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Abstract: Radar is an important sensing technology for three-dimensional positioning of aircraft.
This method requires detecting the response from the object to the signal transmitted from the
antenna, but the accuracy becomes unstable due to effects such as obstruction and reflection from
surrounding buildings at low altitudes near the antenna. Accordingly, there is a need for a ground-
based positioning method with high accuracy. Among the positioning methods using cameras that
have been proposed for this purpose, we have developed a multisite synchronized positioning system
using IoT devices equipped with a fish-eye camera, and have been investigating its performance. This
report describes the details and calibration experiments for this technology. Also, a case study was
performed in which flight paths measured by existing GPS positioning were compared with results
from the proposed method. Although the results obtained by each of the methods showed individual
characteristics, the three-dimensional coordinates were a good match, showing the effectiveness of
the positioning technology proposed in this study.

Keywords: fish-eye camera; IoT device; MO detection; 3D positioning; aircraft

1. Introduction

In the management of aircraft, UAVs and other airborne systems, the measurement
of three-dimensional positioning information of aircraft is important, and research and
development of various techniques has been carried out. The most popular method is
satellite positioning. An Automatic Dependent Surveillance–Broadcast (ADS-B) [1] signal,
which is based on GPS technology, is transmitted from almost all civilian aircraft, and the
information contained therein is governed by regulations. Furthermore, many airfields
are equipped with equipment for radar observation such as Airport Surveillance Radar
(ASR) [2], which is used to determine the positions of aircraft that do not transmit an
ADS-B signal. The majority of these positioning technologies are based on the principles of
3D position measurement based on detecting the response from an object to a signal trans-
mitted from an antenna. We have regularly been conducting simulations of aircraft noise [3].
For these simulations, it is required to identify the aircraft’s position at relatively lower
altitudes below 1000 ft, while measuring frequency characteristics of the aircraft sound.
In such a case, if the accuracy of measuring flight altitude is coarse, the precision of the
predicted acoustic characteristics related to the flight increases. Therefore, a more accurate
technique for estimating flight positions at lower altitude is needed. However, it is difficult
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to use radar information due to the presence of undetectable aircraft types, the effects of re-
flections and obstructions from buildings, and issues related to information confidentiality.
Furthermore, GPS technologies, including ADSB, are not satisfactory due to the presence
of aircraft that do not emit their signals and challenges with quantization errors [4] in GPS
altitude measurements. Consequently, an alternative method for estimating flight paths
using optical techniques can be effectively adopted.

There has been extensive research on the use of video data captured from the ground for
detection of aircraft, and much of this prior work was conducted on themes related to practical
application of UAVs in particular. For example, Davies et al. investigated the effectiveness
of a Kalman filter for detecting very small aircraft in low-contrast images [5]. Furthermore,
Rozantsev et al. successfully detected very small aircraft from images acquired with moving
cameras by using computer vision [6]. Doyle et al. developed a system capable of real-time
tracking of drones by using a combination of computer vision with pan/tilt technology [7],
and Kashiyama et al. have been actively investigating the inference of UAV flight paths by
applying cutting-edge technology [8]. These studies have generally investigated detection of
aircraft by unique algorithms using video from fixed-focal-point cameras, and we also use these
detection methods as a reference. In addition, Kang & Woolsey researched flight path detection
by stereoscopic measurement methods using two fish-eye cameras [9]. In contrast, the method in
the present paper greatly differs in the sense that it aims to acquire the 3D coordinates of aircraft
in accordance with surveying theory. Moreover, the determination of 3D flight paths over a
wider range of actual aircraft has not been confirmed in comparison with existing technology,
even in case studies. Research into outdoor ground-to-air aircraft detection can therefore be
said to have high novelty. Research that captures video of the sky by using a fish-eye camera,
unrelated to aircraft, is often found in the field of meteorology. In this research, solar irradiation
and other parameters. are inferred from captured sky images [10,11].

We therefore developed an aircraft positioning camera (APC) that is based on low-cost,
portable Internet of Things (IoT) devices equipped with a fish-eye camera and that can
mechanically measure the three-dimensional position of aircraft in a local region [12]. We
are now conducting research to confirm the capabilities of the APC. The remainder of
this paper is organized as follows. Section 2 introduces the specifications of the APC, and
Section 3 gives the details of the algorithms used for analysis. Section 4 discusses the
fundamental calibration experiments, and Section 5 presents a case study for confirming
its flight path measurement capabilities. Section 6 includes further discussion including
limitations, and finally, Section 7 concludes the paper.

2. IoT Device Mounted with Fish-Eye Camera

Figure 1 shows an overview of the measurement method used by the APC for obtaining
the 3D positions of aircraft. At sites A (blue) and B (red) in the diagram, the dome shapes
extending into the sky centered on each measurement point indicate the limits of the
fish-eye cameras. This method assumes that APCs are installed at no less than two sites,
and that aircraft passing through the sky are captured simultaneously by each camera.
Although the distance between the sites cannot be rigorously specified because it depends
on the number of pixels in the installed cameras, around 300 m is thought to be the tolerable
limit empirically based on the performance of the system in this study as described below.
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Figure 2 shows a diagram of the components of the APC hardware, and Table 1 shows
the specifications of each part. A single-board computer (Raspberry Pi 3 model B) was
used as the system board that controlled the video capture, encoding, Transmission Control
Protocol (TCP) communication via a network module (4GPi), time management and power
supply management via a power supply unit (sleePi). A dedicated camera module for
Raspberry Pi (VR220) was used as the camera tool, and this was mounted with a fish-eye
lens (RP-L220) for equidistant shooting that can capture a field of view of up to a maximum
of 220◦. Because sudden rain was also anticipated at the actual shooting site, this equipment
was protected with a custom-made waterproof case. Although it is desirable to measure
the tilt and level azimuth of the APC continuously and accurately, for example, by using
a tilt sensor or geomagnetic sensor, in this study these were simply adjusted by using an
electronic compass and water level. In this research, the output pixel size of the video was
set to 960 pixels in both width and height to save on the capacity of measured data.
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Figure 2. Construction of APC based on a Raspberry Pi 3.

Table 1. Specifications for the sensing camera system.

Parts Product Manufacturer Purpose

Single-board computer Raspberry Pi 3
mobile-B ---

Video filming
Data encoding

Control

Network module 4GLTEpi MechaTracks Co., Ltd.,
Fukuoka, Japan

TCP
Time control

Power management unit sleePi MechaTracks Co., Ltd.,
Fukuoka, Japan

Supply voltage, alive
monitoring

Camera module VR220 Entaniya Co., Ltd.,
Tokyo, Japan ---

Fish-eye lens
(Equidistant projection) RP-L220 Entaniya Co., Ltd.,

Tokyo, Japan ---

Waterproof case --- MechaTracks Co., Ltd.,
Fukuoka, Japan ---

3. Algorithm for Estimating Flight Path

Figure 3 shows a flowchart of the analysis algorithm for flight path inference in this
study. Methods that employ YOLO [13] for this kind of moving object (MO) identification
have become mainstream in recent years, and our system can potentially also be migrated
to this method in the future. As shown in Figure 3, a conventional method based on MO
detection and a convolutional neural network (CNN) [14] was used to perform post facto
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analysis of the video captured at each site. First, MO detection of barycenter pixels of all
MOs captured in the video at each site was performed using openCV [15], and the values
of the azimuth angle and angle of elevation of the MO at each time were calculated from
the coordinates and center of the fish-eye lens (Step 1). Although the sky occupies most
of the image when the sky is filmed using a fish-eye lens, the ground is also captured
around the edges of the lens because the field of view is wide. Because of this, the MOs
from MO detection are not limited to flying objects such as aircraft, birds and insects. MOs
are also detected on the ground, such as people, cars and trees, and these constitute noise
that obscures the information about the aircraft. To extract aircraft information from the
data, aircraft identification is performed by CNN (Step 2), and processing combines this
with data screening based on this identification result (Step 3). In Step 4, the extracted
continuous values of the angle of each aircraft at each site are time synchronized, and the
coordinates are calculated by the method of forward intersection from surveying [16] based
on this angle information and the coordinates of each measurement site. The details of the
processing method in each step are described below.
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3.1. MO Detection Using openCV (Step 1)

Figure 4 shows an image of the calculation of the azimuth angle and angle of inclination
from the fish-eye camera images, and Figure 5 shows example frames of each analysis step
in MO detection. This analysis method is based on the idea of inferring the inclination
angle from the distance between the center coordinate of the circle of the fish-eye lens and
the barycenter coordinates of the MO, and the azimuth angle from the angle formed by
these two coordinates and the reference azimuth (in this study, the upward direction in
the image of the system). The center coordinate is detected by Hough transformation of
the center of the fish-eye lens captured in the image (red lines in Figure 4). The barycenter
coordinate is calculated by using a simple MO detection technique. More specifically, the
difference between consecutive frames is calculated by the frame difference method, and
the difference image is converted to grayscale and then binarized (middle panel in Figure 5).
This binarized image is composed of a set of many minuscule points (white is MO, black
is not MO), and the white parts must be joined to be recognized as a region. Because
of this, the discontinuous white regions are joined by applying the values of the white
pixels to the surrounding black regions by expansion processing. The silhouette of the MO
region is detected from the image, and finally the pixel coordinates of the barycenter of that
silhouette are defined as the position of the MO (right panel in Figure 5).
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Figure 5. Example frames for calculations in motion detection analysis: (a) original video; (b) result
of frame difference calculation, grayscale conversion and image binarization; (c) result of dilation,
object contour detection and barycentric coordinate estimation.

The azimuth angle θ and inclination angle ϕ are calculated by the following equations
based on the center (Fx, Fy) of the fish-eye lens as calculated by the above method and the
barycenter coordinates (Ox, Oy) of the MO:

θ = arctan
(

Fx − Ox, Fy − Oy
)
, (1)

ϕ =

√
(Fx − Ox)

2 +
(

Fy − Oy
)2/pave, (2)

where pave is a ratio obtained from calibration experiments described below for converting
the distance between pixels into an angle.

3.2. Extracting Aircraft Information from Detected MO Data

Figure 6 shows an image for the extraction of aircraft information from data calculated
by the above MO detection. In cases such as urban areas and green areas where the video
captured by the APC can easily capture MO other than aircraft, the amount of MO information
analyzed in Step 1 increases greatly. When mechanical processing is performed on this kind of
MO data, the processing time also increases proportionally. In this study, the measurement
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target is aircraft flying at low altitude near airfields, and these aircraft regularly fly along a path
in the runway direction (blue line in Figure 6). In this study, boundary lines (red lines in Figure 6)
through which the aircraft always pass were set on the camera lens, and a CNN was used to
perform binary classification limited to MOs that pass through this region. The classification of
aircraft outside this range and other MOs is determined by calculating the correlations of the
hue histograms for each MO at each moment.
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Figure 6. Analysis image for extraction of aircraft information from detected MO data.

In the binary classification of aircraft and other MOs using a CNN, bounding box
images of the MO detected at the same time as the MO detection calculation are used as
training data. Figure 7 shows an example image of a training dataset. For the video for
obtaining the training data, data captured in advance by the APC on a different day in the
experiment were used in the case study described below. For classification annotations,
all images are classified by visual determination as “aircraft” or “other” in the analyzed
bounding box images. The aircraft set (left side in Figure 7) contains multiple aircraft types
including jet planes, propeller planes and helicopters, and the non-aircraft set (right side in
Figure 7) contains MOs such as people, birds, insects, trees and vehicles. In each category,
1000 images were used for training.
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Table 2 shows the setting items for training the CNN. In this study, PyTorch [17]
was used as the framework, and after the ResNet-18 structure [18] and weightings of the
trained model were loaded by following the tutorial, it was trained using the above dataset.
Parameters such as loss coefficients and activation coefficients were set to default values.

Table 2. Setting items for training of the CNN.

Setting Items Configuration Version

GPU NVIDIA GeForce RTX 3070 Laptop

OS Ubuntu 20.04

Language Python 3.8.10

Framework Pytorch 1.12.0 + cu113

Pre-trained model ResNet 18

To investigate the performance of binary classification using this CNN, classification
was performed on 3200 unknown measured images that were not contained in the training
data (1600 in each category). Table 3 shows the confusion matrix of the results. The vertical
direction shows the prediction results and the horizontal direction shows the classification
results. The overall accuracy as shown at the bottom right was 86.7%. However, if we
look at the aircraft column for the predicted label, this model had an accuracy of 99.9% for
aircraft prediction, with almost no misidentifications. This high accuracy was obtained
because the MO is clear when a low-altitude flying MO near a runway is captured by the
APC, as shown in Figure 7. These conditions make it easy to distinguish aircraft MOs from
non-aircraft MOs. The subsequent data screening was performed based on the judgment
results from this model.

Table 3. Binary classification accuracy between aircraft and non-aircraft based on CNN. N is the
number of images in a category, and the percentages are each classification accuracy. “Total” in the
bottom right is the overall model accuracy.

Aircraft Non-Aircraft N Recall [%]

Aircraft 1176 424 1600 73.5

Non-aircraft 1 1599 1600 99.9

N 1177 2023 3200

Precision [%] 99.9 79.9 Total 86.7

3.3. Data Screening (Step 3)

Figure 8 shows an image of the data screening based on judgment results from the
CNN. First, a range of ±2◦ was set as the CNN judgment boundary, and binary classification
by the CNN was performed on the bounding box images of MOs passing through this
region. In this way, hue histograms were obtained for the bounding box images of MOs
judged to be aircraft in the range of the boundaries, and the correlation coefficient was
calculated between temporally adjacent MOs. If this correlation coefficient exceeds a
threshold, the MO is judged to be an aircraft; otherwise, it is a non-aircraft. Then, screening
is performed on only the aircraft information from among the MO information in the entire
region by repeatedly performing this processing over time while updating the original
histogram information. In this study, a correlation coefficient of ≥0.85 and a time interval
of ≤2 s were set as the threshold for the correlation coefficient for judgment.
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Figure 8. Image of data screening by comparison of hue histograms of MO bounding box images
based on CNN judgment. The vertical axis is angle, and the horizontal axis is time. Red plots
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Figure 9 shows an example of the results of extracting the aircraft information by
using Steps 2 and 3. In this example, although there were several outliers at low inclination
angles in the right side of the figure, extremely clean angle variation properties appeared
outside this angle range. The outliers at low inclination angle are thought to be due to the
effect of the increasing inclusion of non-aircraft MOs in the hue histogram judgment.
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3.4. Estimation of Flight Position

If the time-continuous values of azimuth angle (θA, θB) and inclination angle (ϕA, ϕB)
up to Step 3 can be extracted at site A (Ax, Ay, Az) and site B (Bx, By, Bz) around a flying
aircraft P as shown in Figure 1, then the three-dimensional flying position (Px, Py, Pz) of the
aircraft can be calculated using the following equations:

Px =
m2·Bx − m1·Ax + Ay − By

m2 − m1
, (3)

Py = m1·(Px − Ax) + Ay, (4)

Pz = AZ + (D·m3), (5)

where m1 = tanθA, m2 = tanθB, m3 = tanϕA, and D is the horizontal distance between site
A and the aircraft. Note that since m1 and m2 diverge due to the tan calculation when the
azimuth angle at both sites is 90◦ or 270◦, the following measure to prevent this was taken
in this study:

Px =
m2·Bx − m1·Ax + Ay − By

m2 − m1
(6)

Py = m1·(Px − Ax) + Ay (7)

To perform the above calculations, it is necessary to synchronize the azimuth and
inclination angles obtained at each location of Sites A and B. In this study, these data were
synchronized by using the Network Time Protocol time information measured at each site.

4. Calibration Tests for Fish-Eye Lens

Calibration experiments were conducted to acquire the pave for calculating the incli-
nation angle and to confirm the amount of distortion of the fish-eye lens used. In this
experiment, angle markings on the walls and ceiling were captured by the APC, and the
pixel distance between the markings and the ceiling center point of the fish-eye camera was
determined in the image. The details of this experiment are shown below.

4.1. Conditions for Test

Figure 10 shows a schematic of the experiment and an actual photograph. The experi-
ments were performed in the corner of a meeting room. The field of view of the fish-eye
lens being used was 220◦, and precise positions of 12 locations at intervals of 10◦ from
−20◦ to +90◦ on the wall and ceiling were adjusted by laser rangefinder to cover half of
that inclination angle range (110◦). Note that in this investigation, the base of the fish-eye
lens was assumed to be 0◦. The APC was mounted on a tripod with a camera platform
marked at 30◦ pitch, and 6 images were captured sequentially while rotating the camera
orientation in 60◦ increments relative to the wall.

4.2. Results

Figure 11 was obtained by taking the pixel coordinates of the center of the dome (90◦)
as the starting point and then lowering the starting point sequentially in 10◦ increments
at the pixel distance between the coordinates at an angle 10◦ lower. The solid line shows
the arithmetic mean over all trials when the angle of the APC to the wall was changed
six times, the dotted line shows the arithmetic mean of the pixel distances obtained at all
inclination angles, and the labels on each dot show the difference from the dotted line.
Since the deviation depending on camera angle was less than one pixel, only the results
for the arithmetic mean are shown. The arithmetic mean for all inclination angles was
48.07 pixels. Note that variation in value was large between different inclination angles,
and particularly that from 10◦ to 0◦. Furthermore, the arithmetic mean for the angles above
50◦ was relatively small, and the arithmetic mean for the lower angles excluding from
10◦ to 0◦ was relatively large. The fish-eye lens mounted on the equipment ideally offers
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equidistant shooting, but it actually had the distortion as shown in the results. We therefore
adopted 4.807 pixel/degree as derived from the mean pixel distance of 48.07 pixels above
as the pave, and also added the difference values at each inclination angle as determined
from the experiments as correction terms for each calculated angle.
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5. Case Study

We conducted a case study on determining the three-dimensional flight path of aircraft
passing overhead for landing by using an APC at Fureainomori Park at the Atsugi Airfield
in Kanagawa Prefecture, Japan, in May 2022. In this case study, simultaneous monitoring
by ADS-B was performed and the ADS-B flight path was compared with that from the APC
in order to assess the accuracy of the flight path obtained by the APC. The details of this
experiment are described below.
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5.1. Conditions

Figure 12 shows the measurement sites. This park is located about 150 m from the
northern end of the runway, and aircraft pass overhead just before landing. The predicted
flight paths of approaching aircraft were provisionally calculated based on the touchdown
point and approach angle (assuming a gradient of 3◦), and positions that give an inclination
angle of 60◦ were adjusted with respect to the predicted flight paths. Figure 13 shows a
sample frame of video captured during measurements. The weather on the measurement
day had thin clouds that spread across the sky evenly without breaks, and the sun was
also faintly visible. The flight paths were calculated by APC through the analysis method
described above based on the video obtained through this measurement. The flight path
obtained by the APC and the flight path obtained by ADS-B were converted into XYZ
coordinates centered on the runway and cleaned up.
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Figure 13. Sample frames of video taken by the APC under cloudy conditions.

5.2. Results and Discussion

Figure 14 shows the flight paths obtained by both methods. In both graphs, the circles
show the APC path and the squares show the ADS-B path, and the solid line on the left side
shows the position where the APC was installed, and the landing direction of the aircraft
is toward the left side of each panel. The root mean square errors between the close plots
obtained by the two methods are indicated in each of the figures as RMSs.

The APC path had scatter perpendicular to the direction of motion at the camera
installation positions. Furthermore, the plots are more scattered with increasing distance
from the camera installation position. In comparison, the ADS-B path was more scattered
than the APC path overall. For the ADS-B altitudes in particular, a stepped shape with
intervals of approximately 7.7 m was measured.



Sensors 2023, 23, 9108 12 of 15

Sensors 2023, 23, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 13. Sample frames of video taken by the APC under cloudy conditions. 

5.2. Results and Discussion 
Figure 14 shows the flight paths obtained by both methods. In both graphs, the circles 

show the APC path and the squares show the ADS-B path, and the solid line on the left 
side shows the position where the APC was installed, and the landing direction of the 
aircraft is toward the left side of each panel. The root mean square errors between the close 
plots obtained by the two methods are indicated in each of the figures as RMSs. 

 
(a) 

 
(b) 

Figure 14. Comparison between flight paths by APC measurement and ADS-B monitoring: (a) ver-
tical profile; (b) horizontal plane. In each graph, the circle plots are the APC path, the square plots 
are the ADS-B path, the vertical solid line on the left side of each graph is the location where the 
APC was installed, and the landing direction is toward the left in each panel. The root mean square 
errors between the close plots obtained by the two methods are indicated in each panel as RMS. 

Figure 14. Comparison between flight paths by APC measurement and ADS-B monitoring: (a) vertical
profile; (b) horizontal plane. In each graph, the circle plots are the APC path, the square plots are the
ADS-B path, the vertical solid line on the left side of each graph is the location where the APC was installed,
and the landing direction is toward the left in each panel. The root mean square errors between the close
plots obtained by the two methods are indicated in each panel as RMS.

The scatter in the APC path perpendicular to the direction of motion is thought to be be-
cause the values diverged to infinity when the tan component of the azimuth angle approached
90◦ or 270◦. In addition, the cause of scatter in the APC path in the area far from the camera
installation location is attributed to the MO captured in the video being small, and the MO
detection was interrupted by the cloud conditions in the sky. The reason why the ADS-B path
was more scattered than the APC path is thought to be that the ADS-B transmission interval was
around 0.5 s [19] according to the specifications, whereas for the camera the time resolution was
30 fps (an interval of around 0.03 s). In particular, since ADS-B altitude is barometric altitude
or GNSS geometric altitude, a quantization error of 25 ft (≈7.7 m) occurs and that quantized
performance was evident in the results. Although the paths for each method had various
characteristics, they had almost identical 3D trajectories.

6. Discussion and Limitations

This study showed that APC can infer the local path of a flying aircraft, similar to
existing technology, but many issues remain that need to be investigated. We are planning
further research themes using this system. The details are described below.

The issues that require investigation include (1) the policy for setting each of the
parameters in MO detection; (2) the effects of errors during installation; (3) the detection
limit; (4) comparisons with previous research; and (5) investigation of the effects of weather
and other factors.
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For issue 1, the first parameters are the setting values for MO detection in openCV in
the APC in this study, which were adjusted empirically in this work. These parameters
will need to be changed depending on the equipment used, the types of MO targeted,
and effects of factors such as the video capture environment. As a result, the policy for
sophisticated setting of the parameters under various conditions needs to be investigated.

Regarding issue 2, error during installation included misalignment when the APC was
installed at the site, with parameters such as the tilt adjusted manually in this study. The size of
the effect that this installation error has on the output results needs to be confirmed. Depending
on the situation, a mechanism for digital error correction also needs to be considered.

With respect to issue 3, the detection limit is the range that can be captured by the
APC, and in the results of the case study in this report, detection was within a range of
around 500 m. However, we envision that this range will vary depending on conditions
such as the type of aircraft, contrast with the background, and speed of the aircraft. As a
result, it is desirable to accurately investigate the measurement thresholds for MO detection
under various flight parameters.

To address issue 4, comparisons should be made with the previous research listed
in Section 1. For a given type of airborne MO, it is desirable to rigorously confirm the
differences in performance between the cases of using fixed-focus-point cameras, fish-eye
lens stereo cameras and the present APC.

For issue 5, the weather conditions during video capture need to be considered. In
the present case study, the path in Figure 14 was obtained under cloudy conditions as
shown in Figure 13. However, there is a high possibility that tracking by camera is not
possible in cases including precipitation, low thick clouds, bright sunlight and nighttime.
Knowing these detection limits is also important in terms of metrology, and some method
that enables the inference of paths during bad weather by digital processing would also be
desirable to investigate.

Further research themes that are planned are as follows: (1) dynamic laboratory ex-
periments employing computer graphics and three-dimensional video capture technology;
(2) the ability to measure source emission power; and (3) applications such as surveys
counting the number of flights.

The laboratory experiments in research theme 1 are envisioned to target markers that
are actually moving, unlike the static calibration experiments shown in Section 4. In the
envisioned experiment, computer graphic video with an arbitrarily created moving MO will
be projected onto a 3D dome by employing computer graphics and 3D projection technology,
and the MO will be captured on video by the camera. If such a virtual experimental
method is effective, it will make it possible to investigate issues 1 to 4 as described earlier,
and to conduct rigorous investigation by changing the size, speed and contrast with the
background of the target MOs. This would also allow investigation of misalignment during
installation and the effect of the type of camera.

Measurement of source emission power in research theme 2 means simultaneously
measuring the acoustic power of noise emitted at every instant at the position of the aircraft,
and this information will become important data for preparing noise maps for evaluating
the impacts of aircraft noise. A method of noise measurement based on mutual correlation
methods employing multichannel microphones [20] is conventionally used but requires
large equipment and high costs. If the same measurement can be performed with the APC,
it would have the advantages not only of convenience, but also the ability to easily identify
the types of aircraft from video, in contrast to sound measurements.

Surveys counting the number of flights in research theme 3 above would entail mea-
surement of operating performance such as active times of aircraft arriving at and departing
from an airfield, operational directions, flight modes and flight paths, and these data are
considered important when preparing noise maps. Since the majority of civilian aircraft
transmit the ADS-B signal, it is easy to determine their total number of flights. However,
military aircraft often do not transmit this signal, so technology for observing the number
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of active aircraft is needed in addition to ADS-B. It is thought that the APC can be applied
effectively as one of these methods.

7. Conclusions

In the management of aircraft, UAVs and other airborne systems, measurement of
three-dimensional position information of aircraft is important. Against a backdrop where
research and development of various technologies has been carried out, we developed
an APC that is based on IoT devices equipped with a low-cost, portable fish-eye camera
and can mechanically measure the three-dimensional position of aircraft in a local region.
This paper introduced the specifications of this APC, the details of the algorithms used for
analysis, fundamental static calibration experiments and a case study for confirming its
flight path measurement capabilities. The three-dimensional flight paths of aircraft in the
situations of takeoff and landing were measured by the two methods of APC and ADS-B.
Although the paths obtained by each of the methods had individual characteristics, the RMS
values of the three-dimensional coordinates measured by the present method indicated
only a minor discrepancy of 2.48 m for the vertical profile and 6.48 m for the horizontal
plane. This fact indicates that the APC method enables detailed position measurements at
relatively lower altitudes, which was difficult to measure with existing technologies such
as radar and ADS-B.

By applying the technology of N-view triangulation [21], the APC method presented
in this study has the potential to increase the measurement accuracy. In future work, the
current method can be expanded to become more accurate by increasing the number of
reference points.
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