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Abstract: In this paper, in order to reduce the energy consumption and time of data transmission, the
non-orthogonal multiple access (NOMA) and mobile edge caching technologies are jointly considered
in mobile edge computing (MEC) networks. As for the cache-assisted vehicular NOMA–MEC
networks, a problem of minimizing the energy consumed by vehicles (mobile devices, MDs) is
formulated under time and resource constraints, which jointly optimize the computing resource
allocation, subchannel selection, device association, offloading and caching decisions. To solve the
formulated problem, we develop an effective joint computation offloading and task-caching algorithm
based on the twin-delayed deep deterministic policy gradient (TD3) algorithm. Such a TD3-based
offloading (TD3O) algorithm includes a designed action transformation (AT) algorithm used for
transforming continuous action space into a discrete one. In addition, to solve the formulated problem
in a non-iterative manner, an effective heuristic algorithm (HA) is also designed. As for the designed
algorithms, we provide some detailed analyses of computation complexity and convergence, and
give some meaningful insights through simulation. Simulation results show that the TD3O algorithm
could achieve lower local energy consumption than several benchmark algorithms, and HA could
achieve lower consumption than the completely offloading algorithm and local execution algorithm.

Keywords: TD3; MEC; NOMA; vehicular networks; edge cache; computation offloading; resource
allocation

1. Introduction

With the rapid development of information and communication technologies, the data
traffic generated by vehicles (mobile devices, MDs) has also significantly increased [1].
For wireless communication networks, more spectrum resources are required for data
traffic transmission [2–5]. In addition, higher computing power is required by MDs for
supporting large amounts of task calculation. However, due to the limited battery capacity
of MDs, it may be challenging to process these computation tasks for them. By deploying
edge computing servers at base stations (BSs), mobile edge computing (MEC) can support
MDs in processing tasks at the adjacent edge servers [6,7]. Compared with cloud computing
(CC), which requires tasks to be uploaded to a remote cloud, MEC can provide additional
computing resources for MDs within its coverage area and thus reduce their computing
overhead [8–14].

Although the edge servers can reduce the computing overhead of MDs by providing
more computing resources, the extra time and energy consumption caused by offloading
tasks through wireless channels cannot be ignored, especially for high-size computation
tasks. In order to further reduce the time and energy consumption caused by offloading
tasks, edge caching technology is also introduced into MEC networks. By caching tasks of
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MDs at edge servers in advance, the overhead caused by offloading tasks could be greatly
reduced [15–19].

To upload tasks from MDs to edge servers, orthogonal multiple access (OMA) is often
used, but it may be greatly challenging to provide a high transmission rate and support
massive connections. As another type of resource utilization management, non-orthogonal
multiple access (NOMA) technologies can let multiple users share the same frequency
bands, achieve higher spectral efficiency and support extensive connections [20–23]. It is
evident that NOMA is a good type of resource utilization management for reducing the
cost of task transmission in MEC networks.

Although the application of caching and NOMA technologies in MEC networks can
reduce time and energy consumption, such a framework will make the design of computa-
tion offloading and edge caching schemes more complex. To the best of our knowledge,
until now, how to jointly perform the device association, computation offloading, edge
caching, subchannel selection and resource allocation is still an important and open topic
in cache-assisted NOMA–MEC networks.

1.1. Related Work

So far, a lot of work has been conducted on joint computation offloading and resource
optimization in NOMA–MEC networks. In [20], joint radio and computation resource allo-
cation was optimized to maximize the offloading energy efficiency in NOMA–MEC-enabled
IoT networks, and a solution based on a multi-layer iterative algorithm was proposed.
In [21], local computation resource, offloading ratio, uplink transmission time and power
and subcarrier assignment were jointly optimized to minimize the sum of weighted energy
consumed by users in NOMA–MEC networks, and some effective iterative algorithms
were designed for single-user and multi-user cases. In [24], joint task offloading, power al-
location and computing resource allocation were optimized to achieve delay minimization
using a deep reinforcement learning (DRL) algorithm in NOMA–MEC networks. In [25],
the joint optimization of offloading decisions, local and edge computing resource allocation
and power and subchannel allocation were realized to minimize energy consumption in
heterogeneous NOMA–MEC networks, and an effective iterative algorithm was designed.
In [26], power and computation resource allocations were jointly optimized to minimize
overall computation and transmission delay for massive MIMO and NOMA-assisted MEC
systems, and a solution based on an interior-point algorithm was given. In [27], the channel
resource allocation and computation offloading policy were jointly optimized to minimize
the sum of weighted energy and latency in NOMA–MEC networks, and some efficient
solutions were found using a DRL algorithm based on actor–critic and deep Q-network
(DQN) methods.

To further reduce the offloading time and energy consumption, edge caching tech-
nology is introduced into conventional MEC networks. Such a framework has attracted
more and more attention. In [28], the offloading and caching decisions, uplink power and
edge computing resources were jointly optimized to minimize the sum of weighted local
processing time and energy consumption in two-tier cache-assisted MEC networks, and a
distributed collaborative iterative algorithm was proposed. In [29], a problem of adaptive
request scheduling and cooperative service caching was studied in cache-assisted MEC
networks. After formulating the optimization problems as partially observable Markov
decision process (MDP) problems, an online DRL algorithm was proposed to improve the
service hitting ratio and latency reduction rate. In [30], optimal offloading and caching
strategies were established to minimize overall delay and energy consumption of all re-
gions using a deep deterministic policy gradient (DDPG) framework in cache-assisted
multi-region MEC networks. In [31], joint MD association and resource allocation were
performed to minimize the sum of MDs’ weighted delay in heterogeneous cellular networks
with MEC and edge caching functions, and an effective iterative algorithm was developed
using coalitional game and convex optimization theorems. In [32], to minimize the content
transmission delay in vehicular edge computing networks, a cooperative vehicular edge
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computing and caching scheme based on asynchronous federated and deep reinforcement
learning was proposed to predict the popular content and the optimal cooperative caching
location of the content. In [33], to reduce the cost of the cloud service center through the
asynchronous advantage actor–critic algorithm, the offloading decision, service caching and
resource allocation strategies were jointly optimized in the three-tier mobile cloud–edge
computing structure combining computation offloading and service caching mechanisms.
In [34], a logistic function-based service reliability probability (SRP) estimation model was
built, and the average SRP maximization problem of a virtual machine-based edge comput-
ing server was studied for such a model. At last, a low-complexity heuristic alternative
optimization algorithm was proposed.

To enhance spectral efficiency and support massive connections, NOMA technology
has attracted increasing attention in cache-assisted MEC networks. In [35], the multi-
agent deep deterministic policy gradient method was used to dynamically optimize the
user association, power control and cache placement of BSs and satellites to improve the
network energy efficiency in a NOMA-enabled satellite integrated with a terrestrial network
scenario. In [36], joint optimization of offloading and caching decisions and computation
resource allocation was performed to maximize long-term reward in cache-assisted NOMA–
MEC networks under the predicted task popularity, and single-agent and multi-agent
Q-learning algorithms were proposed to find feasible solutions. In [37], joint optimization
of offloading and caching decisions was performed to minimize the system delay in cache-
assisted NOMA–MEC networks, and a multi-agent DQN algorithm was used for finding
efficient solutions under the predicted popularity. In [38], local task processing time was
minimized by jointly optimizing offloading and caching decisions and the allocation of
edge computing resources and uplink power in cache-assisted NOMA–MEC networks with
single BS, and the blocking successive upper-bound minimization method was utilized to
achieve efficient solutions.

Although the framework of cache-assisted (vehicular) NOMA–MEC networks can
greatly reduce the task processing time and energy consumption and support massive
connections, there exist very few relevant efforts. Unlike the above-mentioned work, we
jointly optimize the edge computing resource allocation, subchannel selection, device
association, offloading and caching decisions for the cache-assisted vehicular NOMA–MEC
networks with multiple BSs, minimizing the energy consumed by MDs under time and
resource constraints. In addition, unlike existing efforts, we develop an effective dynamic
joint computation offloading and task-caching algorithm based on the twin-delayed deep
deterministic policy gradient algorithm (TD3) to find efficient solutions, named the TD3-
based offloading (TD3O) algorithm.

1.2. Contribution and Organization

In this paper, we jointly optimize the edge computing resource allocation, subchannel
selection, device association, offloading and caching decisions in cache-assisted vehicular
NOMA–MEC networks, minimizing the energy consumed by MDs under time and resource
constraints. Specifically, the main contributions and work of this paper can be listed
as follows.

• Edge computing resource allocation, subchannel selection, device association, compu-
tation offloading and edge caching are jointly performed in cache-assisted vehicular
NOMA–MEC networks. To the best of our knowledge, work that concerns subchannel
selection is a new investigation for cache-assisted vehicular NOMA–MEC networks
with multi-server scenarios. Meanwhile, as far as this problem is concerned, the goal
is to minimize the energy consumed by MDs under the constraints of time, computing
resources, caching capacity, the number of MDs associated with each BS and the num-
ber of MDs associated with each subchannel. As far as we know, such an optimization
problem is a new concentration in cache-assisted vehicular NOMA–MEC networks.

• We design effective algorithms to find feasible solutions to the formulated problem.
Considering that the formulated problem is in a mixed-integer, nonlinear, multi-
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constraint form, a simple map between actions and actual policies in a conventional
twin-delayed deep deterministic policy gradient (TD3) algorithm cannot be well
applied. In addition, too large an action space will cause the TD3 algorithm to fail
to search for correct actions and thus fail to converge. In view of these concerns,
we develop an effective TD3O algorithm integrating with the AT algorithm to solve
the formulated problem. Moreover, in order to solve this problem in a non-iterative
manner, an effective heuristic algorithm (HA) is also designed.

• Performance analyses of the designed algorithms. Some analyses are made for the com-
putation complexity and convergence of the designed algorithms in detail. In addition,
some meaningful simulation analyses are also made by introducing other benchmark
algorithms for comparison, and some good results and insights are achieved.

The rest of the paper is organized as follows. Section 2 introduces the system model.
Section 3 formulates a problem of minimizing local energy consumption in cache-assisted
vehicular NOMA–MEC networks. Section 4 designs the HA and TD3O algorithm. Section 5
gives the computation complexity and convergence analyses for the designed algorithms.
Section 6 investigates the performance of the designed algorithms through simulation.
Section 7 gives conclusions and discussions.

2. System Model
2.1. Network Model

Figure 1 shows the cache-assisted vehicular NOMA–MEC networks. In such network,
there exist M MDs, and the index set of them is denoted asM = {1, 2, · · · , M}; B BSs are
deployed, and the index set of them is given by I = {1, 2, · · · , I}. In addition, each BS is
equipped with one edge computing server and one edge caching server, and these BSs
connect to each other through wired links. We assume that each MD has one computation
task at any timeslot, which can be processed by itself, its associated BS or another auxiliary
BS selected by this associated BS. When tasks have been cached at the BSs used for pro-
cessing them, they do not need to be uploaded to these BSs; when the associated BSs have
not cached tasks, MDs need to upload tasks to these BSs; when the auxiliary BSs have not
cached tasks, the associated BSs need to upload tasks to their selected auxiliary BSs.

subchannels2 3 K1 ...

2 3 K1 ...
2 3 K1 ...

MD

BS

computing server

caching server

wireless link

wired link

Figure 1. Cache-assisted vehicular NOMA–MEC networks.

Assume that the association index between MD m and BS i is xm,i ∈ {0, 1}, where
X = {xm,i|∀m ∈ M, ∀i ∈ I }. xm,i = 1 if MD m is associated with BS i, otherwise xm,i = 0.
In addition, we assume that the caching index of the task of MD m at BS i is denoted
as ym,i ∈ {0, 1}, where Y = {ym,i|∀m ∈ M, ∀i ∈ I}. ym,i = 1 if the task of MD m is
cached at BS i, otherwise ym,i = 0. We also assume that the offloading (execution) in-
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dex of the task of MD m at BS i is denoted as um,i, where U = {um,i|∀m ∈ M, ∀i ∈ I}.
um,i = 1 if the task of MD m is executed at BS i, otherwise um,i = 0. At last, we as-
sume that the association index between MD m and subchannel k of BS i is denoted as
zm,i,k, where Z =

{
zm,i,k|∀m ∈ M, ∀i ∈ I , ∀k ∈ K

}
. If xm,i(1− ym,i)(1− ym,ī)um,ī = 1 or

xm,i(1− ym,i)um,i = 1 under ī 6= i, MD m can select (be associated with) some subchannel k
of BS i, which means zm,i,k = 1. Otherwise, the subchannel k of BS i cannot be selected by
MD m, which means zm,i,k = 0.

2.2. Communication Model

In this paper, the system bandwidth W is divided into K subchannels with equal
bandwidth, which are indexed by K = {1, 2, · · · , K}. These subchannels can be shared by
different MDs through NOMA. Significantly, each MD can occupy at most one subchannel,
the number of MDs selecting each subchannel cannot exceed the upper limit ρ, and the
number of MDs associated with any BS that need to upload tasks should be less than or
equal to the number of subchannels K [37].

As revealed in [39], the successive interference cancellation (SIC) technology in NOMA
technology can effectively reduce the interference between MDs in the same subchannel.
The channel gains of MDs sharing the same subchannel of a BS should be sorted in
descending order at first, and then the uplink NOMA signals received by this BS can be
decoded in this order. We assume that MSC

k is the set of MDs selecting subchannel k,
and om,i,k represents the sequence number of channel gain between MD m and BS i on
subchannel k. When MD i and MD m access the subchannel k of BS i simultaneously and the
channel gain hj,i,k between MD j and BS i on subchannel k is lower than the channel gain
hm,i,k between MD m and BS i on subchannel k, oj,i,k < om,i,k is satisfied. Then, the signal of
MD m is decoded but the signal of MD j will be treated as noise. Therefore, when MD m
selects subchannel k of BS i, its uplink data rate rm,i,k can be given by

rm,i,k = Wlog2

(
1 + pmhm,i,k/

(
Γm,i,k + σ2

))
/K, (1)

where Γm,i,k = ∑j∈Msc
k /{m}:oj,i,k<om,i,k

pjhj,i,k is the interference caused by other MDs (exclud-
ing MD m) sharing subchannel k of BS i through NOMA; pm is the transmission power
of MD m; σ2 is the noise power. When MD m is decoded, it is no longer regarded as
interference in the subchannel, and the device with the maximum channel gain among the
remaining MDs in the current subchannel is decoded in the same way until all MDs of the
current subchannel are decoded.

2.3. Caching and Offloading Models

In this paper, we assume that any MD m has a time-sensitive task denoted as
Lm = {dm, cm, τmax

m } at each timeslot, where dm is the data size of the task of MD m, cm is
the number of CPU cycles required to complete a one-bit task, and τmax

m is the maximum
task processing time of MD m.

Figure 2 illustrates the caching and offloading models. At each timeslot, BSs precache
the tasks for processing at the next timeslot. When MD m is associated with BS i, it first
checks whether the associated BS has cached the corresponding task. If ∑i∈I um,i = 0,
the task of MD m is calculated by itself, e.g., MD 1 in Figure 2. If xm,iym,ium,i = 1, the task
of MD m can be directly calculated at its associated BS i, and the results will be fed back
from BS i to MD m, e.g., MD 2 in Figure 2. If xm,iym,i(1− ym,ī)um,ī = 1, the task of MD m
is offloaded from its associated BS i to another auxiliary BS ī 6= i for computing through
a wired link, e.g., MD 3 in Figure 2. If xm,iym,iym,īum,ī = 1, the task of MD m can be
directly calculated at auxiliary BS ī 6= i, e.g., MD 4 in Figure 2. If xm,i(1− ym,i)um,i = 1,
the task of MD m will be offloaded to its associated BS i for computing, e.g., MD 5 in
Figure 2. If xm,i(1− ym,i)(1− ym,ī)um,ī = 1, the task of MD m first needs to be offloaded
to its associated BS i, and then it is transmitted from this BS to another auxiliary BS ī 6= i
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for computing through a wired link, e.g., MD 6 in Figure 2. If xm,i(1− ym,i)ym,īum,ī = 1,
the task of MD m can be directly calculated at an auxiliary BS ī 6= i, e.g., MD 4 in Figure 2.

1 2 3 4 5

4 2  3  4

BS 3

offloading with uploading

cooperative offloading with transimission

6

6

7

2 7 3 5 6 42 3 71

MD

offloading without uploading

nonoffloading

caching server

computing server

Figure 2. Caching and offloading models.

2.3.1. Local Computing

If ∑i∈I um,i = 0 is satisfied, the task of MD m should be executed locally, and the
processing time and energy consumption are, respectively, given by

τloc
m = cmdm

/
f loc
m , (2)

εloc
m = ξcmdm

(
f loc
m

)2
, (3)

where f loc
m is the computing capacity of MD m, and ξ is an energy-consumption coefficient

depending on the hardware architecture.

2.3.2. Task Transmission

If xm,i(1− ym,i)(1− ym,ī)um,ī = 1 or xm,i(1− ym,i)um,i = 1 are satisfied under ī 6= i,
the task of MD m should be, respectively, uploaded to BS ī or i for execution through
NOMA. Then, the uploading time and energy consumption of MD m, respectively, are
given by

τtrs
m = ∑i∈I ∑k∈K zm,i,kdm/rm,i,k, (4)

εtrs
m = pmτtrs

m . (5)

In addition, if xm,i(1− ym,i)(1− ym,ī)um,ī = 1 or xm,iym,i(1− ym,ī)um,ī = 1 is satisfied
under ī 6= i, the task of MD m should be transmitted from its associated BS i to an auxiliary
BS ī through a wired link, and the corresponding time is given by

τbh
m = dm

/
rbh, (6)

where rbh is the backhualing rate between any two BSs.
In this paper, we mainly concentrate on the energy consumption of MDs but not the

energy consumed by BSs. In addition, the downlink transferring time of results is often
ignored since they are fairly small [40].

2.3.3. Edge Computing

When MD m executes its task at BS i, the task processing time at this BS can be given by

τexe
m,i = cmdm

/
fm,i, (7)

where fm,i is the computing capacity allocated to MD m by BS i.
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2.3.4. Task Processing Time and Energy Consumption

Then, the total time used for processing the task of MD m can be given by

τtot
m =∑i∈I

((
1−∑i∈I um,i

)
τloc

m

+ xm,i
(
1− ym,i

)
∑ī∈I\{i} um,ī

(
1− ym,ī

)
τtrs

m

+ xm,i
(
1− ym,i

)
∑ī∈I\{i} um,ī

(
1− ym,ī

)
τbh

m

+ xm,i
(
1− ym,i

)
∑ī∈I\{i} um,īτ

exe
m,ī

+ xm,iym,i ∑ī∈I\{i} um,ī
(
1− ym,ī

)
τbh

m

+ xm,iym,i ∑ī∈I\{i} um,īτ
exe
m,ī

+ xm,i
(
1− ym,i

)
um,i

(
τtrs

m + τexe
m,i
)

+ xm,iym,ium,iτ
exe
m,i

)
.

(8)

On the right side of the equality sign in (8), the first item represents the local executing
time; the second item is the time used for uploading the task from MD m to the associated
BS i, which does not cache this task and further transmits it to auxiliary BS for computing;
the third item is the time used for transmitting the task from the associated BS i to another
auxiliary BS, where these two BSs do not cache this task; the fourth item is the time used
for executing the task of MD m at an auxiliary BS, where the associated BS does not cache
this task; the fifth item is the time used for transmitting the task from the associated BS i to
another auxiliary BS, where the associated BS caches this task but the auxiliary BS does not;
the sixth item is the time used for executing the task of MD m at an auxiliary BS, where the
associated BS caches this task; the seventh item includes the time used for transmitting the
task from MD m to the associated BS i, which does not cache this task, and the time used
for executing the task of MD m at this BS; the eighth item is the time used for executing the
task of MD m at the associated BS i, which caches this task.

Then, the total local energy consumption used for processing the task of MD m can be
given by

εtot
m =∑i∈I

((
1−∑i∈I um,i

)
εloc

m

+ xm,i
(
1− ym,i

)
∑ī∈I\{i} um,ī

(
1− ym,ī

)
εtrs

m

+ xm,i
(
1− ym,i

)
um,iε

trs
m

)
,

(9)

on the right side of equality sign in (9), the first item represents the local executing energy
consumption; the second item is the energy consumption caused by offloading the task
from MD m to its associated BS i, which further transmits this task to auxiliary BS ī 6= i for
computing; the third item is the energy consumption caused by transmitting the task from
MD m to the associated BS i, which does not cache this task.

3. Problem Formulation

Until now, we have formulated a problem of minimizing local energy consumption at
each given period. Specifically, under the constraints of time, computing resources, caching
capacity, the number of MDs associated with each BS and the number of MDs associated
with each subchannel, we jointly optimized the edge computing resource allocation, sub-
channel selection, device association, offloading and caching decisions to minimize the
energy consumed by MDs in cache-assisted vehicular NOMA–MEC networks. Mathemati-
cally, this is formulated as
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P1 : min
X,Y,U,Z,F

∑m∈M εtot
m

s.t. C1 : τtot
m ≤ τm, ∀m ∈ M,

C2 : ∑i∈I xm,i = 1, ∀m ∈ M,

C3 : ∑i∈I ∑k∈K zm,i,k ≤ 1, ∀m ∈ M,

C4 : ∑m∈M∑k∈K zm,i,k ≤ K, ∀i ∈ I ,

C5 : ∑i∈I um,i ≤ 1, ∀m ∈ M,

C6 : xm,i ∈ {0, 1}, ∀m ∈ M, ∀i ∈ I ,

C7 : ym,i ∈ {0, 1}, ∀m ∈ M, ∀i ∈ I ,

C8 : zm,i,k ∈ {0, 1}, ∀m ∈ M, ∀i ∈ I , ∀k ∈ K,

C9 : um,i ∈ {0, 1}, ∀m ∈ M, ∀i ∈ I ,

C10 : ∑m∈M ym,idm ≤ ϑi, ∀i ∈ I ,

C11 : ∑m∈M∑i∈I zm,i,k ≤ ρ, ∀k ∈ K,

C12 : ∑m∈M um,i fm,i ≤ f BS
i , ∀i ∈ I ,

(10)

where F = { fm,i|∀m ∈ M, ∀i ∈ I }; the constraint C1 gives the maximum task processing
time of MD m; C2 and C6 indicate that any MD m can select only one BS; C3 and C8 indicate
that any MD m can occupy at most one subchannel; C4 and C8 mean that the number of
MDs selecting any BS that needs to upload tasks should be less than or equal to the number
of subchannels; C5 and C9 mean that any MD m can select at most one BS to execute its task;
C7 and C10 indicate that the data size of tasks cached at BS i does not exceed the caching
capacity ϑi of this BS; C8 and C11 show that the number of MDs selecting a subchannel
cannot exceed its upper limit; C7 and C12 reveal that the total computing capacity allocated
to MDs by BS i cannot exceed the computing capacity of this BS.

4. Algorithm Design

As previously mentioned, the optimization problem P1 refers to minimizing local
energy consumption within a given period. In view of this, we adopt the DRL algorithm to
solve it. DRL is based on MDP, which implements the environment-based output of agent
policy in MDP through neural networks, maximizing certain rewards. Considering that
the overestimation of some conventional DRL algorithms (e.g., DQN and DDPG), the TD3
algorithm has been widely advocated because it can overcome well the problems of the
above algorithms and achieve more stable output [41,42]. The main features of the TD3
algorithm are adding a new neural network and reducing the training frequency of the
network based on DDPG.

The problem P1 has both continuous and discrete variables, and the solution space
formed by the combination of all variables is very large, which is not a suitable scenario
for the DQN algorithm to solve discrete space problems. Therefore, we use the TD3
algorithm, which can solve the continuous solution space problems. Considering that a
simple mapping between only the decision of the algorithm and the actual strategy will fail
to achieve convergence because of there being too many feasible strategies and the inability
to search for the correct one, we develop an effective TD3O algorithm integrated with the
AT algorithm to solve the problem P1.

4.1. MDP Used for Describing Problem P1

Considering that the optimization problem P1 needs to be tackled within a given
period, in order to apply TD3O to the problem P1, such a period is divided into T timeslots
and denoted as T = {1, 2, · · · , T}. Furthermore, the problem of joint computing offloading,
task caching and resource allocation is described as a MDP, the state space, action space
and reward function are defined as follows.
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¶ State space: At each timeslot, the state space contains the information used
for decisions made by the network. Here, the state st at timeslot t can be denoted as
st = {D̄(t + 1), Ȳ(t)}. The detailed definitions can be found as follows.

• D̄(t + 1) =
{

d̄m(t + 1)|∀m ∈ M
}

are the standardized data sizes of tasks of MDs at
timeslot t + 1, where

d̄m(t) =
dm(t)− dmin(t)

dmax(t)− dmin(t)
, (11)

dmin(t) is the minimum data size of the tasks of all MDs at timeslot t, and dmax is the
maximum data size of the tasks of all MDs at timeslot t.

• Ȳ(t) = {ȳm(t)|∀m ∈ M} are the task caching decision factors at BSs at timeslot t,
where ȳm ∈ [0, 1].

· Action space: At each timeslot, the action space refers to the decisions made
by the network according to the state st. The action at at timeslot t can be denoted as
at =

{
X̄(t), Ȳ(t + 1), Z̄(t), Ū(t), F̄(t)

}
. Specifically:

• X̄(t) = {x̄m(t)|∀m ∈ M} are the association decision factors of MDs at timeslot t,
where x̄m ∈ [0, 1].

• Ȳ(t + 1) = {ȳm(t + 1)|∀m ∈ M} are the caching decision factors at timeslot t for the
next timeslot.

• Z̄(t) = {z̄i(t)|∀i ∈ I } are the subchannel allocation decision factors of BSs at timeslot
t, where z̄i ∈ [0, 1].

• Ū(t) = {ūm(t)|∀m ∈ M} are the offloading decision factors of MDs at timeslot t,
where ūm ∈ [0, 1].

• F̄(t) =
{

f̄m(t)|∀m ∈ M
}

are the computing resource allocation factors of MDs at
timeslot t, where f̄m ∈ [0, 1].

It is noteworthy that the dimensions of the above-mentioned state and action spaces
have been greatly reduced compared to the actual ones. The actual state and action spaces
can be achieved by executing an AT algorithm in the following parts.

¸ Reward: Considering that the goal of problem P1 is to minimize local energy
consumption and the constraints C1 and C10 cannot be strictly satisfied in the DRL-based
iteration procedure, the reward wt at timeslot t is given by

wt = −ω1 ∑m∈M εtot
m (t)−ω2φ(t)−ω3 ϕ(t), (12)

where φ(t) = ∑m∈Mmax(τtot
m (t)− τm, 0) is the penalty function added for guaranteeing

the constraint C1; ϕ(t) = ∑i∈I max(∑m∈M ym,i(t)dm(t)− ϑi(t), 0) is the penalty function
introduced for guaranteeing the constraint C10; ω1 is the energy-consumption discount
factor; ω2 and ω3 are penalty coefficients.

When the network obtains action at according to the state st, the state space will obtain
the next state st+1 according to the action at. Specifically, the task-caching decisions of
BSs can be directly achieved from Y(t + 1) in at. Therefore, the total return of minimizing
long-term local energy consumption within T timeslots can be given by

R = ∑t∈T γwt, (13)

where γ is the reward discount factor satisfying γ ∈ (0, 1).

4.2. TD3O Algorithm

The TD3 algorithm is an actor-critic-based framework that comprises the policy (µ)
network, critic (Q) network and their corresponding target networks and updates the
network parameters using gradient algorithms. It is characterized by using two critic
networks and two critic target networks in the design of critic networks. The TD3 algorithm
is often divided into two parts consisting of experience collection and training. In the phase
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of collecting experience, a new action at can be generated by adding random Gaussian
noise into the output of the policy network at the state st, i.e.,

at = µ(st, θµ) + σ̄2. (14)

where θµ is the parameter of the policy network and σ̄2 is the additive Gaussian noise.
After that, the environment is rewarded with wt and the next state st+1 can be achieved

according to the state and action (st, at). To enable the algorithm to obtain better decisions
through past experience-assisted training, we put the quadruple (st, at, wt, st+1) into the
experience replay buffer as a historical experience. In the training process, a certain number
of quadruples are randomly selected from the experience replay buffer for training. Since
the TD3 algorithm consists of policy and critic networks, the training part of the network is
relatively independent, so it is divided into the following two parts.

4.2.1. Training Policy Network

The training process of the policy network is shown in Figure 3. In the training phase, N
quadruples are extracted from the experience replay buffer and denoted asN = {1, 2, · · · , N}.
For any quadruple n ∈ N , the policy network outputs a new action a′n = µ(sn, θµ) according
to the state sn. It should be noted that the policy a′n is different from an existing in the
experience replay buffer. After sn and a′n are inputted into any critic network (e.g., critic Q1
network), such network outputs qn = Q1

(
sn, µ(sn, θµ), θQ1

)
, where θQ1 is the parameter of

the critic Q1 network. After achieving all qn, their mathematical expectation is given by

J(θµ) = E
[

Q1

(
S , µ(S , θµ), θQ1

)]
, (15)

where S = {sn|n ∈ N}. Then, the policy gradient of function J with respect to θµ can be
given by

∇θµ J = E
[
∇AQ1

(
S ,A, θQ1

)
∇θµ µ(S , θµ)

]
, (16)

where A = {an|n ∈ N}.

rewardstate action next state

policy gradient

Adam optimizer

...

 network

network

'a

'a
new action

s

q

JJJJ

1
Q

Figure 3. Training policy network.

Significantly, the calculated gradient requires gradient clipping, which can avoid
skipping the optimal solution because the gradient is too large. The calculated policy
gradients will be used to update the parameters of the policy networks. We assume that the
learning rate of the policy network is βµ, and use the adaptive moment (Adam) estimation
commonly used in DRL to obtain the optimal θµ [43] .

4.2.2. Training Critic Network

Figure 4 shows the training process of the critic network. During the critic network
training, the policy at the next time is first estimated through the state at the next time by
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the policy target(µ−) network, i.e., a′n = µ−(s′n, θµ−) + σ̂2, where σ̂2 is policy noise, that
is, trimmed additive Gaussian noise. Then, the action a′n and the state s′n are used as the
input of the critic target (Q−1 ) network and critic target (Q−2 ) network, where θQ−1 and θQ−2

are their parameters. After that, these two networks output q̃n,1 and q̃n,2, respectively. Next,
the approximation of Q value is q̄n = rn + γq̃n achieved using Behrman equation, where
q̃n = min(q̃n,1, q̃n,2). At the same time, the action an and the state sn are used as the input
of the critic Q1 network and critic Q2 network, where θQ1 and θQ2 are their parameters.
After that, these two networks output qn,1 and qn,2. At last, for all q̄n, according to the
theorem of mean squared error (MSE), the expectation function of the squared loss between
Q1
(
S ,A, θQ1

)
and Q̄ is

L1

(
θQ1
)
= 0.5E

[(
Q1

(
S ,A, θQ1

)
− Q̄

)2]
, (17)

and the expectation function of the squared loss between Q2
(
S ,A, θQ2

)
and Q̄ is given by

L2

(
θQ2
)
= 0.5E

[(
Q2

(
S ,A, θQ2

)
− Q̄

)2]
, (18)

where Q̄ = {q̄n|n ∈ N}. Then, the gradient of the loss function L1
(
θQ1
)

with respect to the
parameter θQ1 is

∇θQ1 L1 = E
[(

Q1

(
S ,A, θQ1

)
− Q̄

)
∇θQ1 Q1

(
S ,A, θQ1

)]
, (19)

and the gradient of the loss function L2
(
θQ2
)

with respect to the parameter θQ2 is given by

∇θQ2 L2 = E
[(

Q2

(
S ,A, θQ2

)
− Q̄

)
∇θQ2 Q2

(
S ,A, θQ2

)]
. (20)
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Figure 4. Training critic network.

Similar to calculating the policy gradient, the gradient clipping needs to be performed
after calculating the gradients using (19) and (20). In addition, βQ is the learning rate of the
critic network, and the parameters of the two critic networks are updated using the Adam
algorithm. Certainly, the parameters of critic target networks also need to be updated using
the soft update method, i.e.,

θµ− = λθµ + (1− λ)θµ− , (21)

θQ−1 = λθQ1 + (1− λ)θQ−1 , (22)

θQ−2 = λθQ2 + (1− λ)θQ−2 , (23)
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where λ is the learning rate of target networks.
It is noteworthy that a lower network updating frequency is adopted in this paper.

We assume that the update interval of the critic network is tcti and the update interval
between the policy and critic networks is tpti. The critic networks are trained many times to
ensure the stability of Q value. After that, the policy network can be updated. The detailed
procedure of the TD3O algorithm is summarized in Algorithm 1, where tmep is the maximal
number of epochs.

Algorithm 1: TD3-based offloading (TD3O)

1: Initialization: θQ1 , θQ2 , θµ, θQ−1 , θQ−2 , θµ− , tstep = 0, tepoch = 0.
2: While tepoch < tmep

3: Let t = 0, state st and reward R = 0.
4: While t < T
5: Generate action at using (14).
6: Achieve actual action by executing Algorithm 2.
7: Calculate reward wt using (12) and obtain the state st+1.
8: If tstep ≥ κ
9: Replace the previous quadruple with (st, at, wt, st+1).
10: Else
11: Put the quadruple (st, at, wt, st+1) into the queue.
12: EndIf
13: Update state st = st+1.
14: If tstep%tcti = 0 and tstep > N
15: Extract N quadruples for training.
16: For any sample n, Q−1 and Q−2 networks output q̃n,1 and
17: q̃n,2, respectively, and obtain the minimum value q̃n.
18: Calculate L(θQ

1 ) and L(θQ
2 ) using (17) and (18), respectively.

19: Calculate Q gradient using (19) and (20), and clip it.
20: Find θQ1 and θQ2 using Adam optimizer.
21: If tstep%tpti = 0
22: Calculate q through Q1.
23: Calculate policy gradient using (16), and clip it.
24: Find θµ using Adam optimizer.
25: EndIf
26: Calculate θQ−1 , θQ−2 and θµ− using (21)–(23), respectively.
27: EndIf
28: R = R + γwt.
29: tstep = tstep + 1; t = t + 1.
30: EndWhile
31: tepoch = tepoch + 1.
32: EndWhile

4.3. AT Algorithm

In order to apply the TD3O algorithm to solve the problem P1, it is necessary to
convert the achieved continuous action at =

{
X̄(t), Ȳ(t + 1), Z̄(t), Ū(t), F̄(t)

}
into a discrete

one [44]. To this end, we consider the following transformations for at.

4.3.1. The Discretization of Device Association Array

In X̄ = {x̄m|∀m ∈ M}, x̄m is the non-integer association index of MD m, which is the
continuous action achieved by the TD3 algorithm. Then, it is converted into an integer
form, i.e., {

xm,ceil(Ix̄m) = 1, if Ix̄m 6= 0,

xm,1 = 1, otherwise,
(24)

where ceil(b) is an upward rounding function with respect to b. Such a transformation can
ensure that each MD can be associated with one BS.
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Algorithm 2: Action transformation (AT)

1: For each MD m ∈ M
2: Achieve MD association matrix X using discretization rule.
3: Achieve task caching matrix Y using discretization rule.
4: Achieve task offloading matrix U using discretization rule.
5: EndFor
6: For each BS i ∈ I
7: Returns the set Ki of available subchannels and the setMi of
8: offloading MDs.
9: If Mi > Ki
10: Mi − Ki associated MDs are randomly selected, disassociated
11: and execute tasks locally.
12: EndIf
13: Achieve subchannel allocation matrix Z using discretization rule.
14: EndFor
15: For each MD m ∈ M
16: If ∑i∈I um,i = 1
17: If f̄m = 0
18: Assign small enough computing capacity to MD m to avoid
19: zero division.
20: Else
21: Allocate computing resources to MD m using (28).
22: EndIf
23: EndIf
24: EndFor

4.3.2. The Discretization of Task-Caching Array

In Ȳ, ȳm represents the non-integer caching index of MD m, which is the continuous
action achieved by the TD3 algorithm. Since each MD can store its task at all BSs, there
exist 2I storage options for it. Consequently, in order to convert ȳm into a discrete form, we
first need to perform ŷm = floor

(
2I ȳm

)
, if 2I ȳm 6= 0,

ŷm = 0, otherwise,
(25)

where floor(b) is a downward rounding function with respect to b. Then, in order to achieve
the binary caching index, the decimal ŷm needs to be converted into a binary number of
I 0–1 digits, which is given by bin(ȳm). In it, bin(b) is a function used for calculating the
binary number of decimal b. Then, ym,i = bin(ȳm)i, where bin(ȳm)i represents the i-th digit
of the binary number bin(ȳm).

4.3.3. The Discretization of Task Offloading Array

In Ū, ūm is the non-integer offloading index of MD m, which is the continuous action
achieved by the TD3 algorithm. Considering that each MD can offload its task to at most
one BS, ūm is converted into an integer form, i.e.,{

um,ceil(Iūm) = 1, if Iūm 6= 0,

um,i = 0, ∀i ∈ I , otherwise.
(26)

4.3.4. The Discretization of Subchannel Allocation Array

In Z̄, z̄i is the non-integer index of the subchannels allocated by BS i to its associated
MDs who need to offload tasks, which is the continuous action achieved by the TD3
algorithm. To achieve the integer form of z̄i, we first need to perform{

ẑi = ceil(C(Mi, Ki)z̄i), if C(Mi, Ki)z̄i 6= 0,

ẑi = 1, otherwise,
(27)
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where Mi is the number of MDs that are associated with BS i and need to offload tasks; Ki
is the number of available subchannels at BS i; C(Mi, Ki) = fac(Ki)/fac(Mi)fac(Ki −Mi)
is a function with respect to Mi and Ki and is used for calculating the number of feasible
subchannel allocation policies between Mi MDs and Ki subchannels at BS i; fac(b) is a
factorial function with respect to b; Mi ≤ Ki shall be satisfied.

Then, we assume that Zi = {1, 2, · · · , C(Mi, Ki)} is the set of C(Mi, Ki) feasible sub-
channel allocation policies between Mi MDs and Ki subchannels at BS i. After that, the sub-
channel allocation policy ẑi in the set Zi is selected according to the Equation (27). It is
noteworthy that C(Mi, Ki) feasible subchannel allocation policies are generated in advance.
That is to say, in the policy ẑi, we can easily know the utilized indices of Ki subchannels for
Mi MDs. According to these rules, we can easily find the subchannel allocation index Z.

4.3.5. The Transformation of Computing Resource Allocation Array

In F̄ =
{

f̄m|∀m ∈ M
}

, f̄m represents the computing resource score of MD m at the
target BS that is executing its task. If ∑i∈I um,i = 1 is satisfied between MD m and BS i,
according to the proportional allocation of computing resources, the computing resources
allocated to MD m by BS i can be given by

fm,i = um,i f BS
i f̄m/∑j∈Muj,i f̄ j. (28)

Based on the above-mentioned operations, the output action at =
{

X̄, Ȳ, Z̄, Ū, F̄
}

of the
TD3O algorithm can be effectively converted into an actual decision, which is summarized
as Algorithm 2.

4.4. HA

To solve the problem P1 in a non-iterative manner, we design an effective heuristic
algorithm, which is summarized in Algorithm 3. In such an algorithm, to reduce the uplink
transmission time and energy consumption, some MDs are associated with the nearest
BSs, and the BSs randomly cache the tasks of their associated MDs until the cache space
cannot cache more tasks. Then, the uncached MDs randomly select a BS as the offloading
target, and to guarantee time constraints, the BS will evenly distribute the computing
resources according to the computation amount of the task. Finally, a part of the MDs are
disassociated from BSs without sufficient subchannels and execute tasks by themselves.

Algorithm 3: Heuristic algorithm (HA)

1: Initialization: energy consumption ε̄tot = 0.
2: Each MD selects (is associated with) the nearest BS.
3: For each BS i ∈ I
4: If Mi > Ki
5: Mi − Ki associated MDs are randomly selected, disassociated
6: and execute tasks locally.
7: EndIf
8: Randomly select the tasks of MDs associated with BS i for caching
9: until the caching space is full.
10: EndFor
11: For t ∈ T
12: Randomly select a target BS for each MD without cached task.
13: Randomly allocate subchannels to MDs associated with each BS.
14: If subchannels are insufficient
15: Extra MDs are randomly selected to execute tasks locally.
16: EndIf
17: Proportionally allocate computing resources to MDs associated with
18: each BS according to the CPU cycles required by tasks.
19: Calculate the total local energy consumption ε̄.
20: ε̄tot = ε̄tot + ε̄.
21: EndFor
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5. Algorithm Analysis
5.1. Computation Complexity Analysis

In this section, the computation complexity of proposed algorithms are analysed
as follows.

Proposition 1. The computation complexity of Algorithm 2 is O(MIK) in the worst case.

Proof. In Algorithm 2, the computation complexity of steps 1–5 is O(M), the computation
complexity of steps 6–14 is O(MIK) in the worst case, and the computation complexity of
steps 15–24 is O(MI). In general, the computation complexity of Algorithm 2 is O(MIK)
in the worst case.

Proposition 2. The computation complexity of Algorithm 1 is O
(

max
(

∑LQ

l=0 ψQ
l ψQ

l+1, ∑Lµ

l=0
ψ

µ
l ψ

µ
l+1

))
at each timeslot, where Lµ is the number of layers of the policy network, LQ is the number

of layers of the critic network, ψ
µ
l is the number of neurons at the l-th layer of the policy network

and ψQ
l is the number of neurons at l-th layer of the critic network.

Proof. In Algorithm 1, the computation complexity is mainly related to the action trans-
formation, the calculation of the reward and task processing time and the structure of
the neural network. As previously mentioned, the computation complexity of the action
transformation should be O(MIK) in the worst case. As seen from Formulas (8) and (12),
the computation complexity of the calculation of the reward and task processing time is
O(MIK).

In Algorithm 1, there exist four critic networks and two policy networks. We assume
that the structure of the policy network and its target network is the same, and the structure
of the two critic networks and its target network is the same. Then, we can easily deduce that
the computation complexity of establishing policy networks is O

(
∑Lµ

l=0 ψ
µ
l ψ

µ
l+1

)
and the

computation complexity of establishing critic networks is O
(

∑LQ

l=0 ψQ
l ψQ

l+1

)
. Therefore,

the computation complexity of establishing neural networks is O
(

max
(

∑LQ

l=0 ψQ
l ψQ

l+1,

∑Lµ

l=0 ψ
µ
l ψ

µ
l+1

))
.

Since the computation complexity of establishing neural networks is much higher
than that of the other operations in Algorithm 2. In general, the computation complexity of
Algorithm 2 is O

(
max

(
∑LQ

l=0 ψQ
l ψQ

l+1, ∑Lµ

l=0 ψ
µ
l ψ

µ
l+1

))
at each timeslot.

Proposition 3. The computation complexity of Algorithm 3 is O(MI) at each timeslot.

Proof. In Algorithm 3, the computation complexity of step 2 is O(MI), the computation
complexity of steps 3–10 is O(I), the computation complexity of steps 12–16 is O(M),
the computation complexity of steps 17–19 is O(MI). In general, the computation complex-
ity of Algorithm 3 is O(MI) at each timeslot.

5.2. Convergence Analysis

Since Algorithm 2 is a part of Algorithms 1 and 3 and is non-iterative, we just need to
concentrate on the convergence of Algorithm 1. In detail, this is established as follows.

Theorem 1. Algorithm 1 can be guaranteed to converge after finite iterations.

Proof. In Algorithm 1, the neural networks are updated by the gradient descent method
used in the Adam optimizer. This utilizes the gradient information of the functions J(θµ),
L1(θ

Q1) and L2(θ
Q2) to guide the updating directions of the parameters θµ, θQ1 and θQ2 ,

so that the objective functions can reach the optimal or suboptimal values. When these
values tend to be stable, the parameters θµ, θQ1 and θQ2 also tend to be stable. At this time,
Algorithm 1 is deemed convergent.
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6. Performance Evaluation

In order to verify the performance of the designed algorithms, we introduce the
following algorithms for comparison.

DDPG-based offloading (DDPGO): DDPG is a classical DRL algorithm [45]. Com-
pared with the TD3 algorithm, the DDPG algorithm reduces the critic network and
the critic target network. In addition, both the critic network and policy network are
updated at each timeslot in the DDPG algorithm. In this paper, the DDPG algorithm
used to solve the problem P1 is named the DDPG-based offloading (DDPGO) algorithm.
The difference between the two algorithms is that the state input and action output
are the same as the mode used by TD3O, and it also uses the AT algorithm to convert
continuous actions.

Completely offloading (CO): In the CO algorithm, the task of each MD is offloaded to
the nearest BS for computing. Such BS proportionally allocates the computing capacity to
its associated MDs according to the CPU cycles required by the tasks of these MDs.

Completely local executing (CLE): In the CLE algorithm, the tasks of all MDs can be
executed by themselves.

In this paper, we consider that each BS is deployed in a non-overlapping area with
a radius of 400 m and a power spectral density of −174 dBm/Hz. In addition, I = 3,
f loc
m = 1 GHz, fi = 8 GHz, W = 40 MHz, K = 4, dm = 2∼5 MB, cm = 50 cycles/bit,

ξ = 10−27, τm = 10 s, ρ = 2, rbh = 1 Gbps, pm = 23 dBm, κ = 80,000, N = 128, γ = 0.94
and λ = 0.04. In the DRL algorithm, we consider that both the policy network and the
critic network are composed of three-layer fully connected neural networks, where the
numbers of neurons in three-layer neural networks in the policy network are 300, 200
and 128, respectively, and the corresponding target network has the same structure with
this policy network; the number of neurons in three-layer neural networks in the critic
network are 300, 128 and 32, respectively, and the corresponding target network has the
same structure as this critic network. Significantly, the first-layer fully connected neural
network of the policy network and the critic network utilizes the rectified linear unit 6
(RELU6), which suppresses the maximum value as the activation function, while other
layers use RELU as the activation function.

Figure 5 shows the convergence of the TD3O and DDPGO algorithms. As shown in
Figure 5, DDPGO may have a higher convergence rate than TD3O, but the former may
have worse convergence stability than the latter. The reason for this may be that the critic
network and the policy network are updated synchronously in DDPGO. In DDPGO, the net-
work parameters are updated in each training phase, which speeds up the convergence.
Synchronously, the policy network parameters are updated in the training, which results
in the instability of the long-term reward value and training bias. As we know, TD3O is
composed of two sets of critic networks. Consequently, it could be trained in a relatively
stable Q value so that the algorithm can converge stably. In the simulation, it is also easy
to find that TD3O could achieve a more stable and better solution to the problem P1 than
DDPGO in general.

Figure 6 shows the impact of the training interval tpti on the convergence of the
TD3O algorithm. As we know, under the same number of iterations, a larger tpti can
effectively reduce the overall training time of the network. However, it will reduce the
total learning times of the policy network and its target network. As illustrated in Figure 6,
the convergence rate of TD3O may decrease with tpti in general.

Figure 7 shows the impacts of learning rates βQ and βµ on the convergence of the
TD3O algorithm. As we know, when the learning rate βQ of the critic network increases,
the parameters of such network will be updated at a larger scale, which speeds up the
convergence of TD3O. However, it may lead to the failure of stable evaluation of envi-
ronmental information, which weakens the convergence stability of TD3O. As illustrated
in Figure 7, when βQ = 0.001, the convergence rate of TD3O is relatively high, but the
achieved long-term reward dramatically fluctuates at this moment. On the other hand,
the learning rate βµ of the policy network can affect the optimization capability of TD3O.
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Specifically, a lower βµ means a smaller amplitude of updating the policy network, which
is better for finding better solutions. As seen from Figure 7, TD3O can achieve a better
long-term reward when βQ = 0.0001 and βµ = 0.0001.

Figure 8 shows the impact of the number of MDs on the long-term local energy
consumption εMD, where εMD is the sum of the total local energy consumption in T timeslots.
In general, the εMD increases with the number of MDs since a greater energy consumption
is used when tackling more tasks of more MDs. Since CLE executes tasks in maximal
computation capacity, it could achieve the highest εMD among all algorithms. In CO, MDs
are associated with the nearest BSs, which may result in a relatively imbalanced load
distribution. Then, some overloaded BSs cannot provide good services for their associated
MDs because of limited resources, which may result in high εMD. Consequently, CO
could achieve higher εMD than other algorithms excluding CLE. As illustrated in Figure 8,
TD3O could achieve lower εMD than DDPGO since the former can effectively mitigate the
overestimation existing in the latter. Although HA lets MDs be associated with the nearest
BSs, some MDs associated with overloaded BSs will disassociate and execute tasks locally.
Such an operation may result in relatively low εMD.
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Figure 5. The convergence of DDPGO and TD3O algorithms.
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Figure 6. The impact of training interval tpti on the convergence of TD3O algorithm.
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Figure 7. The impacts of learning rates βQ and βµ on the convergence of TD3O algorithm.
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Figure 8. The impacts of the number of MDs on the long-term local energy consumption εMD.

Figure 9 shows the impacts of the number of MDs on the long-term reward (R).
As illustrated in Figure 9, R may decrease with the number of MDs since more MDs result
in a higher energy consumption. Since both TD3O and DDPGO try to maximize the reward
but in other algorithms this is not the case, the former could achieve higher R than other
algorithms in general. Since TD3O could achieve lower εMD than DDPGO, the former
could achieve a higher R than the latter. In view of the unstable convergence of DDPGO,
its reward may dramatically fluctuate. Since CLE could achieve the highest εMD among all
algorithms, it could achieve the lowest R in general. In addition, CO could achieve a lower
R than HA since the former consumes more energy than the latter.
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Figure 9. The impacts of the number of MDs on the long-term reward R.

Figure 10 shows the impacts of the size of caching space of each BS on the relative
long-term energy consumption ηε denoted as the ratio of εMD achieved by an offloading
algorithm to the one attained by CLE. Evidently, a smaller ηε means a higher energy gain
caused by offloading tasks. As illustrated in Figure 10, in addition to DDPGO and CO,
ηε in other algorithms decreases with the size of the caching space of each BS in general.
The reason for this may be that a larger caching space can hold more tasks to reduce the
transmission energy consumption. However, as revealed in Figures 5 and 9, the unstable
convergence of DDPGO may result in a dramatically fluctuating performance. Therefore,
ηε in DDPGO may evidently be fluctuating. In addition, ηε in CO may not change with
the size of caching space of each BS since it does not utilize caching space. By minimizing
the εMD, TD3O and DDPGO could achieve a lower ηε than other algorithms in general.
In addition, TD3O could achieve a lower ηε than DDPGO since the former mitigates the
overestimation existing in DDPGO. As seen from Figure 10, CO could achieve the highest
ηε among all algorithms since it has no sufficient resources to provide for MDs associated
with overloaded BSs.

Figure 11 shows the impacts of the size of the caching space of each BS on the relative
long-term reward ηR denoted as the ratio of the long-term reward achieved by an offloading
algorithm to the one attained by CLE. Evidently, a smaller ηR means a higher reward gain
caused by offloading tasks. As illustrated in Figure 11, ηR in TD3O and HA decreases
with the size of the caching space of each BS in general. The reason for this may be that a
larger caching space can hold more tasks to reduce the transmission energy consumption,
and then bring a higher reward. However, due to the unstable convergence of DDPGO,
ηR in DDPGO may be fluctuating. Moreover, ηR in CO may not change with the size of
caching space of each BS since it does not utilize caching space. By minimizing the εMD

and thus increasing the reward, TD3O and DDPGO could achieve a lower ηR than other
algorithms in general. In addition, TD3O could achieve a lower ηR than DDPGO since the
former mitigates the overestimation existing in DDPGO. As can be seen from Figure 11,
CO could achieve the highest ηR because of the high energy consumed by MDs associated
with overloaded BSs.
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Figure 10. The impacts of the size of caching space of each BS on the relative long-term energy
consumption ηε.
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Figure 11. The impacts of the size of caching space of each BS on the relative long-term reward ηR.

As seen from the above-mentioned simulation figures, although HA is a non-iterative
algorithm, it could sometimes achieve better performance than DDPGO. In addition, it may
always achieve fairly better performance than CO and CLE.

7. Conclusions

In this paper, the problem of minimizing the local energy consumption is concentrated
in the cache-assisted vehicular NOMA–MEC networks under time and resource constraints,
which refers to the joint optimization of the computing resource allocation, subchannel
selection, device association, offloading and caching decisions. To solve the formulated
problem, we developed an effective TD3O algorithm that was integrated with the AT
algorithm and designed HA simultaneously. As for the designed algorithms, we have
given some analyses of the convergence and computation complexity. Simulation results
show that TD3O could achieve lower local energy consumption than several benchmark
algorithms, and HA could achieve lower local energy consumption than the CO and CLE
algorithms. Future work can include power allocation and secure communications, such as
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optimizing the transmission power of MDs for task offloading, and how to encrypt part of
the task data in the network at a low cost to achieve secure communication, etc.
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