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Abstract: The recent large-scale fire incidents on construction sites in South Korea have highlighted
the need for computer vision technology to detect fire risks before an actual occurrence of fire. This
study developed a proactive fire risk detection system by detecting the coexistence of an ignition
source (sparks) and a combustible material (urethane foam or Styrofoam) using object detection
on images from a surveillance camera. Statistical analysis was carried out on fire incidences on
construction sites in South Korea to provide insight into the cause of the large-scale fire incidents.
Labeling approaches were discussed to improve the performance of the object detectors for sparks
and urethane foams. Detecting ignition sources and combustible materials at a distance was discussed
in order to improve the performance for long-distance objects. Two candidate deep learning models,
Yolov5 and EfficientDet, were compared in their performance. It was found that Yolov5 showed
slightly higher mAP performances: Yolov5 models showed mAPs from 87% to 90% and EfficientDet
models showed mAPs from 82% to 87%, depending on the complexity of the model. However, Yolov5
showed distinctive advantages over EfficientDet in terms of easiness and speed of learning.

Keywords: deep learning; ignition sources; combustible materials; object detection; computer vision;
Yolov5; EfficientDet; fire risk detection; construction sites; fire safety

1. Introduction

Fires on construction sites, whether they are new or undergoing refurbishment, are
infrequent but can have severe and devastating consequences. South Korea has witnessed
several large-scale fire incidents on construction sites, as illustrated in Figure 1. For instance,
at the Icheon Refrigerated Warehouse construction site, the ignition of oil vapour during a
urethane foaming operation, caused by an unidentified source, led to a fire. Similarly, at
the Goyang Bus Terminal construction site, the ignition of urethane foam by sparks from
welding work resulted in 7 deaths and 41 injuries. These incidents exemplify the common
characteristic of catastrophic fires on South Korean construction sites, where a heat source
(typically welding) and highly combustible materials (such as urethane foam or Styrofoam
used for insulation) are in close proximity during various stages of construction.

The condition is prevalent in South Korean construction sites, particularly during
the final stages, as multiple construction activities take place simultaneously within con-
fined building floors with the aim of reducing construction times and costs. However,
this poses significant fire hazards and requires careful management to prevent such
devastating incidents.

Given the dangerous nature of the aforementioned condition, it is crucial to avoid
it as much as possible. The National Fire Protection Association (NFPA) in the US has
introduced the NFPA 51b regulation to prevent fire or explosions resulting from hot work
projects, including welding, heat treating, grinding, and similar applications producing
sparks, flames, or heat. This regulation ensures fire prevention during welding and hot
work processes and is recognised in the US and South Korea. NFPA 51b stipulates that
there should be no combustible materials within an 11 m (or 35 ft) radius of any hot work,
as shown in Figure 2. In South Korea, the Korea Occupational Safety and Health Standards
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Rules (Article 241) adopts the 11 m rule for welding, cutting, and brazing operations, in
accordance with the safety requirements established by NFPA 51b. By adhering to Article
241, most fire incidents on construction sites are likely to be prevented. However, this
regulation is often violated by many medium- or small-sized construction sites, leading to
repeated catastrophic incidents in South Korea.

(a) (b)

Figure 1. Fire accident cases on construction sites (a) Icheon Refrigerated Warehouse site 2008.
(b) Goyang Bus Terminal site 2014.

Figure 2. 35-ft rule for cutting or welding operation in NFPA 51b [1].

This situation gave rise to an idea that the recent advances in computer vision technol-
ogy might be used to reduce such catastrophic incidents drastically. Object detection is a
computer vision technology used to identify target objects in an image. It has the potential
to enhance safety on construction sites through remote surveillance, enabling the detection
of non-compliance with fire safety regulations.

The field of object detection has witnessed significant development over the past
20 years, typically divided into two distinct periods: the traditional object detection period
(prior to 2014) and the deep learning-based detection period (since 2014) [2].

During the traditional object detection period, computer vision engineers relied on
handcrafted features such as edges, colours, and simple textures that were distinctive in
each given image [3]. The selection of these features was based on the engineers’ judgment
and involved a lengthy trial and error process to determine the most effective features for
different object classes [3]. Examples are the Viola-Jones detector [4], Histogram of Oriented
Gradients (HOG) [5], and Deformable Part-based Model (DPM) [6].
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In 2012, AlexNet [7] introduced a multi-GPU training approach, enabling faster train-
ing of larger models. Since 2014, object detectors have undergone a rapid evolution by
allocating substantial computational resources to the graphics processing unit (GPU) rather
than the central processing unit (CPU). In the deep learning-based detection period, object
detectors can be categorised as two-stage or one-stage detectors.

Two-stage detectors propose approximate object regions using deep features before
performing image classification and bounding box regression. Examples of two-stage
detectors include Regions with Convolutional Neural Networks (R-CNN) [8], Spatial
Pyramid Pooling network (SPP-Net) [9], Fast R-CNN [10], Faster R-CNN [11], and Feature
Pyramid Networks (FPN) [12].

One-stage detectors handle object localisation and classification simultaneously, offering
advantages such as fast inference speed, simplicity, and efficiency compared to two-stage
detectors. Examples of one-stage detectors include You Only Look Once (Yolo) [13], Single
Shot MultiBox Detector (SSD) [14], RetinaNet [15], CenterNet [16], EfficientDet [17], and
Deformable Transformers for End-to-End Object Detection (Deformable DETR) [18].

Recent studies have applied object detection to early-stage forest fire detection with
high accuracy, distinguishing fire from fire-like objects (e.g., the sun) and detecting even
small fires. Additionally, lightweight forest fire detection models have been developed for
deployment on hardware devices such as CCTV. These applications typically employ one-
stage detectors such as Yolov3, SSD [19,20], Yolov5, EfficientDet [21], Yolov5 [22–24], and
Deformable DETR [25]. Similarly, object detectors have been employed for fire detection in
urban indoor and outdoor environments, including chemical facility fire detection using
Yolov2 [26], fire and smoke detection using Yolov3 and Yolov2 [27,28], and indoor fire and
smoke detection using Faster R-CNN and Yolov5 [29–31].

In the context of safety on construction sites, object detection has been utilised to
detect fire ignition sources such as welding sparks and fire safety equipment such as fire
extinguishers and fire buckets using models such as Yolov5 [32] and Yolov4 [33]. Although
previous research [32,33] has focused on detecting ignition sources like welding sparks on
construction sites, it has overlooked a crucial aspect in analyzing combustible materials
such as urethane foam and Styrofoam, which possess the potential to escalate fires on a large
scale. The research [33] introduced real-time object detection technology for identifying
fires on construction sites, but primarily focused on post fire-occurrence detection, without
a prevention strategy before an occurrence of fire.

This study aims to detect fire risks by identifying the presence of combustible materials
(urethane foam/Styrofoam) and ignition sources (welding sparks) on construction sites.
For a rigorous detection of fire risk on construction sites, the distance between an ignition
source and a combustible material needs to be identified. However, due to the technical
challenge involved in the process, this study focuses only on detecting the coexistence of
an ignition source and a combustible material in a single camera view from a construction
site using deep learning as the first stage of study.

Two deep learning models, Yolov5 and EfficientDet, were chosen as candidate deep
learning models, and their performances were compared for detecting sparks as ignition
sources and urethane foam and Styrofoam as combustible materials.

This paper is structured as follows. Section 2 provides an overview of fire incidents on
construction sites in South Korea. Section 3 discusses fire detection methods, highlighting
their functionalities and characteristics. Section 4 presents a comparison of the performance
of these methods. Section 5 shows the experimental results, followed by a conclusion
summarising the key findings.

2. Fire Incidents on Construction Sites in South Korea

Statistical analysis was carried out to identify the ignition sources and combustible
materials commonly found in fire incidents on construction sites in South Korea. A dataset
comprising 93 large-scale fire incidents that occurred between 2000 and 2019 was collected
from the Korea Occupational Safety and Health Agency (KOSHA). Figure 3 presents an
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overview of the ignition sources found in the fire incidents, showing the sparks during hot
work as the primary cause of fires.
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Figure 3. Ignition sources in fire incidents on construction sites in South Korea.

Figure 4 illustrates the combustible materials typically present on construction sites.
Notably, urethane and Styrofoam constituted the majority of combustible materials present
in the incidents. It can be seen that the coexistence of ignition sources such as welding
sparks and combustible materials such as Styrofoam and urethane foam poses a significant
risk of fires on construction sites.
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Figure 4. Combustible materials in fire incidents on construction sites

3. Object Detection

Object detection has gained widespread adoption in various domains, including
autonomous driving and video surveillance. Figure 5 shows the performances of the
two state-of-the-art object detectors in terms of average precision (AP) on the Microsoft
COCO dataset. Yolov5 and EfficientDet have demonstrated exceptional performance
on the Microsoft COCO image dataset and have been extensively utilised in real-world
applications [34]. Table 1 provides a summary of performance of the two object detectors
on custom datasets. Yolov5 tends to have a slightly better performance than EfficientDet.
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Figure 5. Performance of Yolov5 and EfficietDet [35].

Table 1. State-of-the-art object detection performance based on Yolov5, EfficientDet.

Title of Research Article Year Object # of Images Object Detector (AP)

A Forest Fire Detection System Based on Ensemble
Learning [21] 2021 Forest

Fire 2381 EfficientDet
(0.7570)

Yolov5
(0.7050)

Garbage Detection using Advanced Object Detection
Techniques [36] 2021 Garbage 500 EfficientDet-D1

(0.3600)
Yolov5m
(0.6130)

Deep Learning in Diabetic Foot Ulcers Detection: A
Comprehensive Evaluation [37] 2020 Ulcers 2000 EfficientDet

(0.5694)
Yolov5
(0.6294)

A Real-Time Apple Targets Detection Method for
Picking Robot Based on Improved Yolov5 [38] 2021 Apple 1214 EfficientDet-D0

(0.8000)
Yolov5s
(0.8170)

Research on Detecting Bearing-Cover Defects Based
on Improved Yolov3 [39] 2021 Bearing-

Cover 1995 EfficientDet-D2
(0.5630)

Yolov5
(0.5670)

A first step towards automated species recognition
from camera trap images of mammals using AI in a

European temperate forest [40]
2021 Mammals 2659 Yolov5 (0.8800)

An Application of Deep-Learning Techniques to
Face Mask Detection During the COVID-19

Pandemic [41]
2021 Face

masks 848 Yolov5 (0.8100)

Toward More Robust and Real-Time Unmanned
Aerial Vehicle Detection and Tracking via

Cross-Scale Feature Aggregation Based on the
Center Key point [42]

2021 Drones 5700 Yolov5 (0.9690)

Towards automatic waste containers management in
cities via Computer Vision: containers localization

and geo-positioning in city maps [43]
2022

Waste
contain-

ers
2381 EfficientDet

(0.8400)
Yolov5
(0.8900)

Performance evaluation of deep learning object
detectors for weed detection for cotton [44] 2022 Weed 5187 EfficientDet-D2

(0.7783)
Yolov5n
(0.7864)

Detecting broiler chickens on litter floor with the
YOLOv5-CBAM deep learning model [45] 2023 Chickens 560 EfficientDet

(0.5960)
Yolov5s
(0.9630)

3.1. Yolov5

Yolov5 is a powerful state-of-the-art one-stage object detector [21]. Its architecture
comprises three parts: (1) Backbone: CSPDarknet, (2) Neck: PANet, and (3) Head: Yolo
Layer [21]. Compared to Yolov4, Yolov5 is significantly smaller, with a size of approximately
27 MB instead of 244 MB. It also offers faster inference times, achieving around 140 frames
per second (FPS) compared to Yolov4’s 50 FPS on the Tesla P100 GPU, while maintaining
comparable mean Average Precision (mAP) performance.
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Yolov5 offers five types of neural networks depending on the complexity of the
network (see Table 2). Yolov5n is the smallest and fastest neural network, suitable for
various applications. Yolov5n/s/m are designed for mobile deployments, while Yolov5l/x
are intended for cloud deployments. Larger models like Yolov5l and Yolov5x generally
deliver better results across different scenarios but have more parameters, require more
CUDA memory for training, and exhibit slower inference speeds.

Table 2. Details of Yolov5 neural networks [35].

Model Size (Pixels) Params (M) FLOPs (B) mAP@0.5 1 (%)

Yolov5n 640 1.9 4.5 45.7
Yolov5s 640 7.2 16.5 56.8
Yolov5m 640 21.2 49.0 64.1
Yolov5l 640 46.5 109.1 67.3
Yolov5x 640 86.7 205.7 68.9

1 mAP scores on COCO dataset.

3.2. EfficientDet

EfficientDet is an advanced object detector developed by the Google Brain Team,
consistently outperforming previous approaches in terms of efficiency under various
resource constraints. The architecture of EfficientDet comprises three main components:
(1) Backbone: EfficientNet, (2) Neck: BiFPN, and (3) Head. One of the key features of
EfficientDet is the utilization of feature fusion techniques through a bidirectional feature
pyramid network (BiFPN), which combines representations of input images at different
resolutions [37]. This approach enables EfficientDet to achieve high accuracy with fewer
parameters and high floating-point operations per second (FLOPS) [21]. EfficientDet offers
pre-trained weights categorised from D0 to D7, with D0 having the fewest parameters and
D7 having the highest number of parameters [37].

4. Fire Risk Detection by Object Detection
4.1. Dataset Preparation

The image dataset used in this study comprised images and videos of welding sparks,
urethane foam, and Styrofoam sourced from Google and Naver search engines, as well as
images obtained from the Korean AI integration platform (https://aihub.or.kr, accessed on
21 January 2023). Low-resolution or irrelevant images were removed manually from the
search results. The numbers of images used in four trials in this study is shown in Table 3.
In order to achieve the maximum performance, four different model training trials were
carried out as discussed below.

Table 3. Image datasets used in the study.

Dataset Split Ratios The Number of Images
Object Detection Dataset

Training/Validation/Test Sparks Urethane Foam Styrofoam

Image Labeling Dataset 60%/20%/20% 1900 114 1381

Short Distanced Dataset 60%/20%/20% 1520 1518 824

Long Distanced Updated Dataset 63%/21%/16% 1850 2054 1209

Final Dataset 60%/20%/20% 2158 3316 3915

4.2. Image Labeling Approach

Each image in the image dataset had to be labeled with bounding boxes to be used as
training, validation, or test datasets. Typically, object detection was used to detect objects
with a distinct shape, such as people, cups, or trees. However, object detection on sparks
and urethane foam generally poses a challenge, as their shapes are not well-defined. For
example, the shape of a spark depends on how it is generated, i.e., welded, flame-cut, or

https://aihub.or.kr
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ground, and the shape of urethane foam depends on the specific spot where it is sprayed.
This creates an uncertainty around how to label images for sparks and urethane foam. In
addition, Styrofoam is prone to partial occlusion when stacked on construction sites.

Different image labeling approaches were explored and their Average Precision
(AP) values were compared to determine the best approach. AP values were calculated
using Yolov5s.

4.2.1. Sparks

For labeling images of sparks, two different labeling approaches were used: individual
labeling and whole labeling, as shown in Figure 6. The individual labeling approach
assigns multiple bounding boxes to each image, as shown in Figure 6a, where the image
was labeled with three bounding boxes. The whole labeling approach assigns a single
bounding box to cover all the sparks, as shown in Figure 6b.

(a) (b)
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(c)

Figure 6. Two labeling approaches and their performance on sparks. (a) Individual labeling.
(b) Whole labeling. (c) AP.

With 1900 images, training adopted a 6:2:2 ratio for training, validation, and test
datasets in Table 3. This yielded an average precision (AP) of 60.3% for individual and
81.8% for whole labeling (Figure 6c). Notably, whole labeling outperformed individual
labeling for sparks.

4.2.2. Urethane Foam

The same individual and whole labeling approaches were used for urethane foam.
The individual labeling approach involved using more than 10 small bounding boxes per
image, as shown in Figure 7a. The whole labeling approach employed 2–3 large bounding
boxes per image, as shown in Figure 7b. Using 114 images, a 6:2:2 split ratio was used for
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training, validation, and test datasets (Table 3). Figure 7c shows average precision (AP) for
urethane foam, comparing individual and whole labeling results.

The AP achieved through individual labeling for urethane foam was 88.3%, while the
AP for the whole labeling approach was 93.3%. The improvement in AP for the whole
labeling approach can be attributed to the larger bounding box size. Therefore, to achieve a
higher AP, it is important to include as much of the urethane foam area as possible within a
bounding box.

(a) (b)
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Figure 7. Two labeling approaches and their performance on urethane foam. (a) Individual labeling.
(b) Whole labeling. (c) AP.

4.2.3. Styrofoam

Styrofoam is frequently stacked in bulk quantities on construction sites, often leading
to partial occlusion of the material. When labeling Styrofoam, it is generally considered the
best practice to label the occluded object as if it were fully visible, rather than drawing a
bounding box solely around the partially visible portion as shown in Figure 8a. Training
with 1381 Styrofoam images used a 6:2:2 ratio for training, validation, and test datasets
(Table 3), achieving an AP of 85.9% in Figure 8b.
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(a)
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Figure 8. Labeling approach and its performance on Styrofoam. (a) Labeling. (b) AP.

4.3. Long-Distance Object Detection

The image dataset used so far only consists of images of near objects. However, in real
applications, it is ideal to be able to detect objects at further distances. The performance of
the object detector for a long-distance object will be discussed in this section.

For the Yolov5s model trained, its performance for long-distance objects was calculated
using a new test dataset containing only long-distance images. To enhance the detection
performance for long-distanced objects, additional long-distance images were added to the
training, validation, and test datasets. The model was then retrained using the updated
image dataset, and its performance was evaluated on the updated test dataset.

4.3.1. Sparks

The training dataset comprised 1520 images, with a split of 6:2:2 (training:validation:test)
as shown in Table 3, focusing on short-distance sparks (Figure 9a). A model trained solely on
these images achieved an AP of 84.2% on the short-distance test dataset.

For performance evaluation on long-distance images, the test dataset was replaced by
new 304 long-distance images (Figure 9b) and the AP value was evaluated, resulting in an
AP of 2.9% significantly lower the original AP of 84.2%, as shown in Figure 9c.

To enhance long-distance spark detection, 330 long-distance images were added (6:2
ratio) to training: validation datasets (Table 3). This improved test dataset performance
from 2.9% to 21% as shown in Figure 9c.
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(a) (b)
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Figure 9. Short- and long-distance labeling approaches used for sparks. (a) Short-distance labeling.
(b) Long-distance labeling. (c) Performance.

4.3.2. Urethane Foam

The dataset contains 1518 short-distance images (Figure 10a). These were split with
a ratio of 6:2:2 (training:validation:test datasets), as shown in Table 3. After training on
short-distance urethane foam images, an AP of 89.2% was achieved. When substituting
short-distance test images with long-distance 304 urethane foam images (Figure 10b) in the
test dataset, the model achieved a lower AP of 40.7%, as shown in Figure 10c.

(a) (b)

Figure 10. Cont.
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Figure 10. Short- a2d long-distance labeling approaches used for urethane foam. (a) Short-distance
labeling. (b) Long-distance labeling. (c) Performance.

4.3.3. Styrofoam

The dataset of 824 images was divided with a ratio of 6:2:2 into training:validation:test
datasets, as shown in Table 3. The model, trained on short-distance Styrofoam images
(Figure 11a), attained a 95.6% AP on the 163 images of short-distance test dataset
(Figure 11c). However, its performance dropped to 40.8% AP when tested on 163 long-
distance Styrofoam images (Figure 11b).

Again, to enhance long-distance detection, 385 long-distance Styrofoam images were
added (6:2 ratio) to (training:validation) datasets (Table 3). This increased AP from 40.8%
to 66.1% (Figure 11c).

To ensure better performance of long-distance object detection, it is of paramount
importance that enough long-distance images are included in the dataset.

4.4. Performance of Yolov5 and EfficientDet

The performance of Yolov5 and EfficientDet was compared in the final dataset, as
shown in Table 3. The dataset was constructed using the whole labeling approach and
also includes short-, medium-, and long-distanced images. Different sized models of
Yolov5 and EfficientDet were all trained and their performance was evaluated, as shown in
Figures 12 and 13 and Table 4. Yolov5 models were found to have slightly better APs from
87% to 90% than EfficientDet models from 82 % to 87%. However, it was found that Yolov5
was easier to train than EfficientDet, reaching convergence without the need for tuning
parameters such as learning rate, batch size, and a choice of optimization algorithm.

(a) (b)

Figure 11. Cont.
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Figure 11. Short- and long-distance labeling approaches used for Styrofoam. (a) Short-distance
labeling. (b) Long-distance labeling. (c) Performance.

Table 4. Performance of Yolov5 and EfficientDet models.

Model
Model’s Performance

Sparks AP (%) Urethane Foam AP (%) Styrofoam AP (%) mAP (%)

Yolov5n 83.6 87.4 91.1 87.4
Yolov5s 87.0 89.6 92.3 89.6
Yolov5m 87.3 90.0 92.6 90.0
Yolov5l 86.1 91.0 92.6 89.9
Yolov5x 86.2 90.9 92.3 89.8

EfficientDet-d0 78.0 81.3 87.6 82.3
EfficientDet-d1 83.1 83.0 88.6 84.9
EfficientDet-d2 85.9 86.7 89.1 87.2
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Figure 12. Performance comparison of Yolov5 and EfficientDet networks on sparks, urethane foam,
and Styrofoam.
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(a) (b)

(c) (d)

(e) (f)

Figure 13. Typical detection result of the trained Yolov5 or EfficientDet. (a) Sparks detection (Yolov5s).
(b) Sparks detection (EfficientDet-d1). (c) Urethane foam detection (Yolov5s). (d) Urethane foam
detection (EfficientDet-d1). (e) Styrofoam detection (Yolov5s). (f) Styrofoam detection (EfficientDet-d1).

In addition, it should be noted that EfficientDet tends to scale up image size, resulting
in higher memory consumption and slower training [46]. On the other hand, Yolov5’s
architecture is lightweight, allowing training with smaller computational resources and
cost-effectiveness.

Figure 14 shows an example of fire risk detection on construction sites where Styro-
foam is in close proximity to welding sparks. The trained Yolov5s model was found to
successfully identify sparks and Styrofoams at the same time in a single camera view. The
developed fire risk detection model may be used as a proactive fire risk management tool
on construction sites.
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Figure 14. Example of fire risk detection on the construction site.

5. Conclusions

To reduce catastrophic fire incidents on construction sites in South Korea, object
detection technology was employed for detecting the fire risk that an ignition source
and a combustible material coexist in a single-camera view of a surveillance camera on
a construction site. Two candidate deep learning models, Yolov5 and EfficientDet, were
compared on their performance in detecting welding sparks (as an ignition source) and
urethane foam and Styrofoam (as combustible materials).

• Improved Labeling for Enhanced Performance: To maximise the performance of the
deep learning models in terms of the mean average precision (mAP), for detecting
fire risks such as sparks and urethane foam, it was observed that higher mAPs were
achieved by the labeling approach that encompassed the entire object(s) with relatively
large bounding box(es). This improved labeling approach significantly improved the
detection performance mAPs by around 15% for the given dataset.

• Improved Long-Distance Object Detection: To enhance long-distance object detection,
the study highlighted the importance of inclusion of images from diverse scenarios
with varying distances into the dataset. By incorporating long-distance images, the
model’s ability to detect fire risks was notably improved, increasing the detection
performance mAP by around 28% for the given dataset.

• Best Model for Fire Risk Detection: In terms of the fire risk detection performance,
Yolov5 showed a slightly better performance than EfficientDet for the given set of
objects—sparks, urethane foam, and Styrofoam. It was found that YOLOv5 was easier
to train without the need to fine-tune hyperparameters such as learning rate, batch
size, and a choice of optimization algorithm.

Future work will concentrate on enhancing fire risk detection by incorporating the
distance between combustible materials and ignition sources. Utilising depth estimation to
measure these distances will yield valuable insights into the level of fire risks. By classifying
the level of fire risk based on distance, a more quantitative assessment of fire risks can be
achieved on construction sites. After the successful detection of fire risk using the proposed
approach, an alarm can be notified to safety managers on the construction site or fire safety
authorities, which can initiate appropriate action to manage the risk identified.
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