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Abstract: The objective of this study was to apply simulation and genetic algorithms for the economic
and environmental optimization of the reverse network (manufacturers, waste managers, and recy-
clers in Sao Paulo, Brazil) of waste from electrical and electronic equipment (WEEE) to promote the
circular economy. For the economic evaluation, the reduction in fuel, drivers, insurance, depreciation,
maintenance, and charges was considered. For the environmental evaluation, the impact of abiotic,
biotic, water, land, air, and greenhouse gases was measured. It was concluded that the optimized
structure of the WEEE reverse chains for Sao Paulo, Brazil provided a reduction in the number of
collections, thus making the most of cubage. It also generated economic and environmental gains,
contributing to the strategic actions of the circular economy. Therefore, the proposed approach is
replicable in organizational practice, which is mainly required to meet the 2030 agenda of reducing
the carbon footprint generated by transport in large cities. Thus, this study can guide companies in
structuring the reverse WEEE chains in Sao Paulo, Brazil, and other states and countries for economic
and environmental optimization, which is an aspect of great relevance considering the exponential
generation of WEEE.

Keywords: reverse logistic; reverse chains; WEEE; industry 4.0 technology; simulation; artificial
intelligence; eco-efficiency; circular economy

1. Introduction

Growing industrialization and increased competitiveness have contributed to the
growth in the volume of electronic products that are manufactured across a variety of
market segments. Currently, large volumes of electronic products are sold worldwide.
As a result of this growth, electronic waste has become a major problem in the disposal
process, presenting itself as a critical and aggressive situation for the environment [1]. This
challenge triggered in Brazil in 2010 Law 12.305/2010, which was enacted on the National
Solid Waste Policy. This law has been acknowledged as the most specific to concern reverse
logistics and the recycling of WEEE. Its principle is to develop reverse chains to promote
a shared responsibility for the life cycle of electrical and electronic equipment among the
players in the chains. Article 33 of the law stipulates the obligation of manufacturers,
distributors, traders, recyclers, and importers to structure their reverse logistics systems
for the return of post-consumer WEEE [2]. Reverse logistics as a process aims to provide a
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destination for the return of the WEEE in the business cycle in an environmentally correct
way, specifically one that is supported by legal terms.

It should be noted that, in October 2019, a sectoral agreement was also signed, which
aimed at sharing the responsibilities for WEEE management between manufacturers, waste
managers, and recyclers in Sao Paulo, Brazil. Oliveira Neto et al. [3] mention that electronics
manufacturers are responsible for implementing post-consumer WEEE reverse logistics,
whereby WEEE circularity through remanufacturing, repair, reuse, recycling, and/or sale
to the secondary market is aimed. However, the manufacturers cannot simultaneously
carry out production and remanufacturing. Thus, a common strategy has been to hire a
WEEE manager who is responsible for allocating collection points and reverse logistics, as
well as for receiving, disassembling, segregating, and disposing of appropriate recyclers
and then reselling these on the secondary market.

Thus, it is considered relevant to incorporate the principles of the circular economy in
the reverse logistics operations associated with WEEE [4], namely to consider the players
in the reverse chains [5] and to establish the circularity of WEEE through remanufacturing,
repair, reuse, recycling, and/or sale to the secondary market. This is to be performed [3]
in compliance with the regulation of the local policies that are aimed at eliminating the
disposal of WEEE in landfill, thus allowing for a reduction in CO2 in addition to improving
the recovery rate, as well as the capacity of the facilities in relation to the total expected
profit [6]. By implementing cyclic material flows, it is possible to limit the production
flow to levels that nature tolerates, thus respecting its natural reproduction rates [7] and
generating system sustainability [8].

To promote the implementation of the principles of the circular economy in the reverse
WEEE chains—one that is stimulated by the mandatory adoption of reverse logistics in Sao
Paulo by the electronics sector—it is timely and relevant to conduct studies that can aug-
ment the knowledge about how to improve such systems [3]. In this context, it is important
to simulate the economic and environmental optimization of the WEEE reverse network
(manufacturers, waste managers, collection points, and recyclers in Sao Paulo). This can
be obtained from the application of simulation and artificial intelligence technologies in
optimizing the routing of vehicles that are used in waste collection. Simulation can be
considered an Industry 4.0 technology, and it is used for real-time data analysis, for offering
opportunities for adjustments in complex systems through knowledge, and for information
and accurate estimates about the system [9]. It is important to adopt information technology
infrastructure [10]. The use of simulation and artificial intelligence approaches with a focus
on the circular economy for the economic and environmental optimization of reverse chains
of WEEE can generate economic and environmental benefits in operations [11].

A systematic literature review was carried out addressing 23 scientific papers, which
are presented in Table 1. These were selected to investigate the use of simulation and
artificial intelligence approaches as ways through which to optimize the WEEE reverse
logistics network, both from economic and environmental points of view. The first step
of the analysis involved the characterization of the computational techniques that were
applied in each selected work. Among these, nine studies used mixed-integer linear
programming for the simulation task—as shown in Achillas et al. [12]; Qiang; Zhou [13];
Kilic et al. [14]; Bal; Satoglu [15]; Elia et al. [16]; Mar-Ortiz et al. [17]; Gomes et al. [18];
Alumur et al. [19]; and Assavapokee and Wongthatsanekorn [20]. Three other studies
used multicriteria objective linear programming—as seen in Achilles et al. [21]; Achillas
et al. [22]; and Yu and Solvang [23]. Also, two studies dealt with discrete event simulation—
Gamberini et al. [24] and Shokohyar and Mansour [25]. One piece of research adopted
linear and nonlinear optimization methods in discrete or continuous variables, i.e., Dat et al.
2012 [26], and another study used stochastic programming, i.e., Ayvaz et al. [27]. Some
studies combined simulation and artificial intelligence techniques, as was found in the
nonlinear gray Bernoulli model with the convolution integral NBGMC that was improved
by Particle Swarm Optimization in Duman et al. [28], as well as in the multi-objective
models that were computed using the two-phase fuzzy compromise approach developed



Sensors 2023, 23, 9046 3 of 30

by Tosarkani et al. [6]. In addition, Lv and Du used the Kriging method [29], whereas
Moslehi et al. [30] used a multi-objective stochastic model and a bi-objective mixed-integer
programming model under certain uncertainties. An approach using system dynamics and
a mixed-integer nonlinear programming model was utilized by Llerena-Riascos et al. [4],
and a convolutional neural network-based quality prediction and closed-loop control
method was used by Zhang et al. [31]. Lastly, agent-based modeling, system dynamics,
and discrete event simulation were implemented by Guo and Zhong [5].

After analyzing the published works, the first gap identified was that no research
applied artificial intelligence (genetic algorithms combined with Clarke & Wright heuristic)
for the economic and environmental optimization of the reverse WEEE network, consider-
ing manufacturers, waste managers, and recyclers. It should be noted that the choice of
techniques to compose the proposed simulation model to optimize routes was because both
have shown good results (optimal or suboptimal solutions) in routing and other related
problems of combinatorial optimization. In addition, they also allow handling with many
constraints, including time windows and capabilities present in the addressed problem,
as shown in Koç et al. [32]. Nevertheless, the use of heuristic algorithms, such as Clarke
& Wright [33], to generate the initial population of the genetic algorithms with feasible
solutions has proven to be a good alternative for solving routing problems, as demonstrated
in the works of Lima et al. [34] and Lima & Araujo [35].

A second step in the research analysis was to understand the procedure used to present
the environmental gains in the selected studies. In this regard, the studies that presented an
environmental assessment—listed in Table 1—only offered a quantification in percentage
using data extracted from the computer simulation. These studies generally emphasized
the reduction of WEEE disposal in landfills and the reduction of CO2, such as in Gamberini
et al. [24]; Achilles et al. [21]; Achilles et al. [22]; Assavapokee and Wongthatsanekorn [20];
Shokohyar and Mansour [25]; Yu and Solvang [23]; Bal and Satoglu [15]; Elia et al. [16];
Duman et al. [28]; Tosarkani et al. 2020 [6]; Llerena-Riascos et al. 2021 [4]; Lv and Du [29];
Moslehi et al. [30]; and Guo and Zhong [5]. From this, the second gap identified was that no
research evaluated the reduction of environmental impacts in the abiotic, biotic, and water
dimensions using the Material Intensity Factor (MIF), which is a relevant tool for global
assessment of the minimization of environmental impacts, not just using percentage data.

Third, the procedure used by the surveys to develop the economic evaluation was
analyzed. They use only percentage data to measure transportation and storage cost savings
and profitability without a detailed explanation of the data. Thus, the third research gap
consists of the fact that no research was identified presenting the calculation of cost and time
reduction in detail, in addition to measuring the improvement in the volume of vehicles,
being a primordial aspect in the optimization and orientation of transport managers. It
should be noted that complex optimization scenarios without detailing make it impossible
for managers to apply them in practice.

The fourth aspect analyzed in the research was the country of application of computer
techniques for optimization of the WEEE reverse chains. Five surveys were carried out in
China by Dat et al. [26], Qiang and Zhou [13], Yu and Solvang [23], Lv and Du [29], and
Guo and Zhong [5]; three surveys were conducted in Greece by Achillas et al. [12], Achillas
et al. [21], and Achillas et al. [22]; three in Türkiye by Ayvaz et al. [27], Kilic et al. [14],
and Bal and Satoglu [15]; two in Italy by Gamberini et al. [24] and Elia et al. [16]; two
the USA by Assavapokee and Wongthatsanekorn [20], and Duman et al. [28]; two in Iran
by Shokohyar and Mansour [25], and Moslehi et al. [30]; and one study in each of the
following countries: Spain, by Mar-Ortiz et al. [17]; Portugal, by Gomes et al. [18]; Germany,
by Alumur et al. [19]; Canada, by Tosarkani et al. [6]; Colombia, by Llerena-Riascos et al. [4];
and Belgium, by Zhang et al. [31]. Thus, the fourth research gap was the lack of studies
carried out in Brazil, mainly in Sao Paulo, on the use of simulation and artificial intelligence
for economic and environmental optimization of the reverse WEEE network, considering
manufacturers, waste managers, collection points, and recyclers.
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Table 1. Research on simulation for optimization of the WEEE reverse logistics network.

Authors Country
Computational

Intelligence Used for
Simulation

Mentions about EC Aim of the Paper Environmental Gain Economic Gain Social Gain

[26] China

Linear and nonlinear
optimization methods in

discrete or continuous
variables

null
Minimize the total
cost of the WEEE
recycling network

Reduction in the cost
of transport and

disposal, revenue
generated from the
sale of recyclable

materials

[13] China Mixed-integer linear
programming null

Optimize the WEEE
reverse logistics

network

Reduced transport
costs

[23] China
Multicriteria for

stochastic mixed-integer
programming

null

Plan a reverse
logistics network for

managing WEEE
under uncertainty

CO2 reduction Reduced transport
costs

[29] China Model based on the
Kriging method null

Apply a spatial
mathematical model
based on the Kriging
method to predict the

amount of WEEE
returns in reverse

logistics

Environmental compliance

[5] China
Agent-based modeling,
system dynamics, and

discrete event simulation
yes

Establish a
sustainable

closed-loop supply
chain system based
on the Internet of

Things, considering
the economic,

environmental, and
social dimensions

CO2 reduction
Revenue generated

from the sale of
recyclable materials

Safety at work
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Table 1. Cont.

Authors Country
Computational

Intelligence Used for
Simulation

Mentions about EC Aim of the Paper Environmental Gain Economic Gain Social Gain

[12] Greece Mixed-integer linear
programming null

Minimize total costs
of transporting and

storing WEEE
between collection

points and recycling
units

Reduced transport
costs

[21] Greece Multicriteria objective
linear programming null

Identify the optimal
location for installing

waste recycling
plants

Elimination of WEEE disposal
in landfills and reduction of

CO2

Recycling and reuse;
reduction in fuel

costs

[22] Greece Multicriteria objective
linear programming null

Optimize WEEE
collection and

recycling processes to
minimize total

logistical costs and
reduce fuel

consumption

CO2 reduction Reduced transport
costs

[27] Türkiye Stochastic programming null

Minimize demand
uncertainties for

WEEE recycling by
third-party recyclers
to maximize profit

Reduced transport
costs

[14] Türkiye Mixed-integer linear
programming null

Design a WEEE
reverse logistics
system network

structure

Reduced transport
costs

[15] Türkiye

Mixed-integer linear
programming and

multi-facility,
multi-product, and
multi-period goal

programming

null

WEEE collection
process at service

points, transport to
recycling and waste

recovery facilities

CO2 reduction Reduced transport
costs job creation
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Table 1. Cont.

Authors Country
Computational

Intelligence Used for
Simulation

Mentions about EC Aim of the Paper Environmental Gain Economic Gain Social Gain

[24] Italy Discrete event simulation
and lifecycle analysis null Optimize the WEEE

transport network CO2 reduction Reduced transport
costs

[16] Italy Mixed-integer linear
programming null

Compare different
alternatives to a
WEEE collection

service

CO2 reduction Reduced transport
costs

[20] USA Mixed-integer linear
programming null

Optimize processes
in terms of the most
appropriate choice

for the
implementation of

recycling units in the
network project

CO2 reduction Reduced transport
and storage costs

[28] USA

Proposed nonlinear gray
model with convolution

integral, improved by
particle swarm
optimization

null

To present a new
prediction technique
for multi-input junk
e-mail predictions in

the presence of
limited historical

data

Eliminate WEEE disposal in
landfills and reduce CO2

[25] Iran Discrete Event
Simulation null Design a WEEE

recovery network CO2 reduction Reduced transport
costs

Employment
generation, job
security, local
development

[30] Iran

Multi-objective
stochastic model.

Bi-objective
mixed-integer

programming model

null

Model the electrical
and electronic

equipment (EEE)
reverse logistics

process as a
bi-objective

mixed-integer
programming model
under uncertainties

Eliminate WEEE disposal in
landfills and reduce CO2

Reduced transport
costs
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Table 1. Cont.

Authors Country
Computational

Intelligence Used for
Simulation

Mentions about EC Aim of the Paper Environmental Gain Economic Gain Social Gain

[17] Spain
mixed-integer linear
programming and

heuristic algorithms
null

Optimize the design
of the WEEE logistics

network

Reduced transport
costs

[18] Portugal Mixed-integer linear
programming null

Optimize best
locations for

collection and sorting
centers for reverse

WEEE network
planning

Reduced transport
costs

[19] Germany Mixed-integer linear
programming null

Maximize profit for
WEEE reverse

logistics network
design problems

Reduced transport
costs

[6] Canada

Multi-objective models
are computed using the

two-phase fuzzy
compromise approach

yes

Optimize and
configure an

electronic reverse
logistics network,
considering the

uncertainty
associated with fixed

and variable costs,
the quantity of

demand and returns,
and the quality of
returned products

Environmental compliance to
reduce pollution. Eliminate

WEEE disposal in landfills and
reduce CO2

Revenue generated
from the sale of

recyclable materials
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Table 1. Cont.

Authors Country
Computational

Intelligence Used for
Simulation

Mentions about EC Aim of the Paper Environmental Gain Economic Gain Social Gain

[4] Colombia
System dynamics and a
mixed-integer nonlinear

programming model
yes

To present an
optimization-based

simulation (OBS)
approach that allows

the design of
sustainable policies

for WEEE
management systems

Environmental benefits
Revenue generated

from the sale of
recyclable materials

[31] Belgium

Convolutional neural
network-based quality

prediction and
closed-loop control,
named CNNB-CL

null

Closed-loop capture
planning method is

proposed for the
random collection of

WEEE products

Reduced transport
costs
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The fifth point analyzed concerned the use of the circular economy approach in
research. Tosarkani et al. [6] mentioned the circular economy only in terms of the passage
of Bill 151 and the development of circular economy strategies in Ontario, Canada with
greater attention directed towards recycling electronics (OES annual report, 2017). Llerena-
Riascos et al. [4] incorporated the principles of the circular economy to maximize economic
benefits concerning environmental ones, and Guo and Zhong [5] mentioned the circular
economy superficially, in addition to not performing optimization in the WEEE reverse
chains. Therefore, no research on the circular economy was identified that evaluated
the environmental impact and economic gain with details of the adoption of computer
simulation and artificial intelligence for optimization of the WEEE reverse chains, denoting
the fifth gap explored in this study. Hidalgo et al. [11] concluded that the use of simulation
for the management of WEEE in the reverse network does not guarantee eco-efficiency
because it is important to use the circular economy approach to obtain economic and
environmental benefits in operations since it is about promoting the circularity of WEEE.

Therefore, the application of simulation and artificial intelligence for economic and
environmental optimization of the reverse WEEE network, considering manufacturers,
waste managers, and recyclers to promote circular economy, was not addressed in the
scientific literature. The exploratory analysis of the literature allowed the identification of
five important research gaps, which are critical for both theory and managerial practice,
and from which the following research question was formulated: How can simulation and
artificial intelligence techniques be applied for economic and environmental optimization
of the reverse WEEE network (manufacturers, waste managers and recyclers of Sao Paulo),
to promote circular economy?

This study contributes to filling the identified research gaps, suggesting that an opti-
mized configuration of the reverse WEEE network should promote economic gains and the
reduction of environmental impacts for the actors in the network (manufacturers, waste
managers, and recyclers in Sao Paulo). The economic gains are evaluated considering the
opportunity to reduce transport costs. The reduction of environmental impacts is measured
by evaluating the intensity of the material in the abiotic, biotic, water, land, and air com-
partments in terms of the minimization of fuel consumption and CO2 emission. Therefore,
this study is justified by its contribution to theory, organizational practice, and society.

2. Systematic Literature Review of the Simulation Approach for Optimizing the WEEE
Reverse Logistics Network

A preliminary overview of the extant literature is organized in Table 1, displaying the
research work that used computer simulation to identify the optimization of the WEEE
reverse logistics network in economic and environmental terms. Three surveys were carried
out in Greece, three in China, three in Turkey, two in Italy, and one each in Spain, Portugal,
Germany, the USA, and Iran. All surveys aim to reduce transport costs, and half aim
to reduce CO2 emissions. Likewise, in China, an additional five studies were identified.
Dat et al. [26] developed a model to minimize the total cost of the WEEE recycling network
in China, which is the sum of the transport cost, operation cost, fixed cost, and disposal cost
minus the revenue generated from the sale of recyclable materials. and renewables and
components. Also, based on the proposed model, the ideal locations of the facilities and
the material flows in the reverse logistics network were determined. Qiang and Zhou [13]
developed a robust mixed-integer linear programming simulation model for the WEEE
reverse logistics network to optimize the handling process, which was affected by recovery
uncertainty based on risk preference coefficient and risk coefficient penalty diverted from
restrictions that could allow decision makers to fine-tune operating system robustness and
risk preferences. The result showed an opportunity to reduce transport costs.

Yu and Solvang [23] developed a stochastic mixed-integer programming model to
design and plan a multi-source, multi-echelon, capable, and sustainable reverse logistics
network for managing WEEE under uncertainty. The model considers economic efficiency
and environmental impacts in decision-making, and environmental impacts are evaluated
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in terms of carbon emissions. Lv and Du [29] developed a simulation based on the Kriging
method to predict the amount of WEEE returned in reverse logistics in China. The proposed
model can accurately predict the amounts of WEEE returned from unknown locations, as
well as those from the entire area, through data from the known location, which is important
for compliance with environmental legislation. Guo and Zhong [5] applied agent-based
modeling, system dynamics, and discrete event simulation constructed in China for the
simulation of a closed-loop supply chain based on the Internet of Things, allowing the
generation of more profit and reducing more greenhouse gas emissions and contamination
by heavy metals, in addition to offering protection of people from diseases caused by heavy
metals present in WEEE. It should be noted that this study mentions adequate management
of WEEE using IoT, installation of sensors in a truck, barcodes on products, trash cans
on the sidewalk, and a pre-selection center, in addition to the technology adopted by the
manufacturer. However, this study does not perform optimal optimization and mentions
circular economy only superficially.

Three works in Greece were identified. Achillas et al. [12] used the mixed-integer
linear programming model to adapt the model to optimize and minimize total costs of
transporting WEEE between collection points and recycling units, optimizing the use of
containers and storage containers of WEEE, and cost reductions on WEEE storage deposits
in Macedonia and Greece. This suggests that some network nodes (i.e., collection and
recycling points) can be strategically modified in such a way as to promote considerable
cost reductions in the WEEE reverse logistics network. Achilles et al. [21] adopted multicri-
teria objective linear programming to identify the optimal location for the installation of
waste recycling plants for two cities in Greece: Messologhi and Kavala. The study aimed to
address legal standards and goals for the collection of WEEE. Specifically, the goal was to
minimize the environmental impact by reducing the possibility of WEEE being dumped in
landfills, in addition to reducing pollutants from fossil fuels (CO2) in the atmosphere. More-
over, it documented the generation of an economic advantage of EUR 235,000 due to the
recycling and reuse of WEEE and the minimization of fuel consumption. Achillas et al. [22]
used multicriteria objective linear programming for the weighted optimization of WEEE
collection and recycling processes to minimize total logistic costs and reduce fuel consump-
tion in the region of Central Macedonia, Greece. The results showed a 5% reduction in CO2
pollutants (from fossil fuels), in addition to an economic gain of EUR 545,000.

Two surveys were carried out in Italy. Gamberini et al. [24] developed discrete event
simulation and lifecycle analysis for the optimization of the WEEE transport network in
northern Italy. The authors used vehicle routing methods and heuristic procedures for
creating different scenarios for the system, simulation modeling to obtain solutions that
satisfy technical performance measures, life cycle analysis to assess the environmental
impact of such solutions, and multicriteria decision methods to select the best choice
under the joint technical and environmental perspective. With this, opportunities to
reduce transport costs were identified, in addition to minimizing CO2 emissions in the
environment. Elia et al. [16] do not mention optimization considering the reverse chains
in terms of recycling and reuse. They only mention collection and direct options or the
determination of another path in Italy. With this, the simulation was adopted to compare
different alternatives for a WEEE collection service. A dynamic collection scheme (i.e., with
varying collection frequencies based on the actual level of waste stream) is simulated in two
different logistical configurations, i.e., one based on direct connection and the other based on
a network. The impact of the adoption of electric vehicles is also evaluated. Alternatives are
compared using key economic and environmental performance indicators to assess the level
of sustainability. The simulation was adopted to compare alternatives for a WEEE collection
service. A dynamic collection scheme (i.e., with varying collection frequencies based on
the actual level of waste stream) is simulated in two different logistical configurations,
i.e., one based on direct connection and the other based on a network. The impact of
the adoption of electric vehicles is also evaluated. Alternatives are compared using key
economic and environmental performance indicators to assess the level of sustainability. A
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simulation was employed to compare different alternatives for a WEEE collection service.
A dynamic collection scheme (i.e., with varying collection frequencies based on the actual
level of waste stream) is simulated in two different logistical configurations, i.e., one based
on direct connection and the other based on a network. The impact of the adoption of
electric vehicles is also evaluated. Alternatives are compared using key economic and
environmental performance indicators to assess the level of sustainability—one based on
direct connection and one based on a network.

Assavapokee and Wongthasanekorn [20] used the mathematical model of mixed-
integer linear programming for process optimization in terms of an adequate choice for
the implantation of recycling units in Texas, USA through discrete variables, representing
decisions such as locations and capacity allocation. Overall, they also addressed decisions
about the material flows of the reverse logistics network. The model considered the
obsolescence estimates for the products (e.g., computers, monitors, televisions) and the
sales volume of the products, and analyzed the logistics transport costs. This reduced the
logistics costs of transporting waste in terms of fuel and reduced storage costs for waste
deposits, in addition to the percentage indication of the reduction in the amount of CO2.
Other authors [28] proposed a nonlinear gray Bernoulli model with convolution integral
NBGMC (1, n) improved by particle swarm optimization (PSO) with the aim of presenting
a new prediction technique for e-waste for the US with multiple inputs in the presence of
limited historical data. It was concluded that it is possible to improve decision-making
in reverse logistics planning, allowing the proper collection, recycling, and disposal of
electronic waste, generating elimination of WEEE disposal in landfills and CO2 reduction.

Shokohyar and Mansour [25] designed a WEEE recovery network to determine the
best locations for collection centers and recycling plants for total WEEE management in
Iran so that the government can simultaneously trade between environmental issues and
economic and social impacts. Moslehi et al. [30] applied the multi-objective stochastic
model and bi-objective mixed-integer programming model under uncertainties with the
aim of modeling the reverse logistics process of electrical and electronic equipment (EEE) in
Iran. A case study of an electronic equipment manufacturer in Esfahan, Iran, was included,
making it possible to minimize the disposal of WEEE in landfill and reduce CO2, in addition
to reducing transportation costs.

Mar-Ortiz et al. [17] developed a survey in Spain with the aim of optimizing the
design of the WEEE logistics network. Thus, first, an installation location problem was
formulated and solved using mixed-integer linear programming; in the second phase, a
new integer programming formulation for the corresponding heterogeneous fleet vehicle
routing problem is presented, and an economics-based heuristic algorithm is developed to
efficiently solve the related collection routing problems; in the third phase, a simulation
study of the collection routes is carried out to evaluate the overall performance of the
recovery system. The results show a good performance of the proposed procedure and an
improved configuration of the recovery network in relation to the one currently in use.

Gomes et al. [18] developed a generic mixed-integer linear programming model that
was proposed to represent this network, which is applied to its design and planning
in Portugal, where the best locations for the collection and sorting centers are chosen
simultaneously with the definition of network tactical planning. Some analyses were
carried out to provide more information on the selection of these alternative sites. The
results support the strategic expansion plans of the companies for the opening of many
centers and their location close to the main sources of WEEE, with a main focus on reducing
operating costs (see Alumur et al. [19]).

Tosarkani et al. [6] applied efficient solutions of the multi-objective model using the
two-phase fuzzy compromise approach, aiming to optimize and configure a Canadian
WEEE reverse logistics network, considering the uncertainty associated with fixed and
variable costs, the amount of demand and return and the quality of returned products. The
study mentions that with the passage of Bill 151 and the development of circular economy
strategies in Ontario, greater attention has been directed towards recycling electronics
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(OES annual report, 2017). With this, it is necessary to implement reverse chains for
environmental compliance to reduce pollution and eliminate the disposal of WEEE in
landfills, allowing the reduction of CO2, in addition to improving the recovery rate.

Llerena-Riascos et al. [4] applied simulation using system dynamics and mixed-integer
nonlinear programming to design sustainable policies for WEEE management systems,
incorporating circular economy principles to maximize economic benefits in relation to
environmental ones. This led to a 33% increase in profit and a 65% increase in envi-
ronmental benefits. It should be noted that despite mentioning the circular economy, it
does not quantify the economic and environmental gains based on a real case, presenting
percentage data.

Zhang et al. [31] applied computer simulation using convolutional neural network-
based quality prediction and closed-loop control with the aim of presenting a closed-loop
capture planning method for the random collection of WEEE products in Belgium, reducing
costs in the collection and pre-processing process.

3. Methodology

The study builds a preliminary systematic literature review with the purpose of
framing the investigated field and supporting the development of the conceptual model.
After the literature review and analysis, interviews were conducted with managers of
companies involved in the reverse chains of WEEE. After data collection, the proposed
AI approach was developed for optimizing the routing of vehicles on the reverse WEEE
network. Next, the environmental and economic assessments were carried out using the
information derived from the routing. Based on the simulation with the proposed approach,
a new interview process was carried out with the companies to investigate their opinions
on the simulation and the optimization model developed.

3.1. Systematic Literature Review

A systematic literature review (SLR) was conducted to better understand the state of
the art in terms of applying simulation and artificial intelligence techniques for optimizing
routes aiming for economic and environmental gains in the reverse WEEE network. This
step also guided the development of the items for the composition of the semi-structured
interview questionnaire.

The keywords used for the development of this study and which were adopted in the
systematic literature review are:

(i) “simulation” AND “reverse logistics” OR “reverse chains” OR “closed-loop” AND
“waste electrical” OR “weee” OR “electronic”.

(ii) “modeling” AND “reverse logistics” OR “reverse chains” OR “closed-loop” AND
“waste electrical” OR “weee” OR “electronic”.

(iii) “genetic algorithms” AND “reverse logistics” OR “reverse chains” OR “closed-loop”
AND “waste electrical” OR “weee” OR “electronic”.

(iv) “artificial intelligence” AND “reverse logistics” OR “reverse chains” OR “closed-loop”
AND “waste electrical” OR “weee” OR “electronic”.

(v) “optimizing” AND “reverse logistics” OR “reverse chains” OR “closed-loop” AND
“waste electrical” OR “weee” OR “electronic”.

As mentioned, these keywords were used to identify scientific research on the re-
searched subject. A total of 31 articles were identified, out of which 16 were selected
after the systematic review. The selection criterion adopted was that research should use
simulation to optimize WEEE reverse logistics routes.

Based on these articles, the variables used for simulation and routing optimization
were identified.

The literature review also allowed for the development of a semi-structured ques-
tionnaire to support the conducting of interviews for data collection. The topic questions
addressed in the semi-structured instruments were as follows:

(a) General information about the companies;
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(b) Description of the reverse chain processes, which include the manufacturer, waste
manager, and recyclers, in addition to their locations and exclusive specialties by type
of electronic waste;

(c) Identification of manufacturers, waste managers, collection points, and recyclers, as
well as the amounts of electronic waste received per month/year, the number of
materials and substances processed per month/year, and the total WEEE processing
capacity per month/year.

3.2. Procedure for Data Collection—Expert Analysis via Semi-Structured Interview

In this research, semi-structured interviews were conducted with four manufacturers’
managers, a WEEE manager, and three recyclers located in Sao Paulo to survey the volume
and types of WEEE, locations of recyclers, and collection points. Thus, the research method
involved collecting information from specialists from companies belonging to the reverse
WEEE network. Bogner et al. [36,37] mentioned that the analysis of specialists allows for
verifying the researched subjects in the organizational practice, making it possible to gather
important data to develop research with relevant practical contributions. However, for
the effectiveness of the data-collection process with specialists, semi-structured interviews
were carried out.

With this, it was possible to study and understand the reverse chain processes of WEEE,
in addition to raising quantitative data on volumes and types of WEEE, and locations of
companies in Sao Paulo, allowing the determination of the set of routes that optimize
environmental and economic gains, promoting the circular economy.

3.3. Procedure for Data Analysis

The data collected about the recyclers and collection points were recorded in an
Excel spreadsheet to facilitate its analysis using the AI approach. This, building on the
optimization of the routes for the reverse WEEE chains, provides a comparative analysis of
the economic/financial aspects and the environmental impact by evaluating the intensity
of material in the compartments: abiotic, biotic, water, air, and land. With this, the optimal
model of the WEEE reverse chains was determined in economic and environmental terms,
which are important factors for business decision-making.

3.3.1. Proposed AI-Based Approach for Economic and Environmental Assessment

The approach proposed in this study is focused on the optimization of routes in the
reverse WEEE chains, which in turn directly impacts the reduction of economic and environ-
mental costs. It is composed of a set of four computational pipelined procedures developed
in the Python language, and its functioning is illustrated in Figure 1 and detailed below.

In the first step (geolocation procedure), the geopy (https://pypi.org/project/geopy/
accessed on 24 July 2023) library is employed to provide the geolocations of the recyclers
(RECs) and the collection points (CPs) from their addresses stored in an Excel spreadsheet
received from the Sao Paulo State Waste Management Company, which also includes
other information such as capacities of processing and collecting of the RECs and CPs,
respectively. This spreadsheet containing raw data is the main input of the AI approach.

https://pypi.org/project/geopy/
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It is important to highlight that the problem addressed in this study that involves
three recyclers (RECs) for collecting waste from 554 collection points (CPs), from the
combinatorial optimization point of view, is classified as the multi-depot vehicle routing
problem (MDVRP) which is much more complex than a simple VRP or CVRP (capacitated
vehicle routing problem) that considers only one depot. However, this problem can be
solved in two phases (clustering and routing), greatly reducing its complexity since it is
broken down into simple VRPs or CVRPs. As this strategy was adopted in this study, the
data analysis and representation procedure that comprises the second step first groups the
CPs according to their proximity to the RECs and then uses the geocoordinates of RECs and
CPs to compute the distance and time matrices (one for each REC) using the open-source
routing machine—OSRM (https://project-osrm.org/ accessed on 24 July 2023) library.
From these matrices, the distances and times spent on routes taken by vehicles in waste
collection are computed. The procedure of the second step also creates the representation
of a CVRP scenario for each REC using the computed matrices (DM and TM) and other
information from the georeferenced data spreadsheet. In the literature, a scenario of CVRP
is known as an “instance” of CVRP, which can be mathematically represented by Equations
(1)–(8). In short, solving CVRP means finding a set of routes, where each route is traveled
by a vehicle, with the objective of minimizing the total cost of routes (tc), respecting the
following restrictions: (i) each route must start and finish at the depot (or distribution
center); (ii) each customer must be visited only once; (iii) the sum of demands of customers
belonging to a route cannot exceed the capacity of the vehicle; and (iv) all vehicles of the
fleet must have equal capacities.

https://project-osrm.org/
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xijk ≤ cv; k = 1, . . . , K (7)

xijk ∈ {0, 1}; i = 1, . . . , nc; j = 1, . . . , nc; k = 1, . . . , K (8)

where di: demand of customer i; k: vehicle; K: set of vehicles; S: Set of customers; nc: number
of customers; v(S): minimum number of vehicles to service S; cv: capacity of vehicles; cij:
cost of the path from the customer i to customer j; tc: total cost of all routes; xijk: path
from customer i to customer j with vehicle k. In our case, customers are the CPs, and their
demands are represented by their capabilities to collect waste; each REC acts as a depot (or
distribution center); the service refers to the collection of waste; v(S) is obtained by dividing
the sum of the capabilities of all CPs associated with a REC by the capacity of the vehicle
used by the REC for collection of waste; and tc is computed taking into account distance (in
km) and travel time stored in DM and TM matrices.

Equation (2) ensures that K vehicles will be used starting from the distribution center,
while Equation (3) guarantees that each route has its beginning and ending at the distri-
bution center. Equation (4) defines that customers must be attended to exactly one time,
and Equation (5) keeps the flow, ensuring that the vehicle arrives at a customer and out of
it, preventing the route from ending prematurely. Equation (6) prevents the formulation
of routes that do not include the depot. Restriction 6 ensures that the number of vehicles
used to service the customers of set S is not less than v(S), and, finally, Equation (7) is used
to formulate the vehicle capacity restriction. Equation (8) explains that the solution to the
problem is a binary matrix.

In the third step (vehicle routing procedure), the routing for the three RECs from the
scenarios (instances) provided in the second step is conducted, and a report summarizing
the routing information is generated (a fragment is depicted in Figure 2).

For the routing task, we employed the genetic algorithms—GA ([38,39])—combined
with the Clarke & Wright—CW—algorithms [33]. GA is a meta-heuristic technique based
on the theory of species evolution, according to which individuals in a population that best
adapt to the environment in which they live are more likely to survive and reproduce. The
CW, one of the most known heuristics for VRP, consists of a saving algorithm that seeks to
replace the most expensive paths within the routes with paths that represent lower costs.
When two routes (0, . . . , i, 0) and (0, j, . . . , 0) can feasibly be merged into a unique route
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(0, . . . , i, j, . . . , 0), then a distance saving s(i, j) = c(i, D) + c(D, j) − c(i, j) is generated. The
GA and CW algorithms (adapted from [40]) are presented in Figure 3.
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In our implementation using OR-TOOLS (https://developers.google.com/optimization/
introduction/python?hl=pt-br, accessed on 24 July 2023) and HYGESE (https://pypi.org/
project/hygese/ accessed on 24 July 2023) libraries, the CW is applied to generate feasible

https://developers.google.com/optimization/introduction/python?hl=pt-br
https://developers.google.com/optimization/introduction/python?hl=pt-br
https://pypi.org/project/hygese/
https://pypi.org/project/hygese/
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solutions for composing the initial population of the GA, which represents possible solu-
tions to the problem. It should be noted that the choice of using GA and CW to compose
the optimization model to obtain better routes was because both algorithms have shown
good results for routing problems and other related combinatorial optimization problems.
Nevertheless, the use of heuristics to populate the initial GA population with feasible
solutions has proven to be a good alternative for solving routing problems [34,41–43]. In ad-
dition, we tested other metaheuristics such as Simulated Annealing—SA [44–46] and Tabu
Search—TS [45,46], but the results obtained in preliminary experiments do not indicate
improvements in using them.

Finally, in the fourth step, called the data visualization procedure, all data produced by
the routing task is spatialized in a map that can be visualized as a web page in any browser,
as shown in Figure 4. In our implementations, we employed the Open Street Map—OSM
(https://www.openstreetmap.org/ accessed on 24 July 2023)—as well as the OSRM and
folium (https://python-visualization.github.io/folium/ accessed on 24 July 2023) libraries.
The Google Maps platform is more present in the daily lives of the people and is one of
the most used options; however, its use is conditioned to the contracting of its services
through its API or restrictions on its use, limiting the available public service. Thus, the
combination of OSRM with folium and OSM represents a free and open alternative source
to Google Maps for distance calculation and spatial data visualization.
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Finally, the algorithms were implemented and executed on the Google Collaboratory
platform (https://colab.google/ accessed on 24 July 2023), using the resources provided by
the free version.

3.3.2. Procedure for Economic Evaluation

The economic assessment was based on the cost of transporting the set of WEEE
reverse chain routes, as well as the economic gains from recycling and reusing WEEE.

https://colab.google/
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Table 2 presents six categories of transport costs that arose in the data-collection
process with the WEEE reverse chain specialists. The sum of these costs represents the
transportation cost, according to Equation (9).

CT = CC + CMO + CS + CD + CET + CM (9)

Table 2. Transport costs.

Transport Costs (CT) Concept

Fuel costs (CC) The total amount spent on fuel and lubricants used to
carry out the necessary displacement to meet the targets.

Labor costs (CMO)
The sum of the drivers’ gross wages, in addition to
applicable surcharges, such as accommodation
or bonuses.

Insurance costs (CS)

The total cost of insurance policies for both equipment
and cargo, where applicable. In addition, premium
payments and other charges should be included
if necessary.

Depreciation costs (DC)
The total depreciation amount of equipment and
accessories, including charges incurred to renew
the vehicle.

Costs with charges and fees (CET)

The amount spent for the payment of taxes to enjoy the
property—in this case, the equipment. However, costs
with penalties and fines are also added to this item, in
addition to toll costs.

Maintenance costs (CM)

The cost of carrying out preventive maintenance for
equipment, such as revisions carried out by dealers or
specialized technicians; however, the cost also includes
unscheduled maintenance, for example, in the case of
sudden breakdowns, as well as the cost of repairs due to
small and medium accidents.

Source: Combes and Lafourcade [47].

3.3.3. Procedure for Environmental Evaluation

For environmental assessment, the Mass Intensity Factors (MIF) tool will be used,
which allows the calculation of the environmental impact [48–50]. The data will be evalu-
ated based on the volume of reused/recycled WEEE and the fuel spent on transport for the
set of WEEE reverse chain routes studied. The MIF considers the mass (M) of the residue
multiplied by the Intensity Factor (IF), according to Equation (10):

MIF = (M× IF) (10)

The MIF tool allows the measurement of the environmental impact regarding the
consumption of abiotic, biotic, water, and air materials so that each of them is grouped
in the form of a compartment [51–53]. The biotic compartment is related to the set of all
living organisms derived from plants and decomposers, while the abiotic compartment is
related to a set of non-living factors of an ecosystem active in the biotic environment, such
as pressure, temperature, rainfall relief, among others [54].

In this context, it should be noted that the calculation of the reduction of the environ-
mental impact is obtained by multiplying the factor of each abiotic (w), biotic (x), water
(y), and air (z) compartment by the reused/recycled and minimized mass. Thus, it is
possible to calculate the sum of each compartment, considering the Material Intensity per
Compartment (MIC), according to Equation (11):

MIC(w) = IFA(w) + IFB(w) + IFC(w) + . . . + IFN(w) (11)
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where: IFA(w), IFB(w), IFC(w) and IFN(w) represent the intensity factors of residues A,
B, C, and N, respectively, in the compartment w.

With this, the sum is calculated for each compartment (abiotic, biotic, water, air), which
represents the reduction of environmental impacts per compartment. Then, it is necessary
to calculate the total amount of minimization of environmental impacts by adding all the
MICs, arriving at the MASS Intensity Total (MIT), according to Equation (12).

MIT = MIC(w) + MIC(x) + MIC(y) + MIC(z) + . . . + MIC(n) (12)

The Material Intensity Factors used in this study are shown in Table 3.

Table 3. Material intensity factors.

Elements Unid Abiotic Material Biotic Material Water Air

Fu
el

an
d

Lu
br

ifi
ca

nt

Diesel oil Liters 1.36 0 9.7 3.2

Engine oil Liters 1.5 0 11.45 3.02

Cooland fluid
(Ethylene glycol) Liters 2.9 0 133.46 2.29

Oil for hydraulic
system (Naphtha) Liters 1.69 0 13.88 0.05

M
ai

n
ti

re
co

m
po

ne
nt

s

Polyisoprene
Rubber kg 5.7 0 146 1.65

Steel kg 9.32 0 81.86 0.77

Sulfur kg 0.25 0 4.1 0.7

Polyester kg 5.62 0 235.44 3.46

To calculate the reduction in the emission of the main greenhouse gases and material
particles generated in the transport operation, Equation (13) is used.

Emissions = kwh o f motor× worked hours× gas indexes (13)

4. Results and Discussion
4.1. The Reverse Chains of WEEE in Brazil

After the interviews with four electronics manufacturers located in Brazil, it was found
that they did not have information on the players in the reverse WEEE chains, which
includes a survey of the volume collected, locations of recyclers, and collection points in the
region of Sao Paulo. The manufacturers mentioned that after the approval of the sectoral
agreement in 2019, requiring the implementation of WEEE reverse logistics, a joint decision
was taken between the manufacturers on hiring a WEEE manager, mentioning that she
would have all the necessary information. The manager mentioned that she was unable to
produce and handle WEEE simultaneously due to a lack of operational capacity. Thus, it
was necessary to focus on manufacturing, its core competence.

In this interview, it was identified that the WEEE manager hired three recyclers for
dismantling, recycling, and preparation for the sale of WEEE to the secondary market. The
WEEE manager also referred us to a manager from one of the recyclers, emphasizing that
he knew the process, including the estimated values needed to carry out the simulation.
Thus, consequently, an interview was conducted in Sao José dos Campos (R1).

In this interview, the locations of recyclers and collection points were verified, as
well as the volume of WEEE collected, as shown in Table 4. R1 has a planned capacity of
20,000 tons/year and a realized capacity of 6000 tons/year. Recycler 2 (R2) is in Sorocaba,
with a planned capacity of 2500 tons/year and realized capacity of 700 tons/year, and
Recycler 3 (R3) is installed in Nova Odessa (R3), with a planned capacity of 3200 ton/year
and realized capacity of 1000 ton/year. The location of 554 collection points was also
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identified, as well as the volume of WEEE collected, ranging from 8 to 60 tons/year, which
are distributed throughout Brazil. In this context, knowledge of the WEEE reverse chains
used in Sao Paulo is new to the scientific literature. Also, the practical structuring of
this WEEE reverse chain through simulation will contribute to the strategic actions of
the circular economy, which aims to reduce, recycle, reuse, and recover as much WEEE
as possible. However, it will not be possible to promote a closed-loop system, an aspect
encouraged by circular economy actions. Instead, it will be fully optimized where possible,
with the application of computational techniques over time, always aiming for the most
efficient solution. This finding denotes a relevant theoretical and practical contribution
because the research by Guo and Zhong [5] carried out in China, Tosarkani et al. [6] in
Canada, and Llerena-Riascos et al. [4] in Colombia only used the term “circular economy”,
but did not show the application with details showing the environmental and economic
benefits, as this study elucidates.

Table 4. Collection points and volume collected.

Types of Collection Points Number of Collection Points Total Collected Volume
(tons/year)

Total Collected Volume
(tons/month)

P—Batteries/pen drive/small computer eq 276 2484 207

PP—Batteries/Pen drive 91 764 64

G—Refrigerators/Stove/TVs/Washers/Air
conditioning 30 1650 138

GG—Refrigerators/Stove/TVs/Washers/Air
conditioning 13 770 64

M—Microwave/appliances 107 1712 143

Greenk—Computer EQ 15 135 11

Motostore—cell phone/computer eq 22 185 15

Total 554 7700 642

Another aspect observed was that the WEEE manager does not have its own fleet
of trucks for collection. She outsourced the transport to a carrier specializing in reverse
logistics. The required vehicle was a VUC truck with a capacity of 3 tons because most
collections are carried out in the metropolitan region and cities at collection points (stores,
malls, parks, large and small supermarkets, etc.), not allowing the circulation of trucks
with capacities greater than 3 tons. This finding shows that the manufacturers outsourced
the reverse logistics of WEEE to a waste manager, which considers three recyclers and
554 collection points located in Sao Paulo. Thus, the manufacturers considered WEEE
reverse logistics as a support activity and therefore outsourced it, innovating the state of
the art.

However, even when interviewing the WEEE manager and recyclers, it was not
possible to identify the current scenario with the details of the routes carried out by the
VUCs, denoting the lack of global knowledge of the process, which could lead to future
problems. In addition, the lack of knowledge of the environmental and economic gains of
this action is related to the circular economy strategy.

In this context, the interviewee mentioned that the carrier performs 286 collections per
month with 13 VUCs, considering 22 working days, including vehicle rotation, totaling
21,005 km driven. R1 performs 132 collections of 500 tons per month with 12,974 km. R2
performs 76 collections of 58 tons per month, driving 1930 km. R3 transports 83 tons through
53 collections over 6101 km. This information formed the current scenario, which considers
the three recyclers and 554 collection points (Table 5). Thus, based on this information, a
computational tool was applied to simulate the WEEE reverse chains, making it possible to
present the optimization in economic and environmental terms.
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4.2. WEEE Reverse Chains Simulation for Economic and Environmental Optimization

Initially, location information was entered for the purposes of plotting the map, and the
association of each collection point to one of the three recyclers was assigned by considering
the shortest distance between them, respecting the limit of the recyclability capacity of each
recycler and the capacity of the vehicle for transport. Thus, if a collection point is closest to
a recycler and it has reached maximum capacity, then that collection point is associated
with the recycler with the second shortest distance.

The map of the State of Sao Paulo shows three recyclers in green, being related to R1
of Sao José dos Campos with 270 collection points (blue), R2 of Sorocaba with 164 collection
points (black), and R3 of Nova Odessa with 120 points of collection (red), as shown in
Figure 5. It should be noted that distance and real times computed using OSRM were
considered. This finding is also innovative for research, similar to Achillas et al. [12],
Achilles et al. [21], Achilles et al. [22], Ayvaz et al. [27], Kilic et al. [14], Duman et al. [28],
Tosarkani et al. [6]. Research on the subject usually presents complex optimization scenarios
directly using artificial intelligence, but it often lacks detailed explanations of knowledge
construction. Furthermore, it typically fails to mention that the adoption of WEEE reverse
logistics constitutes a strategic action at the level of the circular economy. Consequently,
an operations manager could easily comprehend the optimization process, facilitating
its replication in organizational practice and contributing to actions aimed at reducing,
recycling, and reusing materials within the circular economy.
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Table 5. Current and optimized scenarios.

Actual Scenary × Optimized Scenary

Actual Scenary (13 VUCs) Optimized Scenary (10 VUCs)

Recycler ID Recycler
Planned
Capacity

(year)

Performed
Capacity

(year)

Planned
Capacity
(month)

Performed
Capacity
(month)

Total
Distance
Traveled

(km)

Total Load
(ton)

Collection
Numbers Time (s)

Total
Distance
Traveled

(km)

Total Load
(ton)

Collection
Numbers Time (s)

GM&C R1 20,000 6000 1667 500 12,974 500 145 734,761 6339 326 112 381,099

Sinctronics R2 2500 700 208 58 1930 58 82 115,536 3730 189 64 204,427

Brasil
Reverso R3 3200 1000 267 83 6101 83 59 284,059 5291 127 44 279,908

Total per month 0 0 2142 642 21,005 642 286 1,134,356 s
315 h:5 m:56 s 15,360 642 220 865,434 s

240 h:23 m:31 s

Total per year 25,700 7700 0 0 252,058 0 3432
13,612,277 s

3781 h:11
m:17 s

184,320 0 2640 10,385,208 s
2884 h:36 m:48 s

Gain (Km) year 252,058 – 184,320 = 67,738

Gain (Km %) year 184,320/252,058 = 26.87%

Gain (h) month 1,134,356 s – 865,434 s = 268,922 s = 74 h:42 m:2 s

Gain (h) year 13,612,277 s – 10,385,208 s = 3,227,069 s = 896 h:24 m:29 s

VUC Capacity 3 ton per VUC

Average loading percentage
per month. The closer to 100%

the use of each truck, the
greater the economic and

environmental gain.

Actual Scenary − 642 of total load ton/(3 ton of Vuc capacity × 286 of collection numbers) × 100 = 74.82%

Optimized Scenary − 642 of total load ton/(3 ton of Vuc capacity × 220 of collection numbers) × 100 = 98.56%
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Table 5 displays the comparison between the current scenario and the optimized
scenario. The current scenario was identified in the interview, as mentioned earlier, while
the optimized scenario was extracted from the simulation using AI. It was found that it
was possible to optimize the number of collections from 286 to 220, considering 642 tons
per month. This reduced the distance covered by 26.87%, from 21,005 km to 15,360 km in
the WEEE collection process at collection points for recyclers. It should be noted that the
solution to the problem investigated in this study was through the meta-heuristic model,
which considers the process of evolutionary computation of economies and minimization of
environmental impacts. These savings represent how much distance or transportation costs
can be relatively optimized and reduced, grouping themselves to the nodes of the networks
and their respective destinations. The reduction of the environmental impact represents
the route that consumes less fuel, as well as reuses more WEEE, reducing environmental
impacts in the abiotic, biotic, water, and air compartments. An important finding was
that the carrier fulfilled individual orders without a schedule for WEEE removal. Thus,
the trucks returned most of the time with space to store more WEEE. In the optimization
process, it considered the opportunity to develop the collection schedule, where, in each
collection process, the VUC passes through several points until it loads the truck as much as
possible. With this, this study presents the details of the researched scenario, contributing
to the literature and organizational practice,

Thus, the reduction of 13 VUCs to 10 VUCs for the operation, considering that to
collect 642 tons of WEEE per month in 22 working days, it is necessary to collect 29 tons
per day in 10 VUCs of 3 tons each. As a result, it generated a reduction of 67,738 km driven
per year, representing a gain of 26.87%, and a reduction in operating time from 315 h 5 m
56 s to 240 h 23 m 31 s, considering the operation of the WEEE reverse chains, generating
savings of 74 h 42 m 2 s. It should be noted that the optimization sought to reach 220 h of
operation to avoid overtime for drivers, but in the metropolitan region of Sao Paulo, this
was not possible due to traffic. This result is important for the theory because in optimizing
a realistic scenario in a large metropolis, such as Sao Paulo, it is not possible to optimize
100% of overtime in transport, i.e., it is not possible to program the route without traffic. It
is noteworthy that this finding was not demonstrated in any study on the subject, denoting
innovation in terms of managerial implications for the WEEE reverse logistics process.

Also, after optimizing the reverse WEEE chains in Brazil, the VUC occupancy rate
improved from 74.82% to 97.21%, even using three fewer VUCs. This finding can be
explained by considering that each collection process of each VUC passes through several
collection points, making it possible to use the capacity of the vehicle better. Research on
the subject indicates the percentage data of optimizations without detailing the reasons,
e.g., detailing the reduction in the volume of VUCs. This aspect is strategic for the transport
industry, being a relevant result for organizational practice, which also contributes to the
circular economy. The reverse chain optimization reduced 3 VUCs, in addition to reducing
the need to work a lot of overtime, due to better scheduling of collections at different points,
simultaneously respecting the use of VUC cubage with better effectiveness. This study
contributes to the theory because we are not aware of any research that applied simulation
and artificial intelligence techniques for economic and environmental optimization of the
reverse WEEE network in Brazil, specifically in Sao Paulo, considering the manufacturers,
waste managers, and recyclers.

4.2.1. Economic Gain with WEEE Reverse Chain Optimization

The WEEE manager is responsible for the operation of the reverse chains, which de-
cided to outsource transport for the collection of WEEE at the 554 collection and unloading
points at the three recyclers. An average value of USD 109.81 per freight was agreed with
the carrier, and in the current scenario, 260 VUCs are leaving for monthly WEEE collection,
totaling a monthly cost of USD 28,550.60 and annual cost of USD 342,607.20. It should be
noted that a profit of approximately 25% was agreed with the carrier on operating costs,
which in the current scenario is USD 274,126.80 and monthly is USD 22,843.90.
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Table 6 shows the cost assessment of the current and optimized scenario. With the
optimization of the WEEE reverse chain transport, the distance traveled per year was
minimized from 252,058 to 184,320 km, saving USD 31,623.35 in fuel consumption.

Table 6. Cost evaluation of the current and optimized scenario.

Actual Scenary (13 VUCs) Optimized Scenary (10 VUCs)
Cost

Reduction
USD

Fuel costs
(FC)

USD/year Consumption Price Distance Fuel costs
(FC)

USD/year Consumption Price Distance
31,623.35117,627.07 3 km/L liter km/year 86,003.71 3 km/L liter km/year

3 1.40 252,058 3 1.40 184,320

Labor costs
(LC)

USD/year Salary Extra Hour Labor costs
(LC)

USD/year Salary Extra Hour
5661.8214,552.73 800 1142h 8890.91 800 245 h

4152.73 890.91

Insurance
costs (IC)

USD/year VUC Insurance
costs (IC)

USD/year VUC Carga 7200.0031,200.00 2400 24,000.00 2400 0

Depreciation
costs (DC)

USD/year Price Taxa Depreciation
costs (DC)

USD/year Price Tax 17,997.7577,990.25 39,995 15% 59,992.50 39,995 15%

Costs with
charges and
fees (CCF)

USD/year Price VUC
property tax Others Tax Costs with

charges and
fees (CCF)

USD/year Price VUC
property tax Others Tax

1560.00
6760.00 39,995 320 200 5200.00 39,995 320 200

Maintenance
costs (MC)

USD/year Price Estimate Maintenance
costs (MC)

USD/year Preço novo Estimate 5999.2525,996.75 39,995 5% 19,997.50 39,995 5%

Annual
Transport

Cost (USD)
274,126.80 Number of

VUC 13
Annual

Transport
Cost (USD)

204,084.62 Number of
VUC 10 70,042.17

It also reduced employee costs by USD 5661.82 due to the optimization of VUCs from
13 to 10 and the minimization of overtime by USD 3261.82 per year. This finding contributes
to social gain because, due to better route planning, drivers spend less time in traffic or
waiting to collect WEEE at different collection points. The social gain is related to a better
quality of life for drivers, who will be able to work without overtime, making better use
of time spent with their families. This result is a relevant aspect to promote the circular
economy.

Also, with the optimization of the fleet, the following reductions per year were insur-
ance costs of USD 7200.00, depreciation cost of USD 17,997.75, costs with charges and fees
of USD 1560.00, and maintenance costs of USD 5999.25. This is the first study that presents
the details of the cost evaluation between the current and the optimized scenario, making
it possible to clearly present the cost reduction with the optimization of the WEEE reverse
chains. Research on the subject mostly presents total cost reductions without much detail,
as is the case of research by Achillas et al. [22] held in Greece with the economic gain of
EUR 545,000 (Mar-Ortiz et al. [17]) with a 29.2% reduction in transport costs in Spain; and
Llerena-Riascos et al. [4] generating a 33% increase in profit in Colombia.

Based on this assessment, it was possible to require the carrier to reduce the operation
costs to USD 255,105.775 per year and monthly to USD 21,258.82. This result shows that it
is important to provide contractual transparency in terms of operating costs between the
contractor (WEEE manager) and the contractor (carrier). It also shows that it was important
to add to the contract that the gain of the carrier would be 25% on operating costs.

4.2.2. Environmental Gain with WEEE Reverse Chain Optimization

Table 7 shows the elements divided into fuel/lubricant and the main components of
the tire, which were optimized in the WEEE reverse logistics operation. Thus, there was a
reduction of environmental impacts in the compartments: (i) abiotic in 33,621.92 kg, which
represents factors related to global warming, air quality, and minimization of pollution in
fauna and flora. It should be noted that these factors directly affect the health of society,
increasing the social cost; (ii) water in 295,268 kg, reducing pollution in the local water
system; and (iii) reduction in air pollution by 74,194 kg. With that, it generated a global
minimization of 403,083.68 kg. In this context, this is the first study that calculates the
reduction of environmental impacts in abiotic compartments, water, and air due to the
optimization of the WEEE reverse chain transport using artificial intelligence. For the
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environmental assessment, the Material Intensity Factor was used, which is a relevant
tool for the global assessment of the minimization of environmental impacts, not using
only percentage data. For example, Achillas et al. [22] mentioned a 5% reduction in CO2
pollutants (from fossil fuels), and Llerena-Riascos et al. [4] reported that it generated 65%
in environmental benefits. Thus, the research does not present the reduction of impacts in
the abiotic compartments, water, and air, which are subjects not explored in the scientific
literature in the published simulation models. This result contributes to the adoption of a
circular economy due to the reduction of environmental impacts on transport.

Table 7. Material intensity assessment.

Elements Unid (L, Kg) Abiotic
Material

Biotic
Material Water Air

Material
Intensity per

Element

Fu
el

an
d

Lu
br

ifi
ca

nt

Diesel oil 22,580 30,708.8 0 219,026 72,256 321,990.8

Engine oil 294 441 0 3366.3 887.88 4695.18

Cooland fluid
(Ethylene glycol) 252 730.8 0 33,631.92 577.08 34,939.8

Oil for hydraulic
system (Naphtha) 3 5.07 0 41.64 0.15 46.86

M
ai

n
ti

re
co

m
po

ne
nt

s

Polyisoprene
Rubber 216 1231.2 0 31,536 356.4 33,123.6

Steel 43 400.76 0 3519.98 33.11 3953.85

Sulfur 35 8.75 0 143.5 24.5 1766.75

Polyester 17 95.54 0 4002.48 58.82 4156.84

* Carbon 121 null null null null 0

Material Intensity per
Compartiment (MIC) null 33,621.92 0 295,267.82 74,193.94 null

Material Intensity Total (MIT) 403,083.68

Total Material Economized 23,561

* Carbon has no indicator, but it will be considered in the accounting calculation of gas reduction.

Another relevant finding is that the tire components (rubber, steel, sulfur, and polyester)
are the most relevant in the optimization, minimizing 41,411 kg, followed by the reduc-
tion of environmental impact due to diesel optimization in 321,998.80 kg. It should be
noted that carbon black was not considered in this calculation because tire wear generates
carbon particles, which are more related to dust that affects breathing, being classified as
emissions, which will be calculated later. Thus, by optimizing the use of VUCs, tires, and
fuel, consumption was further minimized, an innovative aspect in research that adopted
optimization with the use of artificial intelligence, which in most cases is concerned with the
tool used and not with reducing the impact of realistic environmental issues that promote
the circular economy.

There was also a reduction in emissions of 45,493.25 kg of the main polluting gases
resulting from the transport operation in Sao Paulo, as shown in Table 8. Carbon dioxide
is the main pollutant of Earth’s atmosphere, which affects the health of society; however,
45,367.81 kg were optimized with the reduction of collections from 286 to 220, denoting
an important contribution despite not solving the problem in its entirety. This finding
innovates the state of the art by measuring the reduction of emissions of the main gases
responsible for the greenhouse effect due to the optimization of the transport of the reverse
chains of WEEE to promote a circular economy, as well as indicating to managers an
important way to reduce gas emissions, mainly CO2, to contribute to the 2030 agenda.



Sensors 2023, 23, 9046 27 of 30

Table 8. Reduction in gas emissions.

Gases Average Emission
(g/kwh)

Actual Scenary (13
VUCs) Mass/Year (kg)

Otimized Scenary (10
VUCs) Mass/Year (kg)

Emission Reduction
Mass/Year (kg)

CO 0.055 15.76 12.02 3.74
HC 0.023 6.59 5.03 1.56
NOx 1.746 500.25 381.47 118.78
CO2 666.886 191,070.23 145,702.42 45,367.81
Particule Material 0.018 5.32 3.93 1.39
Emissions Total 191,598.15 146,104.86 45,493.29

Another interesting result was the reduction of particulate matter from 5.32 to 3.93
in air. Pollution from particles generated from carbon black from worn-out tires and gas
emissions drastically affects the lungs, causing serious illnesses. The reduction generated
was 1.39 kg per year, showing that the adoption of artificial intelligence for route opti-
mization is a promising tool for reducing emissions of greenhouse gases and particles,
which contributes to the circular economy, denoting a relevant theoretical and practical
contribution. Table 8 considers for the calculation: kwh—75.7565; hours worked in current
scenario/year—3782; carbon black—121; hours worked in the current scenario/year—2884.

5. Conclusions

After conducting the study, it was found that the optimization of Waste Electrical and
Electronic Equipment (WEEE) reverse chains in Sao Paulo using artificial intelligence led
to both economic and environmental benefits, therefore promoting a circular economy.
The optimized scenario effectively reduced the number of collections, considering the
numerous collection points the VUC passes through, thus maximizing its capacity.

5.1. Theoretical Recommendations/Implications

This study contributes to the theory by presenting the current functioning of WEEE
reverse chains in Sao Paulo, as well as presenting the optimized scenario with details after
the adoption of the proposed artificial intelligence approach. In the current operation, man-
ufacturers outsourced WEEE management and reverse logistics operations, denoting that
WEEE management using reverse logistics is a support activity. Also, with the application
of artificial intelligence, it was possible to present an optimized scenario that considers the
programming for the removal of WEEE, where, in each collection process, the VUC passes
through several points until it loads as close as possible to its maximum capacity. This
optimized WEEE reverse logistics schedule reduced the number of collections—3 VUCs
and overtime—improving the quality of life for drivers, generating economic and envi-
ronmental benefits, and promoting the circular economy. It should be noted that this is
the first study that applied artificial intelligence using genetic algorithms for economic
and environmental optimization of the reverse WEEE network, considering manufacturers,
waste managers, and recyclers.

Therefore, the cost reduction was concluded by comparing the current scenario and
the optimized one, forcing the contractor to reduce the freight price. This study is the first
to calculate the reduction of environmental impacts in abiotic compartments, water, and air
on the subject, mainly evaluating the minimization of emissions of the main polluting gases
generated by trucks, contributing to circular economy actions. Thus, this is the first study
that presents the calculation of cost and time reduction in detail, in addition to measuring
the improvement in the volume of vehicles, which is a primordial aspect in the optimization
and guidance of operations managers.

5.2. Organizational Practice Recommendations/Implications

The study also contributes to organizational practice because it organized WEEE
reverse chain operations, an aspect that it was not possible to identify in the current
scenario with operational details. It should be noted that complex optimization scenarios
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without detail are impossible for managers to apply in practice. Thus, an operations
manager could easily understand the process performed for optimization, enabling its
replication in practice. The main problems found in practice that can be solved with this
optimization are: (i) not answering requests for individual collections but carrying out
programmed collections at several collection points, taking advantage of the volume of
the vehicle as much as possible; (ii) it was not possible to optimize 100% of the extra
hours of the transport operation due to traffic, but it was possible to optimize as much
as possible; (iii) the lack of vision of the whole WEEE reverse chains made it difficult to
study the reduction of 3 VUCs in operation, generating environmental and economic gains.
Another important aspect was the development of the contract with transparency in terms
of costs, considering that cost reduction would lead to a reduction in freight price and
environmental impact and the minimization of greenhouse gas emissions in a realistic
scenario.

Also, this topic is relevant and emerging in the business environment of the electronics
sector because a sectoral agreement was signed in October 2019 based on law 12,305 enacted
in 2010 on the mandatory management of WEEE through reverse logistics aimed at sharing
responsibilities for WEEE management between manufacturers, waste managers, and
recyclers in Sao Paulo, who are structuring the reverse chains.

5.3. Social Recommendations/Implications

The implementation of the reverse WEEE network in Sao Paulo also contributes to
society because the environmental impact resulting from the inadequate disposal of WEEE
in common sanitary landfills and the generation of greenhouse gas emissions is being
minimized. Furthermore, several informal recyclers with the ability to be part of the reverse
WEEE network will be formalized, generating employment, and informal collectors may
have the opportunity for formalized employment.

The main limitation of this study was the realization of regional research in Sao Paulo,
Brazil, justified because it is the first Brazilian state to implement WEEE reverse logistics.
For future studies, this research should be carried out in other states and countries, with
the aim of generating comparisons between them, making it possible to generate relevant
results for theory, practice, and government actions. In addition, it is suggested that
other AI techniques, such as the integrated multi-head dual sparse self-attention network
proposed in [55], be used for solving learning problems related to the optimization of
WEEE reverse chains.

Author Contributions: Conceptualization, R.A.G. and F.R.F.; Methodology, D.H.A. and M.A.; Soft-
ware, D.H.A.; Formal analysis, S.A.d.A. and R.A.G.; Investigation, S.A.d.A. and D.H.A.; Data curation,
D.H.A.; Writing—original draft, F.R.F.; Writing—review & editing, M.A.; Supervision, G.C.d.O.N. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by FAPESP–Sao Paulo Research Foundation (Proc.
2020/16364-5). This work was financially supported by the research unit on Governance, Compet-
itiveness and Public Policy (UIDB/04058/2020) + (UIDP/04058/2020), funded by national funds
through FCT—Fundação para a Ciência e a Tecnologia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brazilian Association of Industrial Development (ABDI). Reverse Logistics of Electronic Equipment. Analysis of Technical

and Economic Feasibility. 2012. Available online: http://www.mdic.gov.br/arquivos/dwnl_1362058667.pdf (accessed on 25
January 2016).

http://www.mdic.gov.br/arquivos/dwnl_1362058667.pdf


Sensors 2023, 23, 9046 29 of 30

2. Rogers, D.S.; Tibben-Lembre, R.S. Going Backwards: Reverse Logistics Trends and Practices; Reverse Logistics Executive Council:
Reno, NV, USA, 1998.

3. Oliveira Neto, G.C.; Correia, A.D.J.C.; Tucci, H.N.P.; Melatto, R.A.P.B.; Amorim, M. Reverse Chain for Electronic Waste to Promote
Circular Economy in Brazil: A Survey on Electronics Manufacturers and Importers. Sustainability 2023, 15, 4135. [CrossRef]

4. Llerena-Riascos, C.; Jaén, S.; Montoya-Torres, J.R.; Villegas, J.G. An Optimization-Based System Dynamics Simulation for
Sustainable Policy Design in WEEE Management Systems. Sustainability 2021, 13, 11377. [CrossRef]

5. Guo, R.; Zhong, Z. A customer-centric IoT-based novel closed-loop supply chain model for WEEE management. Adv. Eng. Inform.
2023, 55, 101899. [CrossRef]

6. Tosarkani, B.M.; Amin, S.H.; Zolfagharinia, H. A scenario-based robust possibilistic model for a multi-objective electronic reverse
logistics network. Int. J. Prod. Econ. 2020, 224, 107557. [CrossRef]

7. Korhonen, J.; Honkasalo, A.; Seppala, J. Circular economy: The concept and its limitations. Ecol. Econ. 2018, 143, 37–46. [CrossRef]
8. Pinto, L.F.R.; Venturini, G.F.P.; Digiesi, S.; Facchini, F.; Neto, G.C.O. Sustainability assessment in manufacturing under a strong

sustainability perspective—An ecological neutrality initiative. Sustainability 2020, 12, 9232. [CrossRef]
9. Rubmann, M.; Lorenz, M.; Gerbert, P.; Waldner, M.; JustusS, J.; Engel, P.; Harnisch, M. Industry 4.0: The Future of Productivity

and Growth in Manufacturing Industries; Boston Consulting Group: Boston, MA, USA, 2015; pp. 1–14. Available online: https:
//image-src.bcg.com/Images/Industry_40_Future_of_Productivity_April_2015_tcm9-61694.pdf (accessed on 20 July 2020).

10. Cassia, A.R.; Costa, I.; da Silva, V.H.C.; de Oliveira Neto, G.C. Systematic literature review for the development of a conceptual
model on the relationship between knowledge sharing, information technology infrastructure and innovative capability. Technol.
Anal. Strateg. Manag. 2020, 32, 801–821. [CrossRef]

11. Hidalgo, C.G.; Ramirez, F.J.; Olivares, T.; Sanchez, L.R. The adoption of internet of things in a circular supply chain framework
for the recovery of WEEE: The case of lithium-ion electric vehicle battery packs. Water Manag. 2020, 130, 32–44.

12. Achilles, C.; Vlachokostas, C.; Aidonis, D.; Moussiopoulos, N.; Lakovou, E.; Banias, G. Optimizing reverse logistics network to
support policy-making in the case of Electrical and Electronic Equipment. Waste Manag. 2010, 30, 2592–2600. [CrossRef]

13. Qiang, S.; Zhou, X.Z. Robust reverse logistics network design for the waste of electrical and electronic equipment (WEEE) under
recovery uncertainty. J. Environ. Biol. 2016, 37, 1153–1165. [PubMed]

14. Kilic, H.S.; Cebeli, U.; Ayhan, M.B. Reverse logistics system design for the waste of electrical and electronic equipment (WEEE) in
Turkey. Resour. Conserv. Recycl. 2014, 95, 120–132. [CrossRef]

15. Bal, A.; Satoglu, S.I. A goal programming model for sustainable reverse logistics operations planning and an application. J. Clean.
Prod. 2018, 201, 1081–1091. [CrossRef]

16. Elia, V.; Gnoni, M.G.; Tornese, F. Designing a sustainable dynamic collection service for WEEE: An economic and environmental
analysis through simulation. Waste Manag. Res. 2019, 37, 1–10. [CrossRef]

17. Mar-Ortiz, J.; Adenso-Diaz, B.; González-Velarde, J.L. Design of a recovery network for WEEE collection: The case of Galicia,
Spain. J. Oper. Res. Soc. 2011, 62, 1471–1484. [CrossRef]

18. Gomes, M.I.; Barbosa-Povoa, A.P.; Novais, A.Q. Modeling a recovery network for WEEE: A case study in Portugal. Waste Manag.
2011, 31, 1645–1660. [CrossRef] [PubMed]

19. Alumur, S.A.; Nickel, S.; Saldanha-da-Gama Verter, V. Multi-period reverse logistics network design. Eur. J. Oper. Res. 2012, 220,
67–78. [CrossRef]

20. Assavapokee, T.; Wongthatsanekorn, W. Reverse production system infrastructure design for electronic products in the state of
Texas. Comput. Ind. Eng. 2012, 62, 129–140. [CrossRef]

21. Achilles, C.; Vlachokostas, C.; Moussiopoulos, N.; Banias, G. Decision support system for the optimal location of electrical and
electronic waste treatment pants: A case study in Greece. Waste Manag. 2010, 30, 870–879. [CrossRef]

22. Achilles, C.; Aidonis, D.; Vlacokostas, C.; Moussiopoulos, N.; Triantafillou, D. A multi-objective decision-making model to select
waste electrical and electronic equipment transportation media. Resour. Conserv. Rec. 2012, 66, 76–84. [CrossRef]

23. Yu, H.; Solvang, W. A stochastic programming approach with improved multi-criteria scenario-based solution method for
sustainable reverse logistics design of waste electrical and electronic equipment (WEEE). Sustainability 2016, 8, 1331. [CrossRef]

24. Gamberini, R.; Gebennini, E.; Manzini, R.; Ziveri, A. On the integration of planning and environmental impact assessment for a
WEEE transportation network: A case study. Resour. Conserv. Recycl. 2010, 54, 937–951. [CrossRef]

25. Shokohyar, S.; Mansour, S. Simulation-based optimization of a sustainable recovery network for waste from electrical and
electronic equipment (WEEE). Int. J. Comput. Integr. Manuf. 2013, 26, 487–503. [CrossRef]

26. Dat, L.Q.; Linh, D.T.T.; Chou Shuo-Yan Yu, V.F. Optimizing reverse logistic costs for recycling end-of-life electrical and electronic
products. Expert Syst. Appl. 2012, 39, 6380–6387. [CrossRef]

27. Ayvaz, B.; Bolat, B.; Aydin, N. Stochastic reverse logistics network design for waste of electrical and electronic equipment. Resour.
Conserv. Recycl. 2015, 104, 391–404. [CrossRef]

28. Duman, G.M.; Kongar, E.; Gupta, S.M. Estimation of electronic waste using optimized multivariate gray models. Waste Manag.
2019, 95, 241–249. [CrossRef] [PubMed]

29. Lv, J.; Du, S. Kriging Method-Based Return Prediction of Waste Electrical and Electronic Equipment in Reverse Logistics. Appl.
Sci. 2021, 11, 3536. [CrossRef]

30. Moslehi, M.S.; Sahebi, H.; Teymour, A. A multi-objective stochastic model for a reverse logistics supply chain design with
environmental considerations. J. Ambient Intell. Humaniz. Comput. 2021, 12, 8017–8040. [CrossRef]

https://doi.org/10.3390/su15054135
https://doi.org/10.3390/su132011377
https://doi.org/10.1016/j.aei.2023.101899
https://doi.org/10.1016/j.ijpe.2019.107557
https://doi.org/10.1016/j.ecolecon.2017.06.041
https://doi.org/10.3390/su12219232
https://image-src.bcg.com/Images/Industry_40_Future_of_Productivity_April_2015_tcm9-61694.pdf
https://image-src.bcg.com/Images/Industry_40_Future_of_Productivity_April_2015_tcm9-61694.pdf
https://doi.org/10.1080/09537325.2020.1714026
https://doi.org/10.1016/j.wasman.2010.06.022
https://www.ncbi.nlm.nih.gov/pubmed/29989748
https://doi.org/10.1016/j.resconrec.2014.12.010
https://doi.org/10.1016/j.jclepro.2018.08.104
https://doi.org/10.1177/0734242X19828121
https://doi.org/10.1057/jors.2010.114
https://doi.org/10.1016/j.wasman.2011.02.023
https://www.ncbi.nlm.nih.gov/pubmed/21470841
https://doi.org/10.1016/j.ejor.2011.12.045
https://doi.org/10.1016/j.cie.2011.09.001
https://doi.org/10.1016/j.wasman.2009.11.029
https://doi.org/10.1016/j.resconrec.2012.01.004
https://doi.org/10.3390/su8121331
https://doi.org/10.1016/j.resconrec.2010.02.001
https://doi.org/10.1080/0951192X.2012.731613
https://doi.org/10.1016/j.eswa.2011.12.031
https://doi.org/10.1016/j.resconrec.2015.07.006
https://doi.org/10.1016/j.wasman.2019.06.023
https://www.ncbi.nlm.nih.gov/pubmed/31351609
https://doi.org/10.3390/app11083536
https://doi.org/10.1007/s12652-020-02538-2


Sensors 2023, 23, 9046 30 of 30

31. Zhang, H.; Peeters, P.; Demeester, E.; Duflou, J.R.; Kellens, K. A CNN-Based Fast Picking Method for WEEE Recycling. Proc. CIRP
2022, 106, 264–269. [CrossRef]

32. Koç, Ç.; Bektas, T.; Jabali, O.; Laporte, G. A hybrid evolutionary algorithm for heterogeneous fleet vehicle routing problems with
time windows. Comput. Oper. Res. 2015, 64, 11–27. [CrossRef]

33. Clarke, G.; Wright, J.W. Scheduling of Vehicles from a Central Depot to a Number of Delivery Points. Oper. Res. 1964, 12, 568–581.
[CrossRef]

34. Lima, S.J.A.; Araujo, S.A.; Schmidt, P.T.H. A hybrid approach based on genetic algorithm and nearest neighbor heuristic for
solving the capacitated vehicle routing problem. Acta Sci. Technol. 2018, 40, e36708. [CrossRef]

35. Lima, S.J.A.; Araújo, S.A. A New Binary Encoding Scheme in Genetic Algorithm for Solving the Capacitated Vehicle Routing
Problem. In Proceedings of the International Conference on Bioinspired Methods and Their Applications, Paris, France, 16–18
May 2018; Springer: Cham, Switzerland, 2018; pp. 174–184.

36. Bogner, A.; Littig, B.; Menz, B. Interviewing Experts; Palgrave McMillan: London, UK, 2009.
37. Yin, R.K. Case Study: Design and Methods, 4th ed.; Bookman: Porto Alegre, Brazil, 2010.
38. Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Wesley Publishing Company: Addison, TX,

USA, 1989.
39. Holland, J.H. Adaptation in Natural and Artificial Systems; MIT Press: Cambridge, MA, USA, 1992; p. 228.
40. Larson, R.C.; Odoni, A.R. Urban Operations Research; Prentice-Hall: Upper Saddle River, NJ, USA, 1981; Available online:

https://web.mit.edu/urban_or_book/www/book/ (accessed on 1 April 2023).
41. Librantz, A.F.H.; Coppini, N.L.; Baptista, E.A.; de Araújo, S.A.; Castello Rosa, A.D.F. Genetic algorithm applied to investigate

cutting process parameters influence on workpiece price formation. Mater. Manuf. Process. 2011, 26, 550–557. [CrossRef]
42. Slowik, A.; Kwasnicka, H. Evolutionary algorithms and their applications to engineering problems. Neural Comput. Appl. 2020,

32, 12363–12379. [CrossRef]
43. Pereira, J.; Mendes, J.; Junior, J.S.; Viegas, C.; Paulo, J.R. A review of genetic algorithm approaches for wildfire spread prediction

calibration. Mathematics 2022, 10, 300. [CrossRef]
44. Benvenga, M.A.; Araújo, S.A.D.; Librantz, A.F.; Santana, J.C.; Tambourgi, E.B. Application of simulated annealing in simulation

and optimization of drying process of Zea mays malt. Agric. Eng. 2011, 31, 940–953. [CrossRef]
45. Lourenço, W.S.; Lima, S.J.A.; Araújo, S.A. TASNOP: A tool for teaching algorithms to solve network optimization problems.

Comput. Appl. Eng. Educ. 2018, 26, 101–110. [CrossRef]
46. Juan, A.A.; Keenan, P.; Martí, R.; McGarraghy, S.; Panadero, J.; Carroll, P.; Oliva, D. A review of the role of heuristics in stochastic

optimization: From metaheuristics to learnheuristics. Ann. Oper. Res. 2023, 320, 831–861. [CrossRef]
47. Combes, P.P.; Lafourcade, M. Transport costs: Measures, determinants, and regional policy implications for France. J. Econ. Geogr.

2005, 5, 319–349. [CrossRef]
48. Paoli, F.M.; de Oliveira Neto, G.C.; Lucato, W.C. Economic and environmental gains resulting from the utilization of the design

for the environment (DfE)|Economic and environmental advantages resulting from the application of design for the environment
(DfE). Espacios 2013, 34, 11.

49. Oliveira Neto, G.C.; de Sousa, W.C. Economic and Environmental Advantage Evaluation of the Reverse Logistic Implementation
in the Supermarket Retail. IFIP Adv. Inf. Commun. Technol. 2014, 439, 197–204.

50. Oliveira Neto, G.C.; Ferreira Correia, J.M.; Silva, P.C.; de Oliveira Sanches, A.G.; Lucato, W.C. Cleaner Production in the textile
industry and its relationship to sustainable development goals. J. Clean. Prod. 2019, 228, 1514–1525. [CrossRef]

51. Ritthoff, M.; Rohn, H.; Liedtke, C. Calculating MIPS: Productivity resources of products and services. Wupp. Spez. 2003, 27, 8–25.
52. Oliveira Neto, G.C.; Shibao, F.Y.; Filho, M.G.; Chaves, L.E.C. Cleaner production: A study of the environmental and economic

advantage in polymer recycling|Cleaner production: Study of the environmental and economic advantage of recycling polymers.
Interciencia 2015, 40, 364–373.

53. Oliveira Neto, G.C.; Lucato, W.C. Production planning and control as a tool for eco-efficiency improvement and environmental
impact reduction. Prod. Plan. Control 2016, 27, 148–156. [CrossRef]

54. Odum, E.P. Ecology; Guanabara Koogan: Rio de Janeiro, Brazil, 1998.
55. Zhang, J.; Li, X.; Tian, J.; Luo, H.; Yin, S. An integrated multi-head dual sparse self-attention network for remaining useful life

prediction. Reliab. Eng. Syst. Saf. 2023, 233, 109096. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.procir.2022.02.189
https://doi.org/10.1016/j.cor.2015.05.004
https://doi.org/10.1287/opre.12.4.568
https://doi.org/10.4025/actascitechnol.v40i1.36708
https://web.mit.edu/urban_or_book/www/book/
https://doi.org/10.1080/10426914.2010.512817
https://doi.org/10.1007/s00521-020-04832-8
https://doi.org/10.3390/math10030300
https://doi.org/10.1590/S0100-69162011000500012
https://doi.org/10.1002/cae.21864
https://doi.org/10.1007/s10479-021-04142-9
https://doi.org/10.1093/jnlecg/lbh062
https://doi.org/10.1016/j.jclepro.2019.04.334
https://doi.org/10.1080/09537287.2015.1089605
https://doi.org/10.1016/j.ress.2023.109096

	Introduction 
	Systematic Literature Review of the Simulation Approach for Optimizing the WEEE Reverse Logistics Network 
	Methodology 
	Systematic Literature Review 
	Procedure for Data Collection—Expert Analysis via Semi-Structured Interview 
	Procedure for Data Analysis 
	Proposed AI-Based Approach for Economic and Environmental Assessment 
	Procedure for Economic Evaluation 
	Procedure for Environmental Evaluation 


	Results and Discussion 
	The Reverse Chains of WEEE in Brazil 
	WEEE Reverse Chains Simulation for Economic and Environmental Optimization 
	Economic Gain with WEEE Reverse Chain Optimization 
	Environmental Gain with WEEE Reverse Chain Optimization 


	Conclusions 
	Theoretical Recommendations/Implications 
	Organizational Practice Recommendations/Implications 
	Social Recommendations/Implications 

	References

