
Citation: Xu, L.; Li, J.; Feng, D. Miner

Fatigue Detection from

Electroencephalogram-Based

Relative Power Spectral Topography

Using Convolutional Neural

Network. Sensors 2023, 23, 9055.

https://doi.org/10.3390/s23229055

Academic Editor: Sheryl Berlin

Brahnam

Received: 5 September 2023

Revised: 4 October 2023

Accepted: 24 October 2023

Published: 9 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Miner Fatigue Detection from Electroencephalogram-Based
Relative Power Spectral Topography Using Convolutional
Neural Network
Lili Xu 1,2, Jizu Li 1,* and Ding Feng 3

1 College of Economics and Management, Taiyuan University of Technology, Taiyuan 030024, China;
xulili0124@link.tyut.edu.cn

2 College of Coal Engineering, Shanxi Datong University, Datong 037009, China
3 College of Data Science, Taiyuan University of Technology, Taiyuan 030024, China;

fengding0173@link.tyut.edu.cn
* Correspondence: lijizu@tyut.edu.cn

Abstract: Fatigue of miners is caused by intensive workloads, long working hours, and shift-work
schedules. It is one of the major factors increasing the risk of safety problems and work mistakes.
Examining the detection of miner fatigue is important because it can potentially prevent work
accidents and improve working efficiency in underground coal mines. Many previous studies have
introduced feature-based machine-learning methods to estimate miner fatigue. This work proposes
a method that uses electroencephalogram (EEG) signals to generate topographic maps containing
frequency and spatial information. It utilizes a convolutional neural network (CNN) to classify the
normal state, critical state, and fatigue state of miners. The topographic maps are generated from
the EEG signals and contrasted using power spectral density (PSD) and relative power spectral
density (RPSD). These two feature extraction methods were applied to feature recognition and four
representative deep-learning methods. The results showthat RPSD achieves better performance than
PSD in classification accuracy with all deep-learning methods. The CNN achieved superior results to
the other deep-learning methods, with an accuracy of 94.5%, precision of 97.0%, sensitivity of 94.8%,
and F1 score of 96.3%. Our results also show that the RPSD–CNN method outperforms the current
state of the art. Thus, this method might be a useful and effective miner fatigue detection tool for coal
companies in the near future.

Keywords: fatigue detection; convolutional neural network (CNN); the relative power spectral
density (RPSD); deep learning; EEG; miners

1. Introduction

Coal mine safety has attracted considerable attention in many coal-producing countries
due to a significant number of accidents and a high death toll. In recent years, coal mine
accidents have frequently occurred around the world, despite technological advancements
and strong safety regulations. Studies have suggested that most accidents are caused by
human errors of miners. Yu and Li reported that more than 85% of accidents were caused
by human errors [1]. Chen, Qi, and Feng found that human errors accounted for over
95% of accidents in China [2]. Thus, reducing and mitigating human errors is an effective
way to avoid similar accidents in coal mine safety management. The occurrence of human
errors is generally linked to human fatigue and adverse safety accidents. Fatigue is one
of the most important factors contributing to human errors. Some researchers found that
human errors contribute to over 90% of mine accidents in Australia, and around 60–70% of
human error accidents are related to miner fatigue [3]. The phenomenon of miner fatigue
is characterized by the experience of tiredness and exhaustion among miners, which may
result from prolonged and demanding work schedules, extended work hours, and irregular
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shift patterns. This type of fatigue can have serious effects on cognitive functions, leading to
drowsiness, lack of attention, memory lapses, slow reaction times, reduced work efficiency,
underestimation of risks, increased error rates, and other negative outcomes that manifest
in human brain activity [4]. Therefore, the improvement of safety management in coal
mines should take into account the impact of miner fatigue.

To date, many studies have focused on transport operators such as aviation and car
drivers. In the past, methods for estimating driver fatigue primarily revolved around ana-
lyzing facial expression, eye tracking, and even driver behavior patterns using video and
voice signals [5]. Recently, the detection of physiological signals has gained popularity as a
method for estimating driver fatigue, as physiological signals offer superior performance
in extracting drivers’ features and estimating fatigue detection [6]. There are different meth-
ods available to obtain information on physiological signals for detecting driver fatigue,
including the electrocardiogram (ECG), electrooculography (EOG), electromyography
(EMG), electroencephalogram (EEG), respiratory measurement (RM), photoplethysmogra-
phy (PPG), and electrodermal activity (EDA) [7]. Among the various methods, the EEG
might be one of the most popular methods for evaluating fatigue through physiological
signals. Importantly, the EEG not only represents physiological signals but also captures
physical activity, making it an effective method for estimating the state of fatigue.

Recently, machine-learning methods have been widely utilized in various research
areas. For example, some researchers have employed the hybrid neuro-fuzzy connectionist
paradigm to reliably estimate dew point pressure in retrograde gas condensate reservoirs [8].
Others have developed a machine-learning approach for the diagnosis of breast cancer
using ultrasound images and contourlet transformation [9]. These studies demonstrate
the effectiveness of machine-learning techniques for predictive modeling tasks. Similarly,
machine-learning methods, such as the support vector machine (SVM), artificial neural
network (ANN), and K-nearest neighbors (KNN) have been commonly employed by
researchers for fatigue detection using EEG signals [10–12]. However, more recently, deep-
learning methods have gained prominence over traditional machine-learning methods in
fatigue detection from EEG signals. The representative deep-learning techniques [13–16]
recurrent neural networks (RNNs), deep belief networks (DBNs), long short-term memory
(LSTM), and convolutional neural networks (CNNs) are typically utilized to extract and
combine diverse classification features from EEG signals [17,18]. In this paper, we introduce
a CNN for analyzing miner fatigue, as it has shown significant success as a classifier with
high accuracy. Therefore, this paper proposes the use of a CNN for miner fatigue detection
using EEG signals, addressing the limitations of previous studies. Our main contributions
are summarized below:

• This work contributes to our understanding of fatigue detection in mining accidents,
specifically by employing deep-learning methods to assess miner fatigue. Previous
research primarily focused on laboratory simulation studies or subjective question-
naire surveys concerning miner fatigue. However, there exists a knowledge gap that
motivated the expansion of this research, which utilizes deep-learning techniques to
measure miner fatigue;

• The RPSD–CNN method has been utilized for feature extraction and classification,
leading to improved classification performance.

• CNNs have rarely been used for EEG-based fatigue classification in coal mine areas.
In this respect, the third significant contribution of this work is the attempt to generate
EEG signals using the proposed method;

• The fourth contribution of this work involves the detection of miner fatigue through
EEG signals, which encompass both physiological and physical signals. It is the first
introduced EEG model to estimate fatigue detection in coal miners. Importantly, this
approach has the potential to enhance the detection ability of miner fatigue, as EEG
signals contain a wealth of information that reflects the state, activities, and diseases
of the brain.
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The rest of the paper is organized as follows: In Section 2, we provide a literature
review on fatigue detection using EEG and CNN methods. Section 3 describes the data
collection, representation, and the proposed methodology. Section 4 presents the results of
this research work and compares its findings with the findings of the recent works. Finally,
conclusions and limitations are presented.

2. Related Work

Fatigue refers to a state of decreased alertness and a low level of cognitive performance.
At present, the management of miner fatigue primarily involves supervising miners’ be-
haviors through video surveillance. However, this approach has some disadvantages. For
example, it is difficult to quickly respond to emergencies, recognize complicated miners’
behaviors in a complex working environment [19], and obtain information about phys-
iological signals. Many researchers have suggested using EEG signals to detect fatigue
based on employees’ brain activity. EEG signals display the brain’s electrical activity,
which is generated by the flow of ionic currents. It has been proven that EEG signals are
effective for studying the human brain due to research on the spectral characteristics of
electrodes [20]. It enables the monitoring of the brain activities of the driver to identify
fatigue states. Fatigue can cause visible changes in EEG signals. From the above, EEG
signals are introduced to automatically identify miner fatigue due to their accessibility to
information in the brain [21].

2.1. EEG Features

In studies related to fatigue, EEG signals are generally divided into four bands of
brain waves: delta, theta, alpha, and beta. Their frequency bands are as follows: delta:
0–4 Hz, theta: 4–7 Hz, alpha: 8–13 Hz, and beta: 14–30 Hz. The delta band reflects sleep
quality, including sleep duration and intensity. Theta bands serve as markers of sleep
propensity. Alpha bands are commonly observed in a wakeful state, which is related to
relaxation, happiness, and well-being [22]. Beta bands represent a state of consciousness
closely related to logical thinking [23,24]. In EEG-based fatigue detection, many researchers
have excluded the delta band, and they believed that the delta band has few effects on
brain activities when drivers are in the fatigue state [25]. However, some researchers
have pointed out that the delta bands do exhibit visible changes during fatigue states [26].
Regarding the power of the theta band, an increasing trend between theta band and fatigue
has been found [27]. Similarly, with increasing fatigue, the alpha band experiences dramatic
growth. Compared to the alpha band, the beta band is believed to have better performance
in fatigue detection. Some researchers have reported an increase in beta power under
eyes-open conditions and a decrease under eyes-closed conditions as fatigue increases.
The utilization of the four bands of EEG signals for fatigue estimation is meaningful for
fatigue detection.

Several feature extraction approaches have been reported for characterizing EEG
signals in each band. Power spectral density (PSD), wavelet analysis, and differential
entropy (DE) are popular EEG features. PSD is widely used for EEG-based classification
tasks due to its superior performance compared to other features [28]. However, it should
be noted that the PSD value can vary among individuals, times, and systems, introducing
potential biases. More recently, the relative power spectral density (RPSD) method has
been introduced in some EEG studies, which is considered more technically robust and
capable of addressing the issue of bias. In this study, in addition to PSD, RPSD is also
employed for EEG feature extraction using a deep-learning method for the purpose of miner
fatigue detection.

2.2. EEG-Based Fatigue Detection Using Deep Learning

While EEG signal features associated with machine-learning methods have achieved
success in obtaining domain-invariant features, these methods are still considered low-level.
Thus, obtaining high-level domain-invariant feature representations for EEG signals is
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desirable. Deep-learning methods provide a potential solution by producing high-level
domain-invariant features and achieving high-accuracy classification results for EEG sig-
nals [29]. Representative deep-learning methods such as the RNN, LSTM, DBN, and CNN
have demonstrated strong feature-learning abilities and outstanding performance in object
detection and classification tasks [30,31]. As a result, deep-learning methods have gradually
become a research hotspot for fatigue detection using EEG signals. Different deep-learning
methods have different advantages. RNNs have proven to be effective in processing data
with sequential characteristics, particularly in audio-related fields like speech recognition.
LSTM is suitable for capturing time information and connecting the relationship between
different channels of an EEG [32]. DBNs, which represent a more traditional deep-learning
method, have been employed for classifying hyperspectral remote sensing images [33].
Researchers have widely used CNNs in image processing. Table 1 summarizes various
deep-learning methods for EEG-based fatigue detection. Among various deep-learning
models, most studies employed CNNs for fatigue detection of EEG signals, as CNNs are
suitable for extracting features from convolution kernels and minimizing the effect of noise
of EEG data. CNNs have made significant progress in different kinds of tasks due to their
excellent generalization ability [34], ranging from computer vision to natural language pro-
cessing [35]. Some researchers have combined multiplex recurrence networks with CNNs
to extract information for driver fatigue detection [36]. Other have proposed CNN denoise
networks for constructing brain networks in fatigue driving recognition [37]. Studies in the
literature have generated CNNs and LSTM to construct a classification framework for EEG
images [38]. Experimental results show that the CNN model commonly achieves better
classification accuracy than other deep-learning models for EEG-based fatigue detection.
Therefore, the CNN was selected for detecting miner fatigue in EEG signals in this study.

Table 1. Summary of EEG-based fatigue detection papers using deep-learning methods.

Author Year EEG Signals Feature Extraction Classification Methods Accuracy (%)

Gao et al. [34] 2019 30 channels Spatial-temporal
correlations LSTM 91.34%

Gao et al. [36] 2019 30 channels Recurrence network CNN 92.95%
Sheykhivand et al. [38] 2022 32 channels CNN LSTM 90%
Hajinoroozi et al. [39] 2017 64 channels Spatial correlations CNN 86.14%

Karuppusamy et al. [40] 2020 8 channels Wavelet transform DNN 93.91%
Rahman et al. [41] 2021 62 channels RPSD CNN 94.63%

Lin et al. [42] 2021 32 channels Noise distribution CNN more than 93%

Peng et al. [43] 2023 62 channels Differential entropy Multi-feature fusion
network 85.65%

Wang et al. [44] 2023 8 channels Continuous wavelet
transform CNN 88.85%

Gao et al. [45] 2023 21 channels Log-Mel spectrogram RNN 85.65%

3. Materials and Methods

The general framework of the proposed methodology is shown in Figure 1. EEG sig-
nals were acquired from 32 electrodes, which were arranged according to the international
10–20 standard. Then, EEG data underwent several pre-processing procedures. Following
the pre-processing procedures, the EEG signals were extracted into two-dimensional fea-
tures using PSD and RPSD for each frequency band. After feature extraction, the CNN was
used to classify the state of miners. Finally, the state of the miners was determined. Both
the PSD–CNN and RPSD–CNN architectures comprise multiple layers of artificial neurons
specifically designed for processing EEG signals. The architectures need to be configured
to match the sampling rate and other characteristics of the generated EEG signals.



Sensors 2023, 23, 9055 5 of 21

Figure 1. The general framework of the proposed methodology.

3.1. Participants and Experimental Apparatus

In this study, fifteen male miners were selected from the Tianqi Lithium Corporation,
one of the most well-known mining companies in China. All the subjects agreed to
participate in this study, and they ranged in age from 22 to 33. According to their self-
reports, all the subjects were in good health. None of them has a sleep disorder which may
cause fatigue. All participants were required to follow three guidelines: (1) Avoid drinking
alcohol and taking medicines within 24 h before the experiments. (2) Avoid vigorous
exercise within one hour before the experiments. (3) Avoid drinking coffee and energy
drinks within 8 h before the experiments.

The brain–computer interface equipment used in this study comprised a hard hat that
meets mining safety requirements and a wireless EEG device to collect and record raw
EEG signal data. This equipment primarily collected EEG signals with 32 channels. The
32 channels are Fp1, AF3, F3, F7, FC5, FC1, C3, C7, CP5, CP1, P3, P7, PO3, O1, Oz, Pz, Fp2,
AF4, Fz, F4, F8, FC6, FC2, Cz, C4, C8, CP6, CP2, P4, P8, PO4, and O2 (Figure 2). To enable
the CNN model to perform optimal feature extraction, it is important that the inputs within
its receptive field are spatially correlated. To achieve this, we mapped the scalp location of
each channel to a specific location in a two-dimensional matrix using a data organization
method based on azimuthal equidistant projection. According to this method, a matrix of
9 × 9 was used in this study; see the blue circled points in Figure 2. The electrodes used in
the data collection process were constructed from Ag/AgCl material. For Fp1 and Fp2 sites,
planar electrodes were utilized, while the remaining sites employed papillary electrodes
with spiky projections. This electrode selection strategy was implemented to establish
consistent and reliable contact between the electrodes and the scalp, thereby minimizing
noise interference during the recording process. The hard hat uses Bluetooth to transmit
data to the recording software at regular intervals of 10 min.
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Figure 2. EEG input construction. (a) The 32-channel EEG placement in this experiment. (b) EEG
channel matrix.

3.2. Experimental Procedure and Data Collection

Prior to the experiment, the staff provided the miners who participated in the exper-
iment with a comprehensive explanation of the experimental purpose, procedures, and
precautions. This step ensures that the miners understand the experiment. Additionally,
the staff assisted the drivers in wearing the hard hat with EEG device equipment and
confirmed that the records are normal. To systematically analyze the changes in the EEG
signals, all the subjects were recorded from 9:00–12:00 and 13:00–18:00. During the exper-
imental process, the staff monitored real-time data and periodically inquired about the
miners’ subjective level of fatigue using the Karolinska Sleepiness Scale (KSS) at every
10 min interval. After the completion of the experiment, all the data were uploaded and
stored in MATLAB 2018a.

In this study, the original dataset used consisted of raw EEG data. The raw EEG data
refer to the unprocessed electrical signals recorded from the participants’ scalps using EEG
electrodes. The raw EEG data were used to analyze physiological signals and identify
relevant features associated with fatigue. Thirty-two channels of EEG data were recorded
following the international 10–20 Montage system covering the major areas of the brain.
The average resistance of bilateral papillae reference and scalp-recording electrodes was
5 k·Ohm, and the signals were recorded at a rate of 500 Hz. A 60-s time window for data
truncation was utilized in this study.

3.3. Fatigue Evaluation Methods

The KSS, comprising a 9-point Likert scale, was used to measure the miner fatigue. In
this paper, the degree of miner fatigue was divided into three states: normal state, critical
state, and fatigue state, which correspond to scores of 1, 6, and 9 on the KSS, as shown in
Table 2.

Table 2. KSS subjective fatigue level description table.

KSS Level Description Our Study

1 Extremely alert Normal state
2 Very alert
3 Alert
4 Rather alert

5 Moderate alertness with a balanced level of
wakefulness and drowsiness

6 A little sleepy Critical state
7 Sleepy, but can easily stay alert
8 Sleepy, needs to work hard to stay alert

9 Sleepy, struggles hard to stay alert Fatigue state
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3.4. EEG Data Pre-Processing

The original EEG signals were affected by various sources of noise, such as high-
frequency noise generated by electromagnetic fields from alternating current and low-
frequency noise caused by blinking or muscle movements. To increase the efficiency of
the proposed model, we decreased the noise through a wavelet-based denoising approach,
which can be expressed as

Y(t) = x(t) + sigma (1)

where Y is added to the original EEG signal x to simulate Gaussian white noise, and sigma
is the amplitude of the noise.

After the denoising step, a 1–75 bandpass filter for EEG signals was adopted to
minimize drift and artifacts. Thus, EEG signals were downsampled to 200 Hz for the
experiments in this work. Pre-processing EEG signals provides a significant data reduction,
which consequently reduces the computational complexity. EEG signals were acquired by
a portable Neuracle system which was founded in the United States and is based in the city
of Sterling, Virginia.

3.5. Power Spectral Density

Feature extraction is necessary in the construction of a deep-learning method for a
fatigue detection task. In this study, PSD and PRSD were selected to infer and analyze the
functional brain network. PSD and RPSD were strongly related to fatigue and KSS scores.
To estimate PSD and RPSD in EEG signal processing, a windowed function was used to
analyze the characteristics of the EEG signal. Use of this windowed function leads to a
lower frequency resolution but widens the dynamic range. The PSD and RPSD methods
are sensitive to the choice of window length and other parameters, which could ensure the
robustness of the results.

The PSD for EEG signals is commonly estimated using the autoregressive (AR) Burg
method, which provides good frequency resolution and can minimize spectral losses. The
AR method is based on the output sequence β(n) as a causal and discrete filter whose input
is white noise. The AR method is defined as

β(n) = −
p

∑
k=1

akx(n − k) + u(n) (2)

where ak are the AR coefficients, p is the order of the AR model, and u(n) is the white noise
with variance σ2.

In this work, the recursive Burg method was used to estimate AR coefficients. The
method is based on reducing forward and backward prediction errors. With AF parameters
calculated by the Burg algorithm, PSD estimation can be expressed as

P̂BURG( f ) =
êp∣∣∣1 + ∑

p
k=1 âpe−j2π f k

∣∣∣2 (3)

where f represents the frequency at which the estimated PSD is being evaluated using the
Burg spectral estimator, and êp is the total least squares error. The order p of the AR method
is determined by the Akaike information criterion (AIC). In this study, the model order was
taken as p = 10. We selected 10 orders according to cross validation. Then, the relative PSD
was obtained by normalizing the PSD results for each frequency band as follows

Prelative =
∑

f= f2
f= f1

P( f )

∑
f= fH
f= fL

P( f )
(4)
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3.6. Relative Power Spectral Density

RPSD is defined as the ratio of the PSD of the frequency band to the PSD of the
total frequency band. The major advantage of using relative PSD is that it could reduce
the inter-individual deviation associated with absolute power due to differences between
individuals in the conduction of the skull and scalp. This advantage of RPSD is that it is
considered a more reliable source of information than PSD and covers the problem of PSD,
which could vary among individuals, time, and system. RPSD can be expressed as

RPSD =
PSDBOI

PSDtotal
(5)

In order to observe the power of different rhythms, 32-channel EEG signals from all
subjects were analyzed in four frequency bands.

3.7. Convolutional Neural Network

As we discussed before, the CNN has shown remarkable ability in computer vision
tasks. The CNN is specifically designed to process pixel data and is used in image recogni-
tion and processing. The CNN has three major strengths, which are the local sensing field,
weight sharing, and downsampling [46]. These three strengths can decrease the complexity
of the network. The CNN model is composed of a convolutional layer, a pooling layer, and
a fully connected layer. Specifically, the convolutional layer is the fundamental component
of the CNN model for automatic feature extraction. The two-dimensional feature matrix is
an input vector, which can be expressed as

a =


a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn

 (6)

where m × n is the shape of input vector a. The input two-dimensional feature is convolved
with filters Wk at the convolution layer.

Wk =


W11
W21
. . .
Wi1

 (7)

After the convolution, output map is formed, and the feature map at the given layer is
given by

f (a) = f (Wk × x + bk) (8)

where Wk is the weight matrix, bk is the bias value, and k is the filter, which is the total
number of filterings in the convolutional layer.

After each convolution layer, a rectified linear (ReLU) function is usually used as
the activation function due to its reliability. It can accelerate the convergence. The ReLU
function is defined by

f (a) = max(0, a) (9)

The pooling layer refers to a downsampling operation, which can reduce complex-
ity, improve efficiency, and limit risk of over-fitting. Max pooling is used in the experi-
ments since max pooling can be effectively used to extract features. Max pooling has the
following formula

Woutput =
Wa − D

S
+ 1 (10)

where Woutput is max pooling output, Wa is the function of the input volume, D is pooling
window size, and S is stride.
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After several convolutional and pooling layers, the output data are fully connected and
typically flattened to the final outputs of the network. The fully connected layer usually maps
the representation between inputs and outputs and leverages an activation function to classify
inputs. In this study, the CNN composed of eight layers in total, shown in Figure 3, was
based on GengNet, and the data input size was 72 × 72 × 3, where 72 is the width and 72 is
the height of the image and 3 is the number of channels. We utilized zero padding to input
image borders to add zero values vertically and horizontally. The output size of this designed
convolutional layer can be calculated by:

Woutput =
1

S + 1
(I − ((H − 1)× G + 1) + 2Q) (11)

where I is input size of image, S is stride, H is filter size, G is dilation factor, and
Q is padding.

Figure 3. The convolutional neural network diagram.

In order to optimize the CNN model, 10-fold cross validation was used for database
classification. This process was repeated 10 times, with each of the subsamples used as the
validation data. This could enhance the model’s generalization performance and avoid over-
fitting the training data. Furthermore, to improve the CNN model, the hyperparameters
should be carefully selected to balance the CNN model performance with computational
efficiency. In this study, 25% of the data were used for training, and the remaining 75%
were used for testing. Based on the training and testing dataset, we trained and tested our
proposed model using the optimum hyperparameters.
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3.8. Performance Measures

The accuracy, precision, sensitivity, and F1 score as common estimators were selected
as performance measures of different classifiers in this study. We also used these four
estimators for the comparison of various classifiers. The values of the predictive instances
were classified as true positive (TP), false negative (FN), true negative (TN), and false
positive (FP). TP represents the number of fatigue EEG signals distinguished as fatigue
states; TN indicates the number of normal EEG signals recognized as normal states; FP
means the number of normal EEG signals classified as fatigue states; FN is the number
of fatigue EEG signals identified as normal states. The four estimators are described and
calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Precision =
TP

TP + FP
(13)

Sensitivity =
TP

TP + FN
(14)

F1 =
2TP

2TP + FN + FP
(15)

4. Experimental Results

All steps of the processing, data formation, feature extraction, and data classification
were implemented using MATLAB 2018a. Figure 4 shows the raw EEG signal, denoised
EEG, and the filtered output of the proposed reprocessing. Finally, we obtained a total
of 18,300 samples. The collected data were split into training and testing sets, leaving
13,725 for training and 4575 for testing. According to the KSS score, we divided the data
into normal, critical, and fatigue states. Table 3 shows the exact number of data reserved
for training.

Figure 4. Comparison between the raw EEG signal, denoised EEG signal, and the filtered EEG signal.
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Table 3. Data distribution for training and testing per state.

States Training Testing Total

Normal state 6660 2220 8880
Critical state 4122 1374 5496
Fatigue state 2943 981 3924

Total 13,725 4575 18,300

The power distribution of 32-channel EEG signals using the PSD method normal state,
critical state, and fatigue state in the delta, theta, alpha, and beta bands is shown in Figure 5.
Visual scrutiny already reveals a significant difference among the three states, particularly
in the delta and theta bands. In the theta band, the power of fatigue state is prominently
enhanced compared with the normal state and critical state. Similarly, in the delta band, the
PSD of EEG signals is slightly increased from the normal state to fatigue state. Comparatively,
the PSD of EEG signals has no obvious change in the alpha and beta bands. The RPSD results
detailed in Figure 6 suggests that a significant difference is observed in the RPSD method from
the normal state to fatigue state in the delta band, theta band, and alpha band. The power of
the fatigue state and critical state increased compared with the normal state for the delta band.
In the theta band, the RPSD of EEG signals is gradually enhanced from the normal state to the
fatigue state. However, brain activity is weakened in the alpha band. The obtained results
demonstrate that the EEG power is strongly changed when miners feel fatigued during work.
In the beta band, it has few changes, which indicates that fatigue may not have a strong impact
on the neural processes associated with the beta band. Importantly, the power is increased in
delta and theta bands but decreased in the alpha band.

Figure 5. The topographic maps of PSD in the normal, critical, and fatigue states.
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Figure 6. The topographic maps of RPSD in the normal, critical, and fatigue states.

The RPSD results detailed in Figure 6 suggest a significant difference in the RPSD
method from the normal state to the fatigue state in the delta, theta, and alpha bands. In
the delta band, both the fatigue state and critical state exhibit increased power compared
to the normal state. In the theta band, the RPSD of EEG signals gradually enhances from
the normal state to the fatigue state. However, brain activity is weakened in the alpha
band. These findings demonstrate that the EEG power undergoes significant changes
when miners experience fatigue during work. In the beta band, there are minimal changes,
suggesting that fatigue may not have a strong impact on the neural processes associated
with the beta band. Importantly, the power increases in the delta and theta bands but
decreases in the alpha band.

The topographic maps were input into the CNN for feature extraction and classifica-
tion. The accuracy and loss of the proposed CNN structure for iterations are presented in
Figure 7. The filter size of the convolutional layer was chosen through the trial-and-error
method. Each result was examined several times, so we could select the best pattern for
our experiment. All layers of the CNN were used in this work. The final results are the
classification accuracies for the normal, critical, and fatigue states. The fully connected
layer, thus, constructs two output classes.

The CNN model in this study is trained to detect fatigue for each subject. The indi-
vidual performances were obtained on 15 subjects via 10-fold cross validation. The CNN
model in this study was trained to detect fatigue for each subject. For each subject, 75% of
the samples were randomly selected for training, and the remaining 25% were reserved for
testing. Two feature extraction methods were used on the CNN model. Table 4 presents
the performance of the CNN framework on the fatigue data using PSD and RPSD. It was
found that the mean accuracy achieved was 90% for the PSD method and 94.5% for the
RPSD method. This reveals that the CNN model for the RPSD method is more stable and
effective on the whole dataset, and all the accuracies of the RPSD–CNN model surpass 90%.
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Figure 7. Plot of the CNN model’s accuracy and loss on training and testing. (a) Accuracy of
the training and testing with respect to iterations; (b) loss of the training and testing with respect
to iterations.

Table 4. Differences in classification performance between PSD–CNN and RPSD–CNN.

Subject PSD–CNN RPSD–CNN

1 82.79 96.23
2 90.91 98
3 86.85 92.48
4 90.85 94.68
5 84.89 97
6 90.91 93.4
7 88.95 94.71
8 87.85 96.24
9 89.82 99
10 95.94 92.48
11 92.91 93.74
12 85.73 90
13 90.88 97.48
14 94.97 94.48
15 97.91 98.24

Average ± Standard Deviation 90.14 ± 4.82 94.51 ± 3.47

Additionally, the receiver operating characteristic (ROC) curve and area under the
curve (AUC) were employed in these two scenarios to determine the validity of the pro-
posed method. The ROC curve is the method of displaying the true positive rate (TPR)
against the false positive rate (FPR) at different thresholds, which reflect sensitivity and
1-specificity values of the proposed method. Figure 8 shows the ROC curve of all subjects
and the average AUC of all subjects in two scenarios. ROC analysis showed that the
average AUC of the PSD–CNN method is 0.88 and is significant (p < 0.05). Using the RPSD
method, the average AUC of the CNN is around 0.95 and is significant (p < 0.05). According
to the results, the CNN method had a good performance for these two different feature
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extraction methods. Obviously, the RPSD–CNN has a better effect on fatigue detection
using the proposed method. The results of the RPSD–CNN model show that the proposed
method has high sensitivity and specificity in the field of fatigue detection. Considering
the previous three tests of the proposed method in two scenarios, the RPSD–CNN model
could gain higher accuracy, sensitivity, and specificity than the PSD–CNN model. Thus,
the RPSD–CNN model was selected to measure our proposed model due to its superior
classification performance.

Figure 8. (a) The ROC curves and AUC values of PSD; (b) the ROC curves and AUC values of RPSD.

Overfitting is a common challenge encountered in deep-learning algorithms. It occurs
when a model excessively focuses on learning the intricate details of the training data,
including noise, random fluctuations, and specific patterns. This narrow focus can hinder
the model’s ability to generalize well for unseen data. To address this issue and evaluate the
model’s performance with unseen data, it is crucial to employ techniques that help prevent
overfitting. There are several techniques available to mitigate overfitting, including K-fold
cross validation, regularization, dropout, and early stopping. To compare these different
techniques and determine their effectiveness in preventing overfitting in deep-learning
models, we utilized performance measures that capture the performance of each method.
The results, as presented in Table 5, indicate that K-fold cross validation yielded the most
favorable outcomes. It achieved the highest accuracy of 95.4%, the highest precision of
96.5%, the highest sensitivity of 94.2%, and the highest F1 score of 96.5%. Consequently,
we selected K-fold cross validation as the preferred technique for mitigating overfitting in
our study.
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Table 5. Comparison with different techniques to avoid overfitting.

Techniques Accuracy (%) Precision (%) Sensitivity (%) F1 (%)

K-fold cross validation 95.41 96.48 94.21 96.48
L1 regularization 95.06 95.58 93.45 96.11
L2 regularization 95.12 95.98 93.65 96.24

Dropout 94.18 94.55 92.22 95.15
Early stopping 94.46 95.12 93.54 95.92

To evaluate the effectiveness of the RPSD–CNN model, we compared its performance
measures with those of other representative deep-learning classifiers, namely LSTM, the
RNN, and the DBN. From Table 6, it can be noted that the RPSD–CNN model achieves
the highest accuracy of 96.7%, the highest precision of 97.2%, the highest sensitivity of
95.2%, and the highest F1 score of 97.2%. Similarly, the LSTM classifier demonstrates
competitive performance. The accuracy ranges from 92.54% to 94.21%, precision ranges
from 94.23% to 95.55%, sensitivity ranges from 92.61% to 94.31%, and F1 scores range from
91.39% to 95.23%. These results indicate that the LSTM classifier performs well in capturing
temporal dependencies in the data. Moving on to the RNN classifier, accuracies ranging
from 94.39% to 96.07% can be observed. The precision values range from 95.23% to 96.66%,
sensitivity ranges from 92.85% to 94.24%, and F1 scores range from 94.59% to 96.63%.
These results show that the RNN classifier performs consistently well across the evaluated
folds. Finally, the DBN classifier exhibits slightly lower performance compared to the other
classifiers. Although the DBN classifier achieves slightly lower results, it still demonstrates
reasonable performance, with average accuracy, precision, sensitivity, and F1 scores all
above 90%. Figure 9 summarizes the plot of classification accuracy, precision, sensitivity,
and F1 of different deep-learning models for different folds in ten-fold cross validation.
The CNN model outperforms other deep-learning models with 94.5%, 97%, 94.8%, and
96.3% for accuracy, precision, sensitivity, and F1, respectively. Overall, the table and
figure demonstrate that the CNN classifier shows the best performance with high accuracy,
precision, sensitivity, and F1 scores across the evaluated folds, indicating the effectiveness
of RPSD–CNN. The LSTM classifier also performs well, although slightly worse than the
CNN. The RNN and DBN classifiers, while achieving slightly lower performance, still
show competitive results. Hence, it is concluded that the CNN model can have a good
classification performance for EEG-based fatigue detection.

Table 6. Performance analysis of the RPSD method with the CNN, LSTM, RNN, and DBN classifier.

Folds
CNN LSTM

Accuracy (%) Precision (%) Sensitivity (%) F1 (%) Accuracy (%) Precision (%) Sensitivity (%) F1 (%)

1 94.39 96.23 93.21 96.39 93.19 94.43 92.61 91.39
2 94.69 96.58 93.45 96.11 93.49 94.23 92.85 91.61
3 94.73 96.38 93.65 95.45 93.55 94.08 93.45 95.15
4 95.05 97.18 94.22 97.15 93.75 94.98 92.82 95.85
5 95.45 96.98 94.54 96.92 93.85 95.32 94.14 94.62
6 95.34 96.6 94.61 96.74 92.54 95.14 94.31 94.64
7 95.81 96.31 95.03 96.61 94.21 94.71 94.23 95.21
8 96.73 96.24 95.24 96.73 93.63 94.84 93.54 95.23
9 95.78 96.44 93.85 96.58 93.88 95.55 93.05 95.18

10 96.17 95.82 94.32 96.07 94.17 94.62 92.82 94.97

Folds
RNN DBN

Accuracy (%) Precision (%) Sensitivity (%) F1 (%) Accuracy (%) Precision (%) Sensitivity (%) F1 (%)

1 94.39 95.23 93.31 94.59 91.29 90.63 89.41 91.64
2 94.51 95.41 93.15 94.61 91.11 90.8 89.65 91.51
3 94.65 95.78 92.85 94.85 90.85 91.48 90.45 91.25
4 94.75 96.58 93.62 94.85 90.55 92.18 90.62 90.85
5 95.52 96.6 94.14 96.42 91.42 92.3 91.54 92.82
6 96.04 96.66 93.61 96.14 90.54 89.1 91.21 91.64
7 95.71 96.01 93.13 96.21 90.61 92.51 90.83 91.61
8 95.83 95.74 94.24 96.63 90.73 92.34 90.94 92.43
9 95.68 95.65 93.55 96.18 91.38 92.15 91.35 92.18

10 96.07 95.52 93.72 95.97 90.57 93.02 92.02 94.37
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Figure 9. Performance plot of ten-fold cross validation vs. (a) accuracy; (b) precision; (c) sensitivity;
(d) F1 for four different classifiers.

Table 7 compares the proposed work with others feature methods that use CNN
classifiers. From the comparison, it can be observed that our proposed method, which
achieve the highest accuracy (94.5%), outperforms most of the previous research studies.
This indicates that RPSD can adapt to extract the features and form the optimal feature sets.
The significance of the RPSD feature method lies in its ability to capture frequency-domain
information, robustness to noise and variations, comprehensive representation of signals,
and effective integration with CNN classifiers. These factors collectively contribute to
achieving higher accuracy in the classification task compared to other feature methods
used in previous research studies. Additionally, Table 8 compares the proposed work with
other state-of-the-art methods. It shows that our proposed method outperforms most of
the previous research studies in terms of accuracy. This indicates the effectiveness of the
RPSD feature extraction method in combination with the CNN classifier for the given task.
By capturing frequency-domain information, handling noise and variations, providing a
comprehensive signal representation, and leveraging the capabilities of CNNs, the RPSD
method contributes to achieving higher accuracy compared to other feature extraction
methods used in previous research studies.

Table 7. Comparing different feature extraction methods with CNN-based classification method.

Studies Feature Methods Classification Methods Results

Hajinoroozi et al. [39] Spatial correlations CNN 86.14%
Gao et al. [36] Recurrence network CNN 92.95%
Lin et al. [42] Noise distribution CNN 93%

Zhao et al. [47] The region of interest (ROI) EM-CNN 93.62%
Yang et al. [48] Multi-column CNN 90.65%

Ed-Doughmi et al. [49] Multi-layer model 3D-CNN 92%
Our proposed method RPSD CNN 94.51%
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Table 8. Comparison between the proposed method and other previous studies.

Studies Feature Extraction Classification Methods Results

Gao et al. [45] LogMel CRNN 85.65%
Sharma et al. [50] HOS-LSTM Softmax 90.81%

Wei et al. [51] DW-CWT SRU 80.02%
Topic and Russo [52] CNN SVM 88.5%

Wang et al. [53] Differential Entropy DNN 93.28%
Our proposed method RPSD CNN 94.51%

For further analysis, t-SNE (t-Distributed Stochastic Neighbor Embedding) analysis
was performed. In this study, t-SNE was used to visually compare differences before and
after entering the RPSD–CNN model. As shown in Figure 10, compared to the original
dataset, all the data points have clearly been gradually separated after entering the proposed
model. There is no confusion between single semantic clusters after data enter the proposed
model. This means that the proposed model has better feature representation, increases
the separability and relative distance between single semantic clusters, and improves
classification accuracy.

Figure 10. The t-SNE visualization for (a) the original dataset; (b) the data of the RPSD–CNN model.
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5. Discussion and Conclusions

Miner fatigue is commonly identified as an important cause of human error leading
to coal mine accidents. However, the detection of miner fatigue has involved traditional
methods such as supervising miners’ behaviors through video. In recent decades, EEG
signals have gained attention in the analysis of driver fatigue due to the advantages
of the EEG. EEG signals are more objective than vocalization, body language, or facial
expression [54]. Furthermore, EEG signals are accessible. Importantly, EEG signals can
effectively analyze fatigue state through physiological signals and physical activity. To
estimate the miner fatigue state, multichannel EEG signals have been adopted [55]. Deep-
learning models are used to promote computational models for miner fatigue detection [56].
Thus, in this study, miner fatigue has been detected from multichannel EEG signals using
deep-learning models. Among different types of EEG features, we used the PSD and
RPSD in EEG feature extraction, which showed better performance than other feature
extraction methods in the previous studies [28]. Then, the CNN was employed as the
deep-learning model to further perform feature extraction and to classify among normal,
critical, and fatigue states, which can achieve a significant enhancement in the performance
and can gain more representations from EEG signals. Finally, we evaluated and compared
the PSD–CNN and RPSD–CNN methods, and the experimental results show that the
RPSD–CNN method outperforms the other deep-learning methods. The results include
32-channel EEG signals of normal, critical, and fatigue states recorded from fifteen miners.
Our results show that the EEG signals experienced substantial changes when miners
feel fatigued.

Compared with the normal state, the RPSD of EEG signals in the fatigue state is highly
increased in the delta and theta bands but substantially decreased in the alpha band. Some
researchers also found an increase in delta and fatigue and theta and fatigue trends. But
previous research reports different findings in terms of the alpha band. Some research
found an increasing trend between the alpha band and fatigue [57]. However, fatigue does
not lead to a noticeable decrease or increase in beta band activity. The results are different in
previous studies, which have reported changes in the beta band activity with fatigue, such
as a decrease in power or a shift in peak frequency. In our study, the beta band may maintain
its typical level of power, frequency, and synchronization despite the presence of fatigue.
This suggests that fatigue may not have a strong impact on the neural processes associated
with the beta band. It is important to note that the absence of significant differences in
the beta band does not negate the presence of fatigue; while the beta band did not show
substantial differences, other frequency bands exhibited significant variations associated
with fatigue. Further, our result reveals that the CNN achieves remarkable results due to
its great success in feature representation. Our proposed method outperformed the other
deep-learning methods with an average accuracy of 95.4%. The proposed methodology
might become an effective method instead of traditional supervising methods for detecting
miner fatigue, which could form the neurophysiology mechanisms for fatigue detection.
This proposed methodology also could become a reference work for future studies or future
“systems” in coal mines.

However, three major limitations of our study should be mentioned. First, this study
only selected EEG signals to analyze miner fatigue. This approach is relatively limited.
Future work may utilize various important physiological signals in one study. For example,
EEG, EOG, and ECG signals were employed in a study to obtain information of physio-
logical signals to detect driver fatigue. More information about the miner fatigue state
may be gained with this approach. Second, the sample size is relatively small and only
tested samples of 15 miners. Future research could consider examining larger samples
of models for miner fatigue. Third, this study is the first to detect miner fatigue through
EEG signals in China, and the lack of previous data may have caused uncertainty which
impacted the experiment.
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CNN Convolutional neural network
EEG Electroencephalogram
ECG Electrocardiogram
EOG Electrooculography
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ANN Artificial neural network
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