
Citation: Gong, W.; Wang, X.; Yang,

Z.; Zhai, Z.; Feng, W.; Liu, D.

Ultrasonic Thickness Measurement

Method and System Implementation

Based on Sampling Reconstruction

and Phase Feature Extraction. Sensors

2023, 23, 9072. https://doi.org/

10.3390/s23229072

Received: 9 October 2023

Revised: 27 October 2023

Accepted: 6 November 2023

Published: 9 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Ultrasonic Thickness Measurement Method and System
Implementation Based on Sampling Reconstruction and
Phase Feature Extraction
Wenqiang Gong, Xuanze Wang, Zhenyu Yang *, Zhongsheng Zhai, Wei Feng and Da Liu

Hubei Key Laboratory of Modern Manufacturing Quantity Engineering, College of Mechanical Engineering,
Hubei University of Technology, Wuhan 430068, China
* Correspondence: 102110056@hbut.edu.cn

Abstract: The existing ultrasonic thickness measurement systems require high sampling frequencies
for echo signal acquisition, leading to complex circuit designs and high costs. Moreover, extracting
the characteristics of ultrasonic echo signals for accurate thickness measurement poses significant
challenges. To address these issues, this paper proposes a method that utilizes conventional sam-
pling frequencies to acquire high-frequency ultrasonic echo signals, overcoming the limitations of
high-frequency data acquisition imposed by the Nyquist–Shannon sampling theorem. By employing
an improved sampling reconstruction technique, the multi-cycle sampling signals are reconstructed
and rearranged within a single cycle, effectively increasing the equivalent sampling frequency. Ad-
ditionally, a combination of coarse estimation using fast Fourier transform (FFT) and precise phase
extraction using the moving sine fitting algorithm is proposed for accurate thickness measurement,
resolving the limitations of common thickness measurement methods such as peak detection, enve-
lope detection, and Hilbert autocorrelation in terms of low measurement accuracy. Experimental
results obtained from thickness measurements on 45 steel ultrasonic test blocks within the range
of 3 mm to 20 mm indicate a measurement error of ±0.01 mm, while for thicknesses ranging from
1 mm to 50 mm, the measurement error is ±0.05 mm.

Keywords: ultrasonic signal; sampling reconstruction; moving sine fitting; multiplier

1. Introduction

Ultrasonic penetration ability, applied to metal thickness measurement [1], has the
characteristics of low cost, fast speed, and high accuracy [2]. For the aerospace and
nuclear industries and other harsh environments or high-risk areas in the use of pressure
vessels [3], process equipment, and other structures and components, the use of ultrasonic
wall thickness measurement is timely and feasible [4,5]. It provides an effective basis for
the components of the operational reliability of the judgment in the service life [6,7].

The ultrasonic frequency is high, and general thickness measurement using the ultra-
sonic probe is between 0.5 and 15 MHz [8]. The current ultrasonic thickness measurement
system requires a specialized high-speed AD sampling chip and FPGA controller [9]. It
makes the system complex and adds unnecessary burden and cost. In addition, the accu-
racy of ultrasonic thickness measurement relies on the time of flight (TOF) [10] in ultrasonic
thickness measurement, i.e., the accuracy of ultrasonic echo signal period extraction. The
simplest way to determine the TOF is to set a fixed threshold, the time difference between
the moment when the echo signal amplitude exceeds the threshold for the first time and
the initial moment of the excitation signal. It is simple to compute but affected by the size
of the set threshold; the estimation error is large and cannot be modeled for analysis.

Kim Y H utilizes the peak method for thickness measurement [11]. The peak method
searches for the maximum peak point of the echo signal in all time domains. Calculating
the distance between two neighboring peaks. The corresponding time is the TOF. This
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method is susceptible to noise and external interference, resulting in a shift of the maximum
peak searched for, a large measurement error, and a decrease in accuracy. The literature [12]
proposed the envelope peak method. The echo signal envelope fitting is processed through
the measurement of the neighboring envelope peak distance to derive the TOF. Avoiding the
impact of noise on the measurement accuracy, but there is the disadvantage that searching
for the peak position is not permitted when the amplitude of the envelope signal is close
to the shortcomings. Zhou Qianqian [13] proposed the Hilbert autocorrelation algorithm
to process the echo signal, using the Hilbert transform to extract the features and then
autocorrelation to find the TOF to improve the measurement accuracy.

In view of the above two problems, this paper proposes an ultrasonic thickness mea-
surement processing method with sample reconstruction and FFT rough estimation [14].
Using the FFT algorithm to calculate the peak point of amplitude-frequency characteristics,
the frequency of the sampled signal can be roughly estimated. The phase is accurately
extracted by the moving sine fitting algorithm. The purpose of ultrasonic thickness mea-
surement can be realized by using only the low-frequency AD sampling function inside
the STM32F407 mi-processor (STMicroelectronics, Switzerland) and the developed moving
sine fitting algorithm. The limitations of high-frequency sampling required to acquire
ultrasonic echo signals and the defects of low accuracy and poor stability of the traditional
direct calculation of workpiece thickness by peak point position characteristics are solved.
The cost-effectiveness of the ultrasonic thickness measurement system is demonstrated.

2. Improved Sampling Reconstruction Technique

Sampling reconstruction can generally be divided into two sampling methods: sequen-
tial sampling reconstruction [15] and random sampling reconstruction [16]. The ultrasonic
thickness measurement system sampling method using improved sampling reconstruction
technology involves setting the sampling frequency and excitation frequency, determining
a fixed number of excitation cycles and the total number of sampling points to achieve
continuous acquisition of sampling points, and reordering the sampling points to complete
the signal reconstruction. To meet the purpose of the improved sampling reconstruction
technique, the excitation frequency fe of the ultrasound probe and the sampling frequency
fs of the ultrasound signal should meet the following requirements:

n
fs

=
m
fx

=⇒ nTs = mTx (1)

where n and m are prime numbers of each other, n is the total number of sampling points, m
is the number of ultrasonic excitation signal cycles, Ts is the sampling period of the signal,
and Tx is the excitation signal period. Consequently, it is necessary to ensure that the total
time of the n sampling cycles is equal to the total time of the m excitation signal cycles. The
sampling period of the improved sampling reconstruction technique is much smaller than the
excitation period, and the sampling period of the sequential sampling reconstruction is the
sum of the excitation cycle time and the step increment delay time, which is set to be larger
than the excitation cycle time. The signal reconstruction is accomplished by synthesizing n
points sorted into one signal cycle through the reconstruction sorting algorithm, in which
the important parameters m, n, Ts, and Tx need to be set according to the system clock of
the STM32F407 microprocessor following the improved sample reconstruction formula. The
sampling reconstruction frequency fse is shown in Equation (2).

fse = n fx = m fs (2)

Compared with the original ultrasound signal sampling frequency, sampling recon-
struction frequency increases by a factor of m. It can meet the requirements of periodic
high-frequency signal sampling. The principle of the improved sampling reconstruction is
shown in Figure 1.
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Figure 1. Schematic diagram of the principle of improved sampling reconstruction.

In the above figure, each ultrasonic excitation cycle contains multiple gradually at-
tenuated ultrasonic echo signals. The thickness measurement system in the STM32F407
microprocessor set parameters m, n, Ts, Tx should meet the improved sampling reconfigura-
tion of Equation (1), so m excitation cycle contains exactly n sampling points, and m and n
reciprocity to ensure that n sampling points are not duplicated to be uniformly inserted into
a signal excitation cycle can be synthesized into a complete high-frequency signal cycle.

Figure 2, for example, shows the basic principle of the signal reconstruction algorithm,
assuming that the sampling points are collected once every 75◦ interval, the original
periodic signal is one cycle for every 360◦ interval, the total number of sampling points
is 24, and the number of signal cycles is 5, which meets the requirements of the improved
sampling reconstruction formula, and the sampling points can be synthesized completely
into one cycle, but the sequence of sampling points is not sequential, and the sampling
points are needed to be synthesized into one cycle. However, the sequence of sample points
is not sequential, and it is necessary to sort the sample points synthesized into a signal
cycle. The signal reconstruction schematic is shown in Figure 2.
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Figure 2. (a) Raw sampling data sequence; (b) rearrangement of sampled data series.

The transformation of the original sampled data sequence to the rearranged sampled
data sequence in the figure is obtained according to the reconstruction algorithm, whose
specific derivation formula is shown in (3):
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{
r∗ = rm−

[ rm
n
]
·n

y(r∗) = x(r)
(3)

where r∗ is the rearrangement sequence number of the signal, r is the sequence number of
the sampled signal, from 0 to n − 1 sequential sequence. m is the number of signal cycles, n
is the total number of sampling points, [] is the sign of downward taking an integer, the
rearrangement sequence signal is y(r∗), and the sampling sequence signal is x(r).

Due to the jitter in the sampling and excitation clocks of the microprocessor [17], it is
difficult to ensure that the initial position of the sampling clock is synchronized with the
initial position of the excitation signal. The position of the initial sampling point is random,
and the reconstructed signal will be distorted. As shown in Figure 3, the maximum point is
found based on the echo peak feature. The distorted signal is recombined by feature-point
translation. The ultrasonic echo signal characteristics within the signal period are effectively
recovered. The accuracy of the ultrasonic echo signal is guaranteed.

Figure 3. Schematic diagram of ultrasound echo signal recovery.

In the figure, T is the ultrasonic emission wave, and B0, B1, and B2 are the first
ultrasonic echo, the second ultrasonic echo, and the third ultrasonic echo in the ultrasonic
echo signal, respectively.

Through the above analysis, the effect of fast sampling can be achieved by simply
setting the relative sampling frequency and excitation frequency, as well as determining the
number of sampling points and the number of signal cycles. Compared with the traditional
sampling reconstruction method, the sampling efficiency is higher and faster.

3. Thickness Measurement System Hardware Design
3.1. Hardware System Design

The overall design of the hardware circuit for ultrasonic thickness measurement is
shown in Figure 4. The actual circuit diagram of the experiment is shown in Figure 5. It
mainly includes the STM32F407 minimum system circuit, external SRAM circuit, power
supply circuit, ultrasonic transmitter–receiver circuit, limiter circuit, analog multiplier
circuit, programmable amplifier circuit, sampling circuit, and touch display circuit.
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Figure 5. The actual circuit diagram of the experiment.

Among them, the STM32F407 minimum system is the core of the thickness measure-
ment system. It is mainly responsible for running the program, realizing the excitation
pulse (PWM pulse) generation, and collecting and storing the echo signal. Using a noise
reduction algorithm and a moving sine fit phase feature extraction algorithm to measure
the thickness of the object. And then transmitting the measured results to a touchscreen
display via the USART communication protocol. The external SRAM circuit is mainly used
to expand the memory for the programmed embedding of the wavelet threshold noise
reduction algorithm, FFT, and moving sine fitting algorithm. The power management
module is mainly responsible for managing the system voltage distribution. The output
400 V DC voltage is used as the excitation voltage of the ultrasound probe. Output 5 V is
the working voltage of the touch panel display. Output 3.3 V is the working voltage and
reference voltage of the STM32F407 microprocessor. The ultrasound transmitter–receiver
circuit is used to control the ultrasound probe operation as well as the ultrasound signal
transmitting and receiving. The limiter circuit is to reduce the amplitude of the received
echo signal to protect the circuit. The analog multiplier circuit is the ultrasonic echo signal
self-multiplication process, the alternating ultrasonic signals into pulsating DC signals
conducive to echo signal acquisition. The programmable amplifier circuit amplifies the
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weak echo signals, the sampling circuit samples and reconstructs the echo signals, and the
touch panel display facilitates man-machine operation, the issuance of commands, and the
direct display of measurement results.

3.2. Analog Multiplier Circuit

The analog multiplier circuit [18] mainly consists of the multiplier chip AD835 and its
peripheral circuits to self-multiply the ultrasound echo signal. The alternating ultrasound
signal into a pulsating DC signal is the main role of two points. The first is to self-multiply
the ultrasonic echo signal to provide a basis for the subsequent FFT rough estimation
algorithm and reduce the arithmetic pressure of the main control chip. The second is that
the sampling amplitude of the echo signal can be increased to facilitate signal sampling.

Low-frequency samplers have the nature of a smoothing filter. Direct sampling of the
original alternating high-frequency ultrasound echo signal results in a sampled signal with
amplitude attenuation. Using ultrasonic echo signal modeling to create simulation com-
parisons, the sampling amplitude of the original signal and the self-multiplying sampled
signal changes, as shown in Figures 6 and 7.
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4. System Software Design and Implementation
4.1. System Software Design Process

The system software design flow is shown in Figure 8. In the thickness measurement
system, the host computer is set up to meet the sampling reconstruction requirements of
the excitation frequency fx and sampling frequency fs and other parameters, sent to the
lower computer STM32F407, to control the lower computer to produce excitation signals
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for sampling reconstruction and noise cancellation processing, the use of moving sine
fitting algorithms to extract the phase characteristics of the signal, and derive the workpiece
under test TOF. Based on the calibrated speed of sound, the thickness of the workpiece is
calculated, and the result is transmitted to the touch-screen display of the host computer
for display.
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4.2. Wavelet Noise Reduction Method for Ultrasound Echo Signals

In the ultrasonic thickness measurement process, the system power supply perturba-
tion and external interference will introduce noise to the ultrasonic echo signal [19]. To
improve the accuracy of ultrasonic thickness measurement and reduce the impact of noise
on the ultrasonic echo signal, there needs to be noise reduction on the echo signal. General
noise reduction methods include hardware noise reduction [20] and digital processing
noise reduction [21]. Hardware noise reduction for the device performance requirements is
high, and the cost is expensive. At this stage, digital signal processing echo noise reduction
technology has matured, and the wavelet noise reduction method [22] has a good noise
reduction effect and is widely used.

The noise-containing signal is wavelet decomposed into a low-frequency approxima-
tion part and a high-frequency detail part. The useful signal is located in the low-frequency
part. The noise signal is located in the high-frequency detail part. The wavelet-decomposed
high-frequency detail coefficients are subjected to threshold quantization and wavelet re-
construction with the low-frequency approximation coefficients to realize wavelet threshold
noise reduction, the principle of which is shown in Figure 9.

According to the characteristics of the ultrasonic echo signal in this paper, the dbN
orthogonal wavelet is selected as the wavelet function in the threshold noise reduction
algorithm. The selection of the threshold value in the wavelet threshold noise reduction
method plays a crucial role. If the threshold is too large, the mixed noise cannot be
eliminated, and the noise reduction effect is poor. There are several commonly used
thresholding methods.
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Fixed threshold (Sqtwolog rule) with the threshold derivation formula shown in (4).{
λs = σ0

√
2ln(N)

σ0 =
med(|d1,k|)

0.6745

(4)

where σ0 is the noise standard deviation, N is the signal length, med is the median, and d1,k
is the sequence of wavelet coefficients in the first layer.

The unbiased risk estimation threshold (Rigrsure rule), based on the principle of
unbiased likelihood estimation, has a threshold derivation formula shown in (5).

λr = σ0

√
min

{
N − 2k + ∑ r1,k

2 + (N − k)r1,k
2

N

}
(k = 1, 2, 3, . . . , N) (5)

where r1,k is the ascending order of the wavelet coefficients of the first layer.
The maximum–minimum criterion threshold (Minimaxi rule) is selected concerning

the noise standard deviation, and its threshold derivation formula is shown in (6).

λm =

{
σ0(0.3936 + 0.1829 log2 N) N > 32
0 N ≤ 32

(6)

The heuristic threshold (Heursure rule), which is the preferred choice between a fixed
threshold and an unbiased risk estimation threshold, has a threshold derivation formula
shown in (7).

λn =

{
λs

∑ d1,k
N < log2 N

3
2
√

N
min(λs, λr)

∑ d1,k
N < log2 N

3
2
√

N
(7)

Multi-resolution thresholding is an improvement over fixed thresholding. The wavelet
decomposition process, wavelet coefficients, and noise signals are affected by the number
of decomposition layers, and the threshold derivation formula is shown in (8).λi = σ

√
2ln length(di,k)

ln(i+1)

σ =
med(|di,k|)

0.6754

(8)

where i is the number of decomposition layers, length is the length, and d1,k is the sequence
of wavelet coefficients in the ith layer.
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Based on the root-mean-square error (RMSE) and signal-to-noise ratio (SNR) of the
noise-canceled signal as an evaluation criterion, the equations are shown in (9) and (10).

RMSE =

√√√√∑
[
y(n)− y(n)*

]2

N
(9)

SNR = 10lg ∑ y(n)2

∑
[
y(n)− y(n)*

]2 (10)

The smaller the root-mean-square error (RMSE) of the noise-canceled signal, the
better the noise-canceling effect; the larger the signal-to-noise ratio (SNR), the better the
noise-canceling effect; and vice versa.

In the actual ultrasonic thickness measurement, the ultrasonic echo signal is mixed
with noise. To simulate the actual echo signal, random Gaussian white noise is added to the
ideal single echo signal, and the model of the simulated mixed-noise echo signal is shown
in Equation (11).

y(t) = s(θ; t) + v(t) (11)

where s(θ; t) is the single echo and v(t) is the Gaussian white noise, and the specific echo of
Gaussian white noise with 10 dB added is shown in Figure 10.
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Figure 10. Single echo signal with SNR = 10 dB noise.

The above single-echo signal model can be deduced from the multiple-echo signal;
each time the reflected wave is received, it is gradually attenuated, and the amplitude is
getting smaller and smaller. Considering this layer of the problem, the multiple-echo model
is shown in Equation (12).

yr(t) = ∑M
m=1 s(θ; t) + v(t) (12)

where M is the number of echo signals and s(θ; t) is the mth echo waveform.
Keeping the above single-echo eigenvector parameters unchanged, setting the atten-

uation factor to 0.6 and the time interval = 4 µs, the simulated ultrasound echo signal is
shown in Figure 11.



Sensors 2023, 23, 9072 10 of 21

Sensors 2023, 23, x FOR PEER REVIEW 10 of 22 
 

 

 

Figure 10. Single echo signal with SNR = 10 dB noise. 

The above single-echo signal model can be deduced from the multiple-echo signal; 

each time the reflected wave is received, it is gradually attenuated, and the amplitude is 

getting smaller and smaller. Considering this layer of the problem, the multiple-echo 

model is shown in Equation (12). 

𝑦𝑟(𝑡) = ∑ 𝑠(𝜃; 𝑡) + 𝑣(𝑡)𝑀
𝑚=1   (12) 

where M is the number of echo signals and 𝑠(𝜃; 𝑡) is the mth echo waveform. 

Keeping the above single-echo eigenvector parameters unchanged, setting the 

attenuation factor to 0.6 and the time interval  =  4 μ ,                               

signal is shown in Figure 11. 

 

Figure 11. Multiple echo signal with SNR = 10 dB noise. 

Based on [23], wavelet 5-layer decomposition is chosen to simulate the above five 

thresholding methods, and the simulation results are shown in Figure 12. The root mean 

square error (RMSE) and signal-to-noise ratio (SNR) are calculated, and the results are 

shown in Table 1. 

    

Figure 11. Multiple echo signal with SNR = 10 dB noise.

Based on [23], wavelet 5-layer decomposition is chosen to simulate the above five
thresholding methods, and the simulation results are shown in Figure 12. The root mean
square error (RMSE) and signal-to-noise ratio (SNR) are calculated, and the results are
shown in Table 1.
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Table 1. Results of SNR and RMSE for different thresholding methods.

Threshold Methods SNR (dB) RMSE

Fixed threshold 8.72 0.071
Unbiased risk estimation threshold 10.02 0.061

Heuristic threshold 9.70 0.068
The max–min criterion threshold 9.74 0.067

Multiresolution threshold 10.86 0.055

According to Table 1, it can be seen that the multi-resolution thresholding method has
the smallest root-mean-square error (RMSE) and the largest signal-to-noise ratio (SNR),
and the signal noise reduction effect is better than other thresholding methods. Therefore,
multiresolution thresholding as the wavelet threshold was selected.
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4.3. Algorithm for Feature Extraction of Echo Signals

After noise reduction of the echo signal using wavelet multiresolution thresholding,
the signal has a high signal-to-noise ratio, and this paper proposes an algorithm to accu-
rately extract the phase information of the echo signal. Extracting the phase information
via FFT rough estimation of the signal and shifted sine fitting. Then TOF is calculated from
the phase difference of the feature positions.

4.3.1. FFT Rough Estimation Algorithm

The fast Fourier transform (FFT) algorithm is commonly used for spectral simulation
and analysis of signals, using a time-to-frequency domain signal processing method to
obtain a discrete sequence of equally spaced samples containing frequency components [24].
To extract the frequency components of the low-frequency part of the ultrasonic echo signal,
the direct FFT processing of the ultrasonic echo signal cannot determine the location of
the low-frequency frequency components, while the self-multiplied ultrasonic echo signal
can be decomposed to clarify the location of the low-frequency, and the decomposition of
the specific self-multiplied equivalent ultrasonic echo modeling decomposition formula is
shown in (17).

X(t) = f 2(t) = fm
2(ϕ)·cos2 (2π flt)·cos2 (2π fht)· f 2(α) (13)

Since fm(ϕ) and f (α) are pulse constant signals and attenuation factors, it can be
simplified as:

X∗(t) = cos2(2π flt) · cos2(2π fht)
= 1+cos(4π fl t)

2 · 1+cos(4π fht)
2

= 1
4 + cos(4π fl t)

4 + cos(4π fht)
4 + cos(4π fl t)·cos(4π fht)

4
= 1

4 + cos(4π fl t)
4 + cos(4π fht)

4 + cos(4π fl t−4π fht)
8 + cos(4π fl t+4π fht)

8

(14)

The low-frequency frequency fl in Equation (14) is in the second sequence in the
decomposition equation. Thus, the FFT transform of the self-multiplying ultrasound echo
signal determines that the low-frequency spectral position is at the position of the extreme
value point after the constant.

The self-multiplying equivalent ultrasound echo signal of length N is selected for the
FFT transform, and the resulting spectrogram is shown in Figure 13.
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The position of the frequency point corresponding to the low-frequency harmonics of
the ultrasound echo is determined as k by the decomposition formula in the figure, and the
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formula for calculating the low-frequency frequency fl of the FFT is deduced based on the
position of this frequency point as shown in (19).

fl = k· fse

N
(15)

In the formula, fse is the sampling reconstruction frequency, and N is the number of
sampling points. From the above formula, it can be seen that the accuracy of low-frequency
frequency calculation is affected by the sampling frequency and the number of sampling
points. In the case of a certain sampling frequency, it can only increase the length of the
window and deal with a large number of sampling points, which is not high in real-time,
and the accuracy is poor when the FFT algorithm is used directly to count the low-frequency
frequency. Therefore, in this paper, the moving sine fitting is used to accurately calculate
the echo characteristic phase information and then accurately calculate the low-frequency
frequency and period.

Since the moving sine fitting algorithm is used, the phase interval of the fitted sequence
needs to be known. Therefore, the FFT algorithm was used to roughly estimate the
ultrasound echo low-frequency harmonics, and the phase interval δwas calculated based
on the echo low-frequency harmonics, as shown in (20).

δ =
2πk
N

(16)

4.3.2. Calculation of the Wrap Phase of a Moving Sine Fit

A segment-by-segment shifted sinusoidal fit yields information on the magnitude and
phase of points in the sampled sequence of points, except for one cycle of boundary loss [25].
The essence of shifted sine fitting is to obtain the amplitude and phase of the fundamental
frequency harmonics at various points in the return signal. If the ultrasound echo sequence
is y(i), the qth sequence of segment length l is expressed as {y(q), y(q + 1),. . ., y(q + l − 1)}
and a sine fit to it yields the amplitude A(q) and the initial phase ϕ(q) of the segment,
respectively: {

A(q) =
√

aq2 + bq
2

ϕ(q) = atan2
(
bq, aq

) (17)

where aq and bq are calculated as follows:

aq
bq
cq

 = Q−1
0


∑

q+l−1
i=q y(i)sin(i · δ)

∑
q+l−1
i=q y(i)cos(i · δ)

∑
q+l−1
i=q y(i)

 (18)

Here the matrix Q0 is a constant symmetric matrix:

Q0 =

 ∑l−1
i=0 sin2(i · δ) ∑l−1

i=0
1
2 sin(2i · δ) ∑l−1

i=0 sin(i · δ)
∑l−1

i=0
1
2 sin(2i · δ) ∑l−1

i=0 cos2(i · δ) ∑l−1
i=0 cos(2i · δ)

∑l−1
i=0 sin(i · δ) ∑l−1

i=0 cos(2i · δ) 1

 (19)

According to the characteristics of the symmetry of the sinusoidal signal period, the
fitting of the whole period sampling points has a higher accuracy. Therefore, the segment
length adopted for segment-by-segment shifted sinusoidal fitting should be as close as
possible to the cycle length of the ultrasonic echo signal, and here the segment length of the
fitting can be designed according to the interval phase calculated by Equation (16):

L= [
2π
δ
] (20)
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Moving sine fitting is computationally intensive and can be greatly reduced if recursion
is used for the cumulative sum operation in Equation (7) [25].

Considering that the initial phase sequence φ(q) sought in Equation (6) is the wrapped
phase, the unwrapped phase can be obtained as φ(q) by the unwrapping operation. A
least-squares linear fit to the data set [q, φ(q)] is performed, i.e., the following equation
is satisfied:

φ(q) = s1q + s0 (21)

After the straight line fitting calculating the fitted slope parameter s1, the refined
estimation of the ultrasound echo signal time difference is:

Te =
2π·Tx

n·s1
(22)

The thickness of the workpiece is:

H =
πTx

n·s1
·vs (23)

vs is the velocity of ultrasonic propagation.

4.3.3. Calculation of TOF

The computer extracts the phase information through the forward and inverse func-
tions. The phase information is 0~π in one and two quadrants and −π~0 in three and four
quadrants, and it will jump in two and three quadrants. The value of the phase informa-
tion ϕx is constrained to be between (−π~π), which is discontinuous, and it is called the
wrapped phase. The wrapped phase of the echo-sampled signal is shown in Figure 14.
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Therefore, the phase needs to be subjected to the unwrapping operation. The specific
solution algorithm for serializing the wrapped phase is shown in Equation (28).

ϕi = ϕi−1 + Wi (24)

where Wi defines the unwrapping operator:

Wi =


ϕi − ϕi−1 − 2π ϕi − ϕi−1 > π
ϕi − ϕi−1 + 2π ϕi − ϕi−1 < −π
ϕi − ϕi−1 − π < ϕi − ϕi−1 < π

(25)
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The period of the ultrasound echo is calculated by the phase difference and time
difference of the characteristic positions of the echo, as shown in (30).

Tl =
2π·(m2 −m1)

(ϕm2 − ϕm1)· fse
(26)

where m1, m2 are the points at the characteristic positions, i.e., the two positions correspond-
ing to the zero phase in 19. ϕm2, ϕm1 are the phases corresponding to the unwrapped phase,
and fse is the sampling reconstruction frequency. The TOF of the ultrasound echo is Tl .

5. Ultrasonic Thickness Measurement Results and Analysis
5.1. Velocity of Sound Calibration and Calculation of TOF

According to the sampling reconstruction technique, it can be seen that the size of the
sampling period Ts and the excitation period Tx are set by the internal system timer; the
excitation period is Tx = R1/144 M. The sampling period is Ts = R2/144 M. The setting
of the sampling period must be greater than 0.41 µs and satisfy the improved equivalent
Equation (1), in which it is known that the number of sampling points n, the number of
sampling periods m, and the counter accumulator R1 and R2 setting values satisfy the
following relationship:

m·R1 = n·R2 (27)

Three thicknesses of 45 steel-stepped specimens were selected to calculate TOF and
calibrate the speed of sound. Thickness measurements were carried out on specimens with
calibrated thicknesses of 3.010 mm, 10.003 mm, and 24.047 mm. The calibrated thickness of
3.010 mm was used as an example.

The first is to set the parameters R1 = 18, 000, R2 = 67, m = 67, n = 18, 000. According
to Formula (2), it can be seen that the sampling reconfiguration frequency fse = 144 MHz,
the sampling frequency is relatively increased by 67 times. ADC sampling of ultrasound
echo signals can be realized. Obtaining 67 excitation cycles and 18,000 sampling points.
18,000 points first reconstruct 36,000 points, 2 bytes, 72 k memory. stm32F407 has 128 k
memory. The actual data to be processed is the initial 4096 points sampled, and the floating
point number occupies 4096 × 4 space, i.e., 16 k data for the FFT transform. Therefore, the
memory space for sampling and reconstruction can be multiplexed. Reconstructing the
sampled signal via the above signal arrangement Equation (3) to obtain the complete echo
signal for one excitation cycle. The sequence diagram of the reconstructed ultrasound echo
signal at the intercepted 2500 points is shown in Figure 15a. The reconstructed signal is
then subjected to wavelet noise reduction by the multiresolution thresholding method, and
the processed signal is shown in Figure 15b.

Extracting the phase information based on the method of shifted sine fitting and
calculating the TOF. The FFT roughly estimates the low-frequency harmonics of the echo
signal, selecting N = 4096 points for the FFT transform. Its spectrogram is shown in
Figure 16. The position of the frequency point corresponds to the low-frequency harmonics
of the ultrasound echo k = 28. The phase interval δ = 0.043 and the segment length of the
shifted sine fit L = 146 were determined according to Equations (20) and (24), respectively.

Using a moving sine fitting algorithm to extract the phase information of the ultra-
sound echo signal. The phase-out ϕx corresponding to the echo signal after noise reduction
is calculated according to Equations (21) and (22), etc. Solving the parcel Equation (28)
to solve the phase. The continuous phase information is shown in Figure 17. Finally, the
fitted echo period is calculated by the phase difference Equation (30). That is, the TOF is
tTOF = 1.015 µs.
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Figure 15. (a) Reconstructed ultrasound echo signal (3.010 mm); (b) ultrasound signal after wavelet
noise reduction (3.010 mm).
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For the remaining two sets of calibrated thickness values of 10.003 mm and 24.047 mm,
the TOF process is the same as above. The ultrasound echo signals for the two thicknesses
are shown in Figure 18, and the phase information is shown in Figure 19.
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Figure 19. Graph of phase information for different thicknesses.

The TOF was 3.373 µs and 8.112 µs for the thicknesses of 10.003 mm and 24.047 mm,
respectively. A linear fit of the calibrated thickness values to the measured TOF resulted in
a straight line for the thickness versus TOF relationship, with the slope of the line being
one-half of the calibrated speed of sound, as shown in Figure 20.
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Figure 20. Fitted line graph for sound speed calibration.

The linear regression model is given by:

y = Ax + B (28)

where y is the calibrated thickness measurement sequence. x is the transition time sequence.
B is the zero calibration value. A is the parameter that represents the sound–velocity
relationship. The expression for the speed of sound is:

c = 2A = 2
n∑ xiyi −∑ xi∑ yi

n∑ xi
2 − (∑ xi)

2 (29)

Equations (32) and (33) give a calibrated speed of sound of 5928 m/s for 45 steel and a
zero calibration value of 0.0029 mm.

5.2. Determination of Thickness Measurement Range

The selected ultrasonic thickness test block range is from 1 mm to 50 mm, the selected
ultrasonic probe has a fixed frequency of 2.5 MHz, the minimum time interval between the
transmitted signal and the echo signal is t = 0.8 µs, the calibrated speed of sound in 45 steel
is 5928 m/s, and the minimum thickness of the measurement is dm= 2.37 mm. However, the
method applied in this experiment is to select the characteristic positions of multiple echo
signals in a finite attenuation signal and to find the phase difference, which can remove the
confusing overlapping signals and extract the useful echo characteristic signal. As shown
in Figure 21, the minimum thickness of a 1 mm specimen can be measured. According to
the system’s ultrasonic excitation period of 125 µs, the conditions of signal attenuation,
and the theoretical maximum measurement thickness of 150 mm, the system’s thickness
measurement range meets the requirements of 1 mm to 50 mm.
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Figure 21. Signal obfuscation and echo characteristic signal extraction plot.
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5.3. Thickness Measurement Results

The remaining thickness of the ultrasonic step test block was measured using this
experimental algorithm. The crossing time was recorded. The measured thickness was
calculated using the calibrated sound velocity of 5928 m/s with a zero calibration value
of 0.0029 mm. And the ultrasonic thickness measurement block comparison experiment
was performed by the Hilbert autocorrelation method [13]. The measured thickness results
are shown in Table 2, and the comparison graph of the absolute value of error is shown
in Figure 22.

Table 2. Thickness measurement results of this experimental algorithm and Hilbert autocorrelation method.

Test Block
Number

Calibration
Thickness
Value/Mm

TOF/µs
The Actual

Measured Value of
This Experiment/mm

The Algorithmic
Measurement Error

of This
Experiment/mm

Measurements
of Hilbert Auto-
correlation/mm

Hilbert
Autocorrelation
Measurement

Errors/mm

7A-1 0.994 0.319 0.948 −0.046 1.090 0.096
7A-2 1.512 0.518 1.538 0.026 1.437 −0.075
7A-3 2.007 0.681 2.021 0.014 2.004 0.033
7A-4 4.013 1.351 4.007 −0.006 3.996 −0.017
7C-1 5.568 1.875 5.560 −0.008 5.589 0.021
7A-5 5.992 2.019 5.987 −0.005 5.969 −0.023
7C-2 7.447 2.514 7.454 0.007 7.465 0.018
7A-6 8.004 2.702 8.012 0.008 8.031 0.027
7C-3 9.010 3.036 9.001 −0.009 8.986 −0.024
7C-4 11.598 3.914 11.604 0.006 11.613 0.015
7B-2 12.512 4.218 12.505 −0.007 12.490 −0.022
7C-5 15.415 5.203 15.425 0.010 15.428 0.013
7C-6 17.582 5.934 17.591 0.009 17.610 0.028
7C-7 19.952 6.727 19.942 −0.010 19.921 −0.031
7B-4 29.981 10.123 30.008 0.027 30.025 0.044
7B-5 36.039 12.147 36.006 −0.033 35.998 −0.041
7B-6 42.045 14.197 42.083 0.038 42.127 0.082
7B-7 47.950 16.193 47.999 0.049 48.042 0.092
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Figure 22. This experimental algorithm and the Hilbert autocorrelation method measure the absolute
value of the error in steel.

Based on the above data, it can be seen that the error of the algorithm for phase feature
extraction in this paper is less than that of the Hilbert autocorrelation method. In this paper,
the consumption of systematic measurement time is mainly reflected in the following
aspects, as shown in Table 3.
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Table 3. System measurement time allocation.

Sampling Reconstruction
Response Time/ms

Multi-Resolution Threshold Noise
Reduction Response Time/ms

FFT Transform Response
Time/ms

Moving Sine Fitting Response
Time/ms

8.375 25.26 3.17 1.37

The system has a fast measurement speed with a single measurement time of about 40 ms.
The Hilbert autocorrelation method mainly performs the Hilbert transform on the

self-multiplying echo signal first, and then undergoes the autocorrelation method to obtain
TOF. The Hilbert transform is first obtained by an N-point FFT operation to obtain the
spectrum. The positive half of the spectrum is multiplied by −i, the negative half by i,
and the DC component is set to 0. Finally, the frequency domain signal is inverted into a
time domain signal by N FFTs to complete the Hilbert transform. The Hilbert transform is
completed by multiplying the frequency domain signal by N + 3/2Nlog2N times and adding
the complex numbers by N + 3Nlog2N times. The traditional autocorrelation algorithm is
computationally intensive and requires N2 multiplications and N(N − 1) additions. Now
the autocorrelation operation is generally converted from the time domain to a frequency
operation. First, the FFT operation is performed on the signal at N points. Then the N-point
complex self-multiplication is performed. Finally, the FFT is inverted to get the result. It
also requires N + 3/2Nlog2N times complex multiplication and N+3Nlog2N times complex
addition. Therefore, the Hilbert autocorrelation method requires a total of 2N + 3Nlog2N
complex multiplications and 2N + 6Nlog2N complex additions.

The complexity of the algorithm in this paper is mainly in the FFT operation and the
shifted sine fitting operation. It requires one FFT operation with N points, 1/2Nlog2N
complex multiplications, and Nlog2N complex additions. The shifted fit requires only
15 real multiplications and 20 real additions per recursion. One complex multiplication
requires four real multiplications and two real additions. The Hilbert autocorrelation
method requires 8N + 12Nlog2N real multiplications. The algorithm in this paper requires
15N + 2Nlog2N real multiplications. Its real number multiplication complexity simulation
diagram is shown in Figure 23.
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Figure 23 reflects that the algorithm in this paper has less complexity than the Hilbert
autocorrelation method, and the longer the length of the ultrasound echo signal to be
measured, the better the performance.

6. Conclusions

Aiming at the limitations of high-frequency signals needing a high-frequency sampler
and the difficulty of accurate extraction of echo signal features. This paper first proposes
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an improved sampling reconstruction method, a moving sine fitting method to accurately
extract the phase information of echo features, establishes an ultrasonic echo model, and
analyzes the performance with the commonly used transit time measurement methods to
verify the advantages of the algorithm. The system’s thickness measurement experiments
were conducted on different thicknesses of 45 steel calibration and thickness measurement
experiments, through the measurement of three sets of thickness of the transit time and
its corresponding calibration thickness value to obtain the calibration speed of sound
and the zero calibration value of 45 steel. The remaining thicknesses were measured
and analyzed for errors. The conclusions show that the measurement error is ±0.01 mm
for the thicknesses within 3 mm~20 mm and ±0.05 mm for the other thicknesses within
1 mm~50 mm. The single measurement time is 40 ms. This work is highly integrated and
requires only a microcontroller. No additional AD converter chip is needed. The processing
method makes the measurement accuracy high and reduces the cost. By setting a reasonable
sampling frequency and number of sampling points, a larger range of thickness can be
measured. Repeating multiple sampling accumulations improves the signal-to-noise ratio
of the echo signal, which has a certain development prospect.

Author Contributions: W.G. experiment, writing—original draft, writing—review and editing; X.W.
project administration, resources; Z.Y. tests and data analysis, edited the manuscript, writing—review;
Z.Z. conceptualization, supervision; W.F. formal analysis; D.L. conceptualization, supervision. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (No.
32071457), Hubei Natural Science Foundation (No. 2022CFA006) and the Wuhan Keyresearch and
development plan (Grant No. 2022012202015034).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare that this study received funding from the National Natural
Science Foundation of China (No. 32071457), Hubei Natural Science Foundation (No. 2022CFA006),
and the Wuhan Keyresearch and development plan (Grant No. 2022012202015034). The funder was
not involved in the study design, collection, analysis, interpretation of data, the writing of this article
or the decision to submit it for publication.

References
1. Liu, Y.; Yang, S.; Gan, C. A Novel Laser Ultrasonic Thickness Measurement Method for Metal Plate Based on Spectral Analysis. In

Proceedings of the 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Goyang, Republic
of Korea, 28–30 October 2015; pp. 324–329.

2. Liu, H.; Wang, Y.; Jia, Z.; Guo, D. Integration strategy of on-machine measurement (OMM) and numerical control (NC) machining
for the large thin-walled parts with surface correlative constraint. Int. J. Adv. Manuf. Technol. 2015, 80, 1721–1731. [CrossRef]

3. Liu, H.; Wang, Y.; Lian, M.; Zhang, T.; Liu, B. Thickness Measurement using Ultrasonic Scanning Method for Large Aerospace
Thin-Walled Parts. In Proceedings of the 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace),
Torino, Italy, 19–21 June 2019; pp. 243–247.

4. Kanai, H.; Koiwa, Y. Measurement of Propagation Speed of Pulsive Wave in Heart Wall at End-Systole. In Proceedings of the 2002
IEEE Ultrasonics Symposium, Munich, Germany, 8–11 October 2002; Volume 1312, pp. 1313–1316.
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