 1 parts,
and each part owning Sv + 1 elements is defined as [Z′]i:i+Sv , which means this part has
the elements in Z′ from index i to index i + Sv. Therefore, the spatial smoothing covariance
matrix is



Sensors 2023, 23, 9116 4 of 13

Rss =
1

Sv + 1

Sv+1

∑
i=1

[Z′]i:i+Sv [Z
′]Hi:i+Sv

. (11)

At last, we apply the MUSIC algorithm to Rss and can solve the DOA estimation.

3. The Configuration of SA-UQ

In this section, we try to use Q ULAs to construct a new sparse array. We assume that
the qth subarray has Mq sensors with inter-element spacing M̄q. The displacement between
the first sensor in the first subarray and the first sensor in qth subarray is Lq, where L1 = 0.
The array structure is shown in Figure 1. So, the sensor location of the qth subarray is
Dq = {M̄qm + Lq|0 ≤ m ≤ Mq − 1}. Moreover, the difference coarray of the qth and q′th
subarrays is

Dvqq′ = {M̄q′m
′ − M̄qm + Lq′ − Lq|0 ≤ m ≤ Mq − 1, 0 ≤ m′ ≤ Mq′ − 1}. (12)

where q 6= q′, Dvqq′ is the cross-coarray, and when q = q′, Dvqq′ = DSq is the self-coarray. We
define a function C(•), which is denoted as a new set owning all elements belonging to the
maximum length of consecutive lags in one set.

Subarry 1

… …

Subarry qSubarry 2

… ……
qM

1M 1M qM
2M

2M

qL
2L

1 2 1M 1 2 2M 1 2 qM

Figure 1. The array structure of SA-UQ.

3.1. The Basic Analysis of SA-U2

In SA-U2, we assume M̄1 and M̄2 are coprime integers, M̄1 < M̄2, and L2 = 0. Then,
the cross difference coarray is given by

Dv12 = {M̄2m′ − M̄1m|0 ≤ m ≤ M1 − 1, 0 ≤ m′ ≤ M2 − 1}, (13)

and owns the following properties.

Proposition 1. There are some facts holding for Dv12 .

1. When M2 < M̄1 or M1 < M̄2, the maximum number of consecutive lags is not bigger
than M̄1.

2. When M2 ≥ M̄1 and M1 ≥ M̄2, the consecutive lags are from −M̄1M1 + M̄2(M̄1 − 1) + 1
to M2M̄2 − M̄1(M̄2 − 1)− 1.

3. With a fixed value of T, when M1 = bT/2c, M2 = dT/2e, M̄1 = 1 and M̄2 = M1, the
number of consecutive lags, defined as Lv = M̄1M1 + M̄2M2 + M̄1 + M̄2 − 2M̄1M̄2 − 1,
can achieve maximum value as M1M2. The values of M1, M2 can be reversed, and the
conclusion is still valid.

Proof. See Appendix A.

Remark 1. Obviously, as for SA-U2, the proposition reveals that:

1. In order to have a big value of Lv in Dv12 , the number of sensors of the two subarrays should
be no less than M̄2 and M̄1, respectively.

2. In order to have a big Lv in Dv12 , M1 and M2 should be close, and the gap between M̄1 and
M̄2 should be big.
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3.2. The Solutions for SA-UQ

We consider that the difference coarray is made up of multiple coarrays of two subar-
rays. Thus, we use the conclusions in Proposition 1 to construct the SA-UQ. In order to let
SA-UQ have a big number of consecutive lags in Dv, we propose a design method, named
the cross-coarray consecutive-connected (4C) criterion.

Proposition 2. The 4C criterion indicates that:

1. Set M1 = M2 = · · · = MQ−1 = r, and MQ = r̄ = T − (Q− 1)r, where r ≤ bT/Qc.
2. Set M̄Q ≤ r and M̄1 = 1, where M̄q < M̄Q(1 ≤ q ≤ Q− 1). Moreover, any two values

should be coprime integers.
3. The main purpose is to connect the consecutive lags of all cross difference co-subarrays.

min
[
C
(
Dvqq′

)]
= −M̄q Mq + M̄q′(M̄q − 1) + 1 + Lq′ − Lq. and max

[
C
(
Dvqq′

)]
=

M̄q′Mq′ − M̄q(M̄q′ − 1)− 1 + Lq′ − Lq. A flow chart gives one method to find the solutions
for displacement between the subarrays in Figure 2, and the key steps are shown in Algorithm 1.

Algorithm 1 The processing of finding the solutions for displacement between
the subarrays.

1. Initial: Set q = 1, q′ = 2.

2. If q′ = 2, let min[C(Dv12)] = max
[
C
(
∪Q

q=1DSq

)]
+ 1, and obtain L2. Update that

Sv0 = max[C(Dv12)], q = q′, and then q′ = q′ + 1.

3. If q′ > 2 and q = q′ − 1, let min
[
C
(
Dvqq′

)]
= Sv0 + 1, and obtain Lq′ .

4. Update that Sv0 = max
[
C
(
Dvqq′

)]
.

5. If q > 1, set q = q − 1. If Sv0 < min
[
C
(
Dvqq′

)]
− 1, update that Lq′−1 = Lq′−1 −

min
[
C
(
Dvqq′

)]
+ Sv0 + 1 and Lq′ = Lq′ − 2 min

[
C
(
Dvqq′

)]
+ 2Sv0 + 2. Then, turn to

step 4. If Sv0 ≥ min
[
C
(
Dvqq′

)]
− 1, turn to step 4.

6. If q = 1 and q′ 6= Q, set q = q′ and q′ = q′ + 1, and turn to step 3. If q = 1 and q′ = Q,
end the processing.

Remark 2. As for the 4C criterion, we have some remarks:

1. The values of the sensor number and inter-element spacing are based on Proposition 1, which
ensures any cross-difference co-subarray has a big number of consecutive lags.

2. DS1 = {`| − r + 1 ≤ ` ≤ r − 1}. So, max
[
C
(

UQ
q=1DSq

)]
≥ r − 1. At first, we set

min[C(Dv12)] = max
[
C
(
∪Q

q=1DSq

)]
+ 1.

3. When q′ > 2 and q = q′ − 1, we can solve Lq′ through min
[
C
(
Dvqq′

)]
= Sv0 + 1, where

max
[
C
(
Dv1(q′−1)

)]
+ 1 = min

[
C
(
Dvqq′

)]
.

4. When q′ > 2 and 1 ≤ q < q′ − 1, if Sv0 = max
[
C
(
Dv(q+1)q′

)]
< min

[
C
(
Dvqq′

)]
,

two consecutive parts are not connected. Thus, we change the value Lq′−1 = Lq′−1 −
min

[
C
(
Dvqq′

)]
+ Sv0 + 1 and Lq′ = Lq′ − 2 min

[
C
(
Dvqq′

)]
+ 2Sv0 + 2 to ensure that

two sets are continuous.

For the sake of clarity, we propose an example that T = 20, Q = 4, Mq = 5, M̄q = {1, 3, 4, 5}.
Thus, max

[
C
(
∪Q

q=1DSq

)]
= 6, and the other steps are shown in Table 1.
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Table 1. The detailed steps to find solutions for SA−U4 with T = 20.

q′ Lq′ C
(
Dvqq′

)
q′ = 2 min[C(Dv12 )] = −4 + L2 = 7

C(Dv12 ) = [7, 23]→L2 = 11

q′ = 3
min[C(Dv23 )] = −6 + L3 − L2 = 24

C(Dv23 ) = [24, 40]→L3 = 41, L3 − L2 = 30
→L3 − L1 = 41 C(Dv13 ) = [37, 57]

q′ = 4
min[C(Dv43 )] = −4 + L4 − L3 = 58

C(Dv34 ) = [58, 70]→L4 = 103, L4 − L3 = 62
→L4 − L2 = 92 C(Dv24 ) = [88, 104]

Update
L3 = 41− (88− 70− 1) = 24 C(Dv23 ) = [8, 24]

C(Dv13 ) = [20, 40]
L4 = 103− 2(88− 70− 1) = 69

C(Dv34 ) = [41, 53]→ L4 − L3 = 45

q′ = 4 →L4 − L2 = 58 C(Dv24 ) = [54, 70]
→L4 − L1 = 69 C(Dv14 ) = [65, 89]

Begin

Yes

No

' 2?q 

1, ' 2q q 

2
L

', ' ' 1q q q q  

'q
L

1?q 

No

', ' ' 1q q q q  ' ?q Q

Yes

End

No

Yes

1q q 

Yes

No

 
120

max
v v

S  
 

 
' 0

min 1
qqv v

S   
 

 
'0

max
qqv v

S  
 

 
'' ' 02min 2 2

qqq q v vL L S    
 

 '0 min 1?
qqv vS   

  

   
12 1min max 1

q

Q
v q S

    
   

 
'' 1 ' 1 0min 1

qqq q v vL L S 
    
 

Update

'qqv

Figure 2. The flowchart of the processing to find solutions for SA-UQ.

3.3. The Application in SA-U3

In this subsection, we take the consideration of SA-U3, where

D1 = {m|0 ≤ m ≤ r− 1},
D2 = {2m + L2|0 ≤ m ≤ r− 1},
D3 = {rm + L3|0 ≤ m ≤ r̄},

(14)

r = 2[T/6]− 1, r̄ = T− 2r, and [•] is denoted as the nearest integer of a value. Under this
set of inter-element spacing and the sensor number of subarrays, we use the algorithm in
Figure 2 and solve L2 = 2r + 1, L3 = 7r, and Sv = (r̄− 1)r + 7r.

But, it can be improved. Based on the 4C criterion, we set L2 = (r̄ + 2)r − 1 and
L3 = (r̄ + 4)r − 3. Here, D2 and D3 have one common sensor located at L3. Thus, the
difference coarray Dv has the following properties:
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Proposition 3. The distribution of consecutive lags in Dvij satisfies that:

1. DS = ∪3
q=1DSq has the consecutive lags from −r + 1 to r + 1.

2. Dv12 has the consecutive lags from −r + 1 + L2 to 2(r− 1) + L2.
3. Dv13 has the consecutive lags from −r + 1 + L3 to (r̄− 1)r + L3.
4. Dv23 has the consecutive lags from −r + 1 + L3 − L2 to r̄r− r + 1 + L3 − L2.
5. Dv has the consecutive lags from −Sv to Sv, where Sv = 2r̄r + 4r− 3.

Proof. The self-difference coarray can be denoted as

DS = {±m|0 ≤ m ≤ r− 1} ∪ {±2m|0 ≤ m ≤ r− 1} ∪ {±rm|0 ≤ m ≤ r̄− 1}. (15)

Moreover, based on Proposition 1, we can have the values of consecutive lags in Dvij .

1. From (15), it is obvious that the lags from−r + 1 to r− 1 belong to DS1 , the lags±r belong

to DS3 , and the lags±(r + 1) are even and belong to DS2 . So, max
[
C
(
∪Q

q=1DSq

)]
= r + 1.

2. The subarray 1 and subarray 2, respectively, have the inter-element spacing as 1 and
2, and both have r sensors. Thus, M̄ = 1, N̄ = 2, M = N = r. Dv12 has no hole and
has the lags from −r + 1 + L2 to 2(r− 1) + L2. Due to L2 = (r̄ + 2)r− 1, the range of
lags is r̄r + r ≤ ` ≤ r̄r + 4r− 3.

3. The subarray 1 and subarray 3 have the inter-element spacing as 1 and r with r and
r̄ sensors. Thus, M̄ = 1, N̄ = N = r, M = r̄ + 1. Dv13 has no hole and has the lags
from −r + 1 + L3 to r(r̄ − 1) + L3. Due to L3 = (r̄ + 4)r − 3, the range of lags is
r̄r + 3r− 2 ≤ ` ≤ 2r̄r + 4r− 3.

4. The subarray 2 and subarray 3 have the inter-element spacing as 2 and r with r and
r̄ sensors. Thus, M̄ = 2, N̄ = N = r, M = r̄ + 1. Dv23 has the consecutive lags
from −r + 1 + L3 − L2 to r̄r− r + 1 + L3 − L2. Due to L3 − L2 = 2r− 2, the range of
consecutive lags is r− 1 ≤ ` ≤ r̄r + r− 1.

5. Based on the proof of the last four properties, we can find that the the consecutive of
the self-difference coarray and cross-difference coarray are connected, satisfying the
4C criterion. Hence, Sv = 2r̄r + 4r− 3.

In conclusion, all properties are true. Moreover, SA-U3 has no hole in the difference
coarray.

Obviously, when r > 3, 2r̄r + 4r − 3− [(r̄ − 1)r + 7r] = r̄r − 3r − 3 > 0. Although
two configurations both satisfy the 4C criterion, the improved one changes the order of the
co-subarrays, which is Dv23 → Dv12 → Dv13 , while the original one is Dv12 → Dv23 → Dv13 .
Hence, the order of the co-subarrays can influence the value of Sv. Moreover, when Q = 3,
we only need to consider the order of Dv12 and Dv23 . But, when Q > 3, it is more difficult
to analyze and decide the order. Considering that SA-UQ proposed by the algorithm in
Figure 2 has already obtained a big Sv, this algorithm is still effective for Q > 3.

In this paper, except that SA-U3 is the improved one, another SA-UQ is proposed
using the algorithm in Figure 2. The expression of the consecutive lags is provided, which
is important for using SS-MUSIC. Through SS-MUSIC, we can solve the DOA estimation.

4. Performance Analysis and Simulation Experiments
4.1. The Analysis of DOF

In this part, we discuss the DOFs of sparse arrays. When we use SS-MUSIC to solve
DOA estimation, the DOFs are equivalent to Sv. At first, we compare the DOFs of SA-U3
with those of MRA [7], NLA [11], Nested CADiS [21], CAP-3 [26], ANAI-1, ANAII-1 [29],
and MISC [30]. We vary T from 9 to 18. The results are shown in Figure 3. All the sparse
arrays are composed of several ULAs. The MRA has the biggest value of Sv. When T
is small, ANAII-1, which uses five ULAs, can have the same DOFs as MRA. And, MISC
using four ULAs has the second biggest value of Sv. We can find that the the proposed
array SA-U3 has DOFs close to ANAI-1 and CAP-3, which are all composed of three ULAs,
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demonstrating the efficiency of the design method. Moreover, SA-U3 has much improved
DOFs compared with Nested CADiS and the NLA.

Then, we compare the SA-UQ with the GNSA. We vary T from 9 to 45 with three
intervals. As for GNSA, we choose the MRA+MRA design model [33], and the number
of subarray sensors is b

√
Tc, which can produce the biggest number of consecutive lags

in the difference coarray. As for SA-UQ, we vary Q = {3, 4, 5}. As for SA-U4 and SA-U5,
r = bT/Qc. When Q = 4, if T = {21, 24, 27}, M̄q = {1, 2, 3, 5}; if T = {30, 33, 36, 39},
M̄q = {1, 5, 6, 7}; and if T = {42, 45}, M̄q = {1, 7, 8, 9}. When Q = 5, if T = {36, 39, 42, 45},
M̄q = {1, 2, 3, 5, 7}. The results are shown in Figure 4. Here, we can find that SA-U3 can
have the Sv close to the GNSA. But, considering that the GNSA cannot be applied to any
value of T, the 4C criterion is a more flexible design method. Moreover, comparing SA-UQ
with different Q, we can obtain the lower Sv with the increasing Q.
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4.2. Simulation Results

To verify the DOA estimation performance of the proposed array configuration, we
simulate the performance of SA-UQ and compare it with other sparse arrays. We compare
the performance using the root mean square error (RMSE) to quantify the accuracy, which
is defined as

RMSE =

√√√√ 1
GK

G

∑
m=1

K

∑
g=1

(
θ̂k,g − θk

)2
(16)

where G is the number of Monte Carlo simulations, K is the number of signals, and θ̂k,g is
the DOA of the kth signal in the gth Monte Carlo simulation.



Sensors 2023, 23, 9116 9 of 13

Simulation 1: MUSIC spectrum under the underdetermined signals.
Using SS-MUSIC, we can find underdetermined signals in sparse arrays. Thus,

we conduct the simulations in SA-U3 and SA-U4 with T = 20. As for SA-U4, r = 5,
M̄q = {1, 3, 4, 5}. Set the SNR = 0dB and J = 5000. And, we respectively assume that
K = 25 and K = 35, where the signals are uniformly distributed from −45◦ to 45◦. The
normalized spatial spectrum is presented in Figure 5. The simulation results show that
both SA-U3 and SA-U4 can effectively estimate all DOAs under low SNR.
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Simulation 2: RMSE comparison of SA-UQ and the existing sparse arrays under
different SNRs.

In this simulation, we compare the RMSE of SA-UQ with those of Nested CADiS,
GNSA, CAP-3, ANAI-1, ANAII-1, and MISC. We set T = 20, J = 5000, and vary SNR
from −5 dB to 15 dB with 5 dB intervals. Assume that K = 25, where the signals are
uniformly distributed from −45◦ to 45◦. We conduct G = 500 simulation times and the
results are shown in Figure 6. With the increase in the SNR, the RMSEs decrease and
decrease gradually more slowly. When considering the results of comparison of Sv, we can
find that the sparse array with bigger Sv can have the lower RMSE using SS-MUSIC. Thus,
ANAII-1 and MISC have the highest accuracy. SA-U3 has an RMSE close to that of ANA-1.
SA-U4 and Nested CADiS have the lowest Sv, so they have the biggest RMSEs.

Simulation 3: RMSE comparison of SA-UQ and the existing sparse arrays under
different snapshots.

Based on Simulation 2, we set a fixed value for the SNR as 0dB, and vary J from
{20, 50, 100, 200, 500, 1000, 2000, 5000}. The results are presented in Figure 7. The simulation
results show that as the number of snapshots increases, the RMSEs decrease. When
J ≥ 1000, the RMSEs become flattened. Comparing the RMSEs of different sparse arrays,
we can have the same conclusions as for Simulation 2.
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Simulation 2: RMSE comparison of SA-UQ and the existing sparse arrays under
different SNRs.

In this simulation, we compare the RMSE of SA-UQ with those of Nested CADiS,
GNSA, CAP-3, ANAI-1, ANAII-1, and MISC. We set T = 20, J = 5000, and vary SNR
from −5 dB to 15 dB with 5 dB intervals. Assume that K = 25, where the signals are
uniformly distributed from −45◦ to 45◦. We conduct G = 500 simulation times and the
results are shown in Figure 6. With the increase in the SNR, the RMSEs decrease and
decrease gradually more slowly. When considering the results of comparison of Sv, we can
find that the sparse array with bigger Sv can have the lower RMSE using SS-MUSIC. Thus,
ANAII-1 and MISC have the highest accuracy. SA-U3 has an RMSE close to that of ANA-1.
SA-U4 and Nested CADiS have the lowest Sv, so they have the biggest RMSEs.

Simulation 3: RMSE comparison of SA-UQ and the existing sparse arrays under
different snapshots.

Based on Simulation 2, we set a fixed value for the SNR as 0dB, and vary J from
{20, 50, 100, 200, 500, 1000, 2000, 5000}. The results are presented in Figure 7. The simulation
results show that as the number of snapshots increases, the RMSEs decrease. When
J ≥ 1000, the RMSEs become flattened. Comparing the RMSEs of different sparse arrays,
we can have the same conclusions as for Simulation 2.
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5. Conclusions

In this paper, a new sparse array design method, named as the 4C criterion, and
configuration, defined as SA-UQ, which uses Q ULAs, are proposed. The paper first gives
the property of consecutive lags in SA-U2 and concludes the requirement for the values of
both inter-element spacing and sensor number for any two ULAs. Then, the conclusions
extend to sparse arrays using Q ULAs, which is the 4C criterion, and the method for
finding solutions for the displacement between subarrays in SA-UQ is presented. Lastly,
the paper proposes SA-U3 and gives the analytical expression for sensor location. Through
the analysis of the difference coarray, the 4C criterion is effective. Moreover, the simulation
experiments prove that SA-UQ can estimate underdetermined signals, and SA-U3 can have
RMSEs close to the other sparse arrays using three ULAs.
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Appendix A

Proof of Proposition 1

We assume that there are two lags in Dv12 , defined as µ = M̄2m− M̄1n, ν = M̄2m′ −
M̄1n′. If the two lags are consecutive, we have

|µ− ν| = |M̄2(m−m′)− M̄1(n− n′)| = 1. (A1)

When |M̄2b− M̄1a| = 1, if m−m′ = b and n− n′ = a, (A1) is true.

1. We prove it using a contradiction. When M1 < M̄2 or M2 < M̄1, there exist M̄1
consecutive lags in Dv12 . The first lag µ and the M̄1th lag ν satisfy that{

M̄1n + (M̄1 − 1)M̄1a = cM̄1M̄2 + M̄1n′

M̄2m + (M̄1 − 1)M̄2b = cM̄2M̄1 + M̄2m′
. (A2)

Due to M̄1a = M̄2b− 1, (A2) can be rewritten as{
n− n′ = (c− b)M̄2 + a + 1

m−m′ = (c− b)M̄1 + b
. (A3)

Due to M1 < M̄2 or M2 < M̄1, c− b = 0. However, n− n′ = a + 1. Thus, (A2) is false,
and there are no more than M̄1 − 1 consecutive lags in Dv12 .

2. We first consider M1 = M̄2. Given an arbitrary integer µ, where µ ∈ [−M̄2 +
1, M2M̄2 − M̄1(M̄2 − 1)− 1], we need to prove that n ∈ [0, M1 − 1], m ∈ [0, M2 − 1]
such that µ = M̄2m− M̄1n holds. When n ∈ [0, M1 − 1], 0 ≤ M̄1n ≤ M̄1(M1 − 1).
Due to M̄2m = M̄1n + µ, we can have

− M̄2 + 1 ≤ M̄2m ≤ M2M̄2 − M̄1(M̄2 −M1)− 1, (A4)

which is equivalent to
− M̄2 < M̄2m < M2M̄2. (A5)

The equation implies that −1 < m < M2, so the integer m satisfies that 0 ≤ m ≤
M2 − 1. Hence, when M1 = M̄2, µ ∈ Dv12 . Obviously, when M1 > M̄2, the sensor
location {M̄1n|0 ≤ n ≤ M̄2 − 1} ⊂ D1, so µ ∈ Dv is still satisfied.
Then, we consider M2 = M̄1. Assume an arbitrary integer ν, which meets ν ∈
[−M̄1M1 + M̄2(M̄1− 1)+ 1, M̄1− 1]. When m ∈ [0, M2− 1], 0 ≤ M̄2m ≤ M̄2(M2− 1).
Due to M̄1n = M̄2m− ν, we can have

− M̄1 + 1 ≤ M̄1n ≤ M1M̄1 − M̄2(M̄1 −M2)− 1, (A6)

which is equivalent to
− M̄1 < M̄1n < M1M̄1. (A7)

The equation also implies that −1 < n < M1, so the integer n satisfies that 0 ≤ n ≤
M1 − 1. Hence, when M2 = M̄1, ν ∈ Dv12 . Obviously, when M2 > M̄1, the sensor
location {M̄2m|0 ≤ m ≤ M̄1 − 1} ⊂ D2, so ν ∈ Dv12 is still satisfied.
When M̄1 ≤ M2, M̄2 ≤ M1, we can find that −M̄2 + 1 ≥ −M̄1M1 + M̄2(M̄1 − 1) + 1
and M̄1 − 1 ≤ M2M̄2 − M̄1(M̄2 − 1) − 1. In conclusion, any value µ satisfying
µ ∈ [−M̄1M1 + M̄2(M̄1 − 1) + 1, M2M̄2 − M̄1(M̄2 − 1)− 1], belongs to Dv12 .
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3. It is easy to have Lv = M̄1M1 + M̄2M2 + M̄1 + M̄2 − 2M̄1M̄2 − 1. When M1, M2 are
fixed, we have the derivatives of Lv as

∂Lv

∂M̄2
= M2 + 1− 2M̄1

∂Lv

∂M̄1
= M1 + 1− 2M̄2

. (A8)

Case 1: If M̄1 < (M2 + 1)/2, M̄2 < (M1 + 1)/2, Lv can achieve maximum as
Lv = M1 + M2 − 1 when M̄1 = M2, M̄2 = M1.
Case 2: If M̄1 ≥ (M2 + 1)/2, M̄2 < (M1 + 1)/2, Lv can achieve maximum as
Lv = M1M2 when M̄1 = 1, M̄2 = M1.
In conclusion, Lv can achieve the maximum in Case 2. And, due to the Cauchy
inequality, we can easily find that when M1 = dT/2e, M2 = bT/2c or M1 = bT/2c,
M2 = dT/2e , Lv can obtain the maximum value.
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