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Abstract: Machine learning, powered by cloud servers, has found application in medical diagnosis,
enhancing the capabilities of smart healthcare services. Research literature demonstrates that the
support vector machine (SVM) consistently demonstrates remarkable accuracy in medical diagnosis.
Nonetheless, safeguarding patients’ health data privacy and preserving the intellectual property of
diagnosis models is of paramount importance. This concern arises from the common practice of
outsourcing these models to third-party cloud servers that may not be entirely trustworthy. Few
studies in the literature have delved into addressing these issues within SVM-based diagnosis systems.
These studies, however, typically demand substantial communication and computational resources
and may fail to conceal classification results and protect model intellectual property. This paper
aims to tackle these limitations within a multi-class SVM medical diagnosis system. To achieve this,
we have introduced modifications to an inner product encryption cryptosystem and incorporated
it into our medical diagnosis framework. Notably, our cryptosystem proves to be more efficient
than the Paillier and multi-party computation cryptography methods employed in previous research.
Although we focus on a medical application in this paper, our approach can also be used for other
applications that need the evaluation of machine learning models in a privacy-preserving way such as
electricity theft detection in the smart grid, electric vehicle charging coordination, and vehicular social
networks. To assess the performance and security of our approach, we conducted comprehensive
analyses and experiments. Our findings demonstrate that our proposed method successfully fulfills
our security and privacy objectives while maintaining high classification accuracy and minimizing
communication and computational overhead.

Keywords: privacy preservation; cloud security; medical diagnosis; support vector machine
(SVM); multiclassification

1. Introduction

Recent advancements in artificial intelligence (AI) and computational technologies
have played a pivotal role in shaping the concept of smart healthcare systems [1]. These
cutting-edge systems leverage the capabilities of AI algorithms to swiftly and accurately
process medical data, empowering healthcare providers to make well-informed decisions

Sensors 2023, 23, 9033. https://doi.org/10.3390/s23229033 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23229033
https://doi.org/10.3390/s23229033
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5021-3950
https://orcid.org/0000-0001-5153-8693
https://orcid.org/0000-0002-8719-501X
https://orcid.org/0000-0003-1790-8640
https://orcid.org/0000-0002-6693-3386
https://orcid.org/0000-0001-8601-3184
https://doi.org/10.3390/s23229033
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23229033?type=check_update&version=2


Sensors 2023, 23, 9033 2 of 25

and provide personalized patient care. The primary objective of these systems is to make
healthcare more accessible and cost-effective, particularly in response to the challenges
posed by aging populations and a shortage of medical professionals. Moreover, by offering
remote healthcare services, they bridge the gap in medical care access for remote and un-
derserved rural areas. The significance of healthcare systems is underscored by substantial
investments, such as the estimated $22 billion in telemedicine services in the USA [2].
At the core of these smart healthcare systems lies machine learning (ML)-based remote
medical diagnosis, which can both identify existing diseases and predict and prevent future
ones. One compelling example of their importance is the ML system developed by Google,
capable of detecting malignant tumors through the analysis of mammograms [3].

Among other ML techniques, SVM stands out for its high accuracy and efficiency in
the context of medical applications, which frequently involve small datasets [4–6]. Like
other ML methods, SVM follows a two-phase process: training and testing. During the
training phase, healthcare providers employ historical medical data from patients to create
an SVM model. However, due to resource constraints and the need for uninterrupted
diagnosis services, healthcare providers often outsource this model to a third-party cloud
server operated by an independent entity. In the testing phase, users like doctors and
patients submit medical data, including vital signs and symptoms, to the cloud server.
The cloud server utilizes this data to evaluate the model and subsequently provides the
classification or diagnosis to the users [7].

While this cloud-based approach enables medical diagnosis services for individuals
and healthcare centers, the inherent trust issues associated with third-party cloud servers
necessitate safeguarding patient data confidentiality and the intellectual property of the
diagnosis model. Therefore, it is imperative to explore a methodology that allows the
cloud server to receive and evaluate data without learning the data, diagnosis, or model
parameters. This can be achieved through encryption of both the model and the data,
enabling the cloud server to use the encrypted model and encrypted data to compute the
diagnosis in ciphertext format, decipherable solely by the user who submitted the data.

In the existing literature, only a limited number of studies have endeavored to address
the issues of privacy and safeguarding the intellectual property of models in SVM-based
medical diagnosis systems [8–12]. However, these studies have notable shortcomings.
Some, such as those in [8–10], primarily focus on privacy concerns but do not consider
hiding the model’s parameters. Conversely, others, like [11,12], enable the server to learn
the classification (or diagnosis) results which creates a vulnerability that can be used to
breach the privacy of the users. Furthermore, existing approaches predominantly rely on
cryptosystems that demand substantial communication and computational resources such
as multi-party computations and Pailler cryptography. Other approaches also involve
users in the computation of classifications, which is not practical given that users typically
possess limited computational capabilities. Among these studies, the works in [12,13] are
the most pertinent to our research.

The approach presented in [12] exhibits various drawbacks. It relies on an
Okamoto–Uchiyama (OU) cryptosystem [12] based on Paillier cryptography [14], necessi-
tating extensive computational resources. Additionally, as the number of classes increases,
the computational demands on model users escalate significantly. Furthermore, their pro-
posed method mandates the active involvement of the model owner in every classification
operation, which detracts from the advantages of outsourcing the model to a cloud server,
as it requires continuous online interaction and allocation of computational resources. An-
other limitation is that to update the model’s parameters, ref. [12] necessitates transmitting
updated encrypted model parameters to each model user, resulting in a substantial commu-
nication burden. While the study presented in [13] has tackled several limitations, including
safeguarding the model’s intellectual property, preserving user data privacy, and conceal-
ing classification results, it does so by relying on a setup involving two non-colluding
servers. Each server has the capability of performing specific computations but possesses
limited knowledge. However, implementing such a dual-server setup can be expensive
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and may pose practical challenges. Additionally, the proposed approach incurs substantial
communication and computational resources, particularly as more classes (i.e., diseases)
are considered by the model, owing to its utilization of multi-party computation and
Paillier cryptography.

This paper endeavors to overcome the aforementioned limitations by introducing
an efficient multi-class SVM-based medical diagnosis system that preserves privacy and
safeguards model intellectual property. In contrast to existing methods reliant on ineffi-
cient cryptography, our approach centers on an inner product encryption cryptosystem,
characterized by efficient computation and communication. Our proposed method ensures
the privacy of the medical health of users by not allowing anyone to obtain their data and
diagnosis results. Additionally, our approach aims to protect the intellectual property by
not allowing anyone to obtain the plaintext parameters of the model. Nevertheless, the
server can still employ the ciphertext of the users’ data and encrypted model parameters
to obtain a masked classification (or diagnosis). In our approach, we have modified the
inner product encryption cryptosystem introduced by Kim et al. [15] to enhance its effi-
ciency within our context. Specifically, the cryptosystem outlined in [15] was originally
designed for a scenario involving a single encryptor and a single decryptor, where the
encryptor serves as the model owner, and the decryptor acts as a model user. However,
this cryptosystem necessitates outsourcing an encrypted model to the cloud server for each
user and sharing a key between each user and the model owner, a process that is notably
inefficient and unscalable. To address this, we have modified the cryptosystem in [15] to
make it suitable for a single-encryptor and multiple-decryptors setting. Consequently, only
one encrypted model needs to be outsourced to the cloud, which can then be utilized by all
users efficiently. To further optimize the efficiency of our approach, we diverge from the
conventional privacy-preserving SVM schemes, as seen in many existing works [11,16–18],
which are designed primarily for binary classification tasks. Instead, we develop a multi-
class SVM classifier capable of diagnosing multiple diseases that share similar symptoms.
Our method employs multiple binary classifiers rather than a single multi-class classifier.
This necessitates encrypting and outsourcing each individual model to the cloud server,
resulting in multiple computations required by the server to evaluate these models. While
our paper primarily concentrates on medical diagnosis, the methodology we propose is
versatile and applicable to various other domains, including the detection of electricity
theft and the coordination of electric vehicle charging.

A real medical dataset in [19] is used to train our SVM diagnosis model for dermatology
diseases. This dataset is extensively utilized in the literature [12,20] and widely regarded
as a benchmark in the field of medical applications. The dataset has six classes (skin
diseases), including pityriasis rubra pilaris, psoriasis, lichen planus, pityriasis rosea, chronic
dermatitis, and seboreic dermatitis. The dataset has 34 features, including age, family
history, and several symptoms. To assess our proposal, extensive evaluations are conducted,
and the classification accuracy and computation and computation overhead are the main
metrics measured. The main contributions of this paper can be summarized as follows:

• A privacy-preserving and lightweight SVM medical diagnosis scheme has been pro-
posed by modifying an inner product encryption cryptosystem.

• The results of our analysis demonstrate that our proposed scheme successfully fulfills
our security and privacy objectives, including preserving the privacy of the patient’s
health status and protecting the model’s parameters.

• Our evaluations indicate that our proposal outperforms the most relevant approaches
in the overhead while maintaining high classification accuracy.

This paper is derived from the PhD thesis of the first author [21]. The structure of the
remaining sections in this paper is as follows. The main entities considered in our system
and the main messages exchanged among them, in addition to the objectives of the attackers,
are discussed in Section 2. Section 3 offers an overview of the fundamental concepts used
in our paper. Section 4 provides an in-depth examination of our proposed scheme. We
assess the capability of our scheme to preserve privacy in Section 5. Section 6 presents the
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results of experiments conducted to assess communication/computation overhead and
model accuracy. Section 7 offers insights into related works. Lastly, our conclusions are
summarized in Section 8.

2. Network and Threat Models

This section first explains the network model considered in this paper, including a
description of the main entities and their communications. After that, we explain the threat
model describing the entities that could be attackers and their capabilities and objectives.

2.1. Network Model

As illustrated in Figure 1, the network model includes four main entities, including
a model owner (MO), users (MUs), a cloud server (CS), and an offline key distribution
center (KDC). In this subsection, we delve into the specific functions of each of these entities
and elucidate the nature of their inter-communications. This elucidation aims to offer a
comprehensive understanding of how these integral components collaborate within the
proposed framework, fostering clarity and insight into the scheme’s operational dynamics.

Figure 1. The network model considered in this paper.

• KDC. The key distribution center is a trusted entity that is responsible for computing
secret keys needed to execute our scheme and distribute them to the other entities in
the system. To fulfill the trustworthiness of this entity, it can be implemented by a
trusted party, e.g., the Department of Health. Although the detailed implementation
of the key distribution center is out of this paper’s scope, in the literature, there
are many proposed approaches that can implement the KDC without the need for a
trusted entity.

• MO. The model owner is a healthcare center that owns medical datasets for patients
and uses them to compute a diagnosis model. It is reasonable to assume that the
dataset is small. This is an acceptable assumption in medical diagnosis. The model
owner does not have enough computation resources to provide the diagnosis service,
so it outsources the diagnosis model after encrypting it to a third-party cloud service.
Then, users send their data to the cloud to classify them using the model. Using
a third-party cloud service can provide several benefits such as no computation
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burden being needed from the model owner and also the medical diagnosis service is
always available.

• MUs. The model users include any party that seeks the medical diagnosis service,
such as patients, doctors, clinics, healthcare monitoring services, etc. As indicated in
Figure 1, users send encrypted medical data that includes vital and symptom data to
the cloud server, which uses the ciphertext to compute encrypted classification and
send it to the user to decrypt.

• CS: The cloud server offers an online medical diagnosis service. It is possessed and run
by a third party, which can be a private company. It uses the ciphertext of the medical
data sent by users and the ciphertext of the diagnosis model outsourced by the model
owner to conduct operations over encrypted data. The result of these operations is
the ciphertext of the classification (or medical diagnosis). Note that the cloud server
cannot decrypt any of these ciphertexts to achieve our security and privacy objectives.

2.2. Threat Model

To achieve high security and privacy protection for our system, we consider a large
spectrum of possible attackers, including model users, external eavesdroppers, and the
cloud server. We assume that attackers have the capability to collect all messages exchanged
in the system, and then analyze them to infer sensitive information. The attackers are honest-
but-curious in the sense that they do not want to make a disruption or cause a malfunction
to the system but they want to either collect sensitive information on the patient’s medical
data [22] or steal the model by learning its plaintext parameters. Note that the intellectual
property of the model is owned by the model owner, and thus no one else should be able to
obtain it.

Therefore, to achieve our security and privacy objectives, our model should be secure
against several attack models, including Known-background, Known-plaintext model, and
Known-ciphertext. In Known-background model, attackers aim to infer patient classifications
by using some background information, such as the probability of each classification and
statistical data on the model’s medical classifications. Other attackers may not be interested
in the individual patient classifications but they want to collect statistical information on
the spread of a certain disease [22,23]. For the Known-plaintext model, it is assumed that
attackers can gather pairs of plaintext and corresponding ciphertext messages exchanged
in the system and then analyze these pairs to infer any information that can be used to
figure out new patients’ medical data [24]. In Known-ciphertext model, we assume that
attackers can gather ciphertext messages exchanged in the system without being able to
know their plaintext messages. The attackers analyze the ciphertext messages trying to
infer information on the encryption scheme that can help compute the plaintext of the new
ciphertext messages [25,26].

3. Preliminaries

In this section, we provide a concise overview of the bilinear pairing, support vector
machine, and a function-hiding inner-product encryption scheme.

3.1. Bilinear Pairing

Let m denote the prime order of the cyclic groups G and GT , with the generator of G
being V. We assume that G and GT possess a non-degenerate and efficiently computed
bilinear pairing map (ê):

ê : G×G→ GT

satisfying the following properties:

• ê(V, V) 6= 1GT
• ê(xV1, yS1) = ê(V1, S1)

xy ∈ GT , for all x, y ∈ Z∗m and any V1, S1 ∈ G, where Z∗m
represents a finite field of order m.
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3.2. Support Vector Machine (SVM)

SVMs have garnered extensive recognition and application within the field of medical
classification, primarily owing to their remarkable accuracy [27–29]. Various notable
applications within the medical domain have harnessed SVM’s potential, demonstrating
its efficacy. These encompass diverse tasks, such as the classification of electrocardiogram
signals [30], aiding in clinical diagnosis [31,32], identifying individuals on the autism
spectrum [33], and detecting cervical cancer cells [34], among numerous others. SVM’s
versatility and precision make it a valuable tool for addressing critical medical challenges.

3.2.1. Linear SVM

Linear support vector machine (LSVM) is a powerful tool primarily used for binary
classification tasks. An illustration of the linear SVM is shown in Figure 2. In this figure,
the blue circles are used to represent the benign data while the green triangles are used
to represent the malicious data. As depicted in Figure 2, the core objective of LSVM is to
discern an optimal hyperplane within the feature space, capable of effectively segregating
the given set of training samples into two distinct classes. This hyperplane is essentially
defined by a decision function. Let us suppose we have a training dataset comprising m
samples, denoted as {(t1, y1), . . . , (tm, ym)} , where each tj belongs to the real-valued vector
space Rn, representing the jth sample with n elements. The corresponding yj is a label
assigned to each sample, taking values from the set {−1,+1}. Typically, −1 corresponds to
one class, while +1 signifies the other class.

Figure 2. An illustration for linear support vector machine.

The predictions and classifications for new, unseen data can be made after completing
the training phase using the decision function defined in Equation (1):

d(t) := w · t + b = ∑
s∈S

αsysxs · t + b (1)

Here, w, t, and b denote the weight vector, the unlabeled sample’s vector of features,
and the bias, respectively. S represents the set of support vectors αs, xs, and ys stands
for the Lagrange multiplier of the support vector, the support vector, and its associated
class label, respectively. The classification of an unlabeled sample t can be determined by
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using Equation (2) to compute d(t), and then, the classification is benign when is negative;
otherwise, it is malicious.

classification result =

{
+ve, if d(t) > 0
−ve, if d(t) < 0

(2)

3.2.2. Multi-Classification SVM (MCSVM)

Constructing an MCSVM classifier typically involves creating multiple two-class clas-
sifiers. Figure 3 illustrates two conventional techniques for building multi-class classifiers
using SVM: the one-versus-all (1VA) and one-versus-one (1V1) approaches. Four classes
are used in the figure.

(a) (b)

Figure 3. Multi-class support vector machine. (a) One versus one (1V1) multi-class support vector
machine. (b) One-versus-all (1VA) multi-class support vector machine.

In the 1V1 approach, a hyperplane is computed between every pair of classes, resulting
in a k-class classifier. Consequently, C2

k = k(k−1)
2 is the total number of hyperplanes. In

the example shown in Figure 3, the 1V1 approach establishes six binary classifiers. On the
other hand, the 1VA approach involves computing a hyperplane between every class and
the remaining classes. In this case, only k hyperplanes are needed. In the example shown in
Figure 3, four binary classifiers are established by the 1VA approach. Obviously, compared
to the 1V1 approach, the 1VA approach creates fewer classifiers.

Due to its efficiency, we opt for the 1VA approach. To implement this method, we
train Nc SVM models. During the training phase, each classifier uses class j as the +ve class
and the remaining samples as the −ve class. The decision function of the MCSVM classifier
during the testing phase, denoted as d(t), where t is a given normalized test sample, can be
calculated as follows:

d(t) = argmax
j=1,...,Nc

(
dj(t)

)
(3)

where dj(t) represents the decision function of the jth classifier and can be computed
as follows:

dj(t) := wj · t + bj (4)

3.3. Function-Hiding Inner-Product Encryption Cryptosystem

The research in [15] introduced a functional encryption method enabling the compu-
tation of the inner product of two vectors using their ciphertexts without revealing the
vectors themselves. In this scheme, the inner product (x · y) can be calculated, where x
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and y are the ciphertexts of vectors. This inner product encryption system is classified as
function-hiding since it discloses no additional information about x and y other than the
result of the inner product.

Choose g1 as generators for the multiplicative group G1, and g2 as generators for
the multiplicative group G2. Let the two groups be of prime order q. Define the bilinear
pairing map ê : G1 ×G2 → GT , which maps elements from G1 and G2 to elements in the
target group GT of prime order q. Consider a polynomial-sized subset S of Zq. Define
B′ = det(B) · (B−1)T , where B ←− GLn(Zq). Here, GLn(Zq) represents the general linear
group of (n× n) matrices over (Zq).

The public key and the master secret key are denoted as pk and msk, respectively,
where pk = (G1,G2,GT , g1, g2, q, ê, S), and msk = (B and B′). The encryption scheme
involves three phases as follows:

• KeyGen(msk, x): Given msk and a vector x ∈ Zn
q , the algorithm selects a uniformly ran-

dom element α
R←− Zq and produces the secret key pair sk = (K1, K2) = (gα·det(B)

1 , gα·x·B
1 ),

where sk and K2 are the secret key and n elements vector that has values from G1,
respectively.

• Encrypt(msk, y): Given msk and a vector y ∈ Zn
q , the algorithm selects a uniformly

random element β
R←− Zq and produces ct = (C1, C2) = (gβ

2 , gβ·y·B′
2 ), where ct and C2

are the ciphertext pair and n element vector that has values from G2, respectively.
• Decrypt(pk, sk, ct): Given pk, sk, and ct, the algorithm computes the inner product

x · y. The decryption algorithm produces D1 = ê(K1, C1) = ê(g1, g2)
αβ·det(B) and

D2 = ê(K2, C2) = ê(g1, g2)
αβ·det(B)z, where z = x · y. The algorithm then checks

whether there exists z such that (D1)
z = D2 by computing a discrete logarithm in GT

using methods such as the baby-step giant-step algorithm [35]. If a valid z is found, it
is output; otherwise, ⊥ is output to indicate that no valid z exists.

This encryption scheme is originally designed for a single encryptor, which is MO
in our scheme, and a single decryptor, which is MU in our scheme. The encryptor must
share a unique key pair (B and B′) with every decryptor. If this method is employed in our
research, the model parameters would need to be encrypted n times, where n represents
the number of MOs. This results in significant computation and communication overhead,
which is not feasible. In this research paper, we have adapted this scheme to accommodate
a scenario with a single model owner and multiple model users. In this setup, each model
user and the model owner utilize unique keys for their operations. In this modified scheme,
even though the model parameters are encrypted using the model owner’s specific key,
the inner product computation can be performed when the medical data are encrypted
using any of the model users’ keys. This approach significantly reduces the computation
and communication overhead, as the model parameters need to be encrypted only once,
regardless of the number of model users.

4. Proposed Scheme

In this section, the term “hospital”, denoted as H, signifies the entity owning the
model, while “patient”, represented by P , refers to the user of the model. The proposed
methodology unfolds through four distinct phases. During the system initialization stage, the
key distribution center (KDC) undertakes the computation and distribution of secret keys,
disseminating them to bothH andP . Moving on to the model encryption phase, each support
vector machine (SVM) model’s parameter vector is encrypted byH. Subsequently, all these
encrypted parameters, along with random numbers employed for masking classification
results, are outsourced to the cloud server (CS). Transitioning to the medical data encryption
step, P encrypts their medical data vector, including symptoms and vital data. The
encrypted data are then sent to the server to input to the diagnosis model and compute
the masked classification (or diagnosis) score in the medical diagnosis step. These masked
classifications are then transmitted back to P for the process of unmasking and subsequent
understanding.
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4.1. Design Objectives

We aim to accomplish specific design objectives in our approach:

• Preserving Privacy. In our proposed scheme, it is imperative to protect the confiden-
tiality of the model user’s medical data. The outsourced medical data of the MU
must remain confidential, ensuring that neither the cloud server (CS) nor the model
owner (MO) can access any information about it. Additionally, the classification
results should remain concealed from the CS, with only the MU having access to
this information.

• Protecting Intellectual Property. Our scheme is designed to preserve the confidentiality
of the diagnosis model’s parameters from potential threats posed by the CS, MU, and
external eavesdroppers.

• High Diagnosis Accuracy and Low Communication/Computation Cost. The proposed
scheme aims to deliver precise medical diagnoses for MUs while minimizing com-
putational and communication burdens. Considering the limited computational and
communication resources typically available to MUs, it is crucial to optimize their
involvement in the online diagnosis process. The encryption methods utilized for
user requests should be lightweight, allowing data users to remain offline during the
online diagnosis process until they receive the classification results. Moreover, heavy
computation and communication tasks should be offloaded to the CS, which possesses
ample communication and computation resources. Notably, the cloud server should
be able to compute the medical diagnosis without the need for the participation of
the model owner because requiring the model owner to be online and interactive all
the time to help the server in the diagnosis computations diminishes the benefits of
outsourcing the medical diagnosis to a third party.

4.2. System Initialization

The following algorithms are used by the key distribution center (KDC) to generate
the secret keys of the patients and hospitals.

InitializeSetup(1λ) −→ PP ,MSK. This algorithm takes 1λ as the security parameter
input, where λ represents the security parameter, and produces PP andMSK, which
represent the public parameters and the master secret key, respectively.

The key distribution center (KDC) generates the master secret keyMSK = {M, N1, N2}
randomly from the set of invertible matrices GLm+2(Zq), where {M, N1, N2} are matrices
of dimensions (m + 2) × (m + 2). Here, m represents the size of the patient’s medical
data, and GLm+2(Zq) denotes the general linear group of (m + 2) × (m + 2) matrices
over the field Zq. Subsequently, the output of this process yields the public parameters
PP = (G1,G2,GT , g1, g2, q, e, S).

GenerateHospitalKey(MSK) −→ HSK. For hospitalH, the algorithm yields secret key
HSK, crucial for encrypting the parameters of each SVM binary classifier. The computation
is outlined as follows:

HSK = {MN1, MN2}

Subsequently, KDC sendsHSK to theH.
GeneratePatientKey(MSK) −→ PSKP. The secret key PSKP is computed according

to the following scheme for every patient P :

PSKP = {N−1
1 Ap, N−1

2 Bp}

where
{

Ap, Bp
}

represents (m + 2)× (m + 2) matrices of randomly generated values, sat-
isfying Ap + Bp = M−1. Subsequently, the patient P obtains PSKp from the KDC. This
key is utilized by the patient to encrypt their medical data, which are then transmitted to
the cloud for medical diagnosis.
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4.3. Model Encryption

To securely transmit the encrypted SVM models’ parameters to the cloud server, H
performs the following procedure.

SecureEncryptModel(PP ,HSK, Wj) −→ CWj . This operation uses the public parame-
ters PP , the hospital secret keyHSK, and the model’s parameter vector Wj as input and
produces the encrypted SVM model parameters CWj .

The parameters of each model j are denoted as Wj = {wj,1, . . . , wj,m, bj} ∈ Zm+1
q ,

where j = 1, . . . , k, and k represents the total number of the models. H then constructs the
Wj vector with (m + 2)-element where the first m + 1 elements will be filled the model
parameters and places one at the following (m + 2)− th element. In order to mask the
classification, the (m + 2)− th element will be multiplied by the corresponding element in
the patient’s data vector, which stores the masking number. To encrypt Wj, the hospital

selects a uniformly random element α
R←− Zq and generates,

CWj = {C
1
Wj

, C2
Wj

, C3
Wj
} = {gα

1 , g
α·Wj MN1
1 , g

α·Wj MN2
1 }

Here, C2
Wj

and C3
Wj

are vectors of size (m + 2) G1 elements. H then transfers the

encrypted model’s parameters {CWj}j=1...k to the cloud server.

4.4. Encryption of Medical Data

During this stage, the subsequent algorithm is utilized to encrypt the medical data by
P and transmits it to the cloud server for classification.

MedicalDataEncryption(PP ,PSKP, TP) −→ CTP . This algorithm takes the public pa-
rameters PP , the patient’s secret keys PSKP, and the medical data vector TP as inputs,
producing the encrypted medical data CTP . The P ’s medical data for the patient is denoted
as {t1, . . . , tm, 1} ∈ Zm+1

q . The patient then constructs TP = {t1, . . . , tm, 1, bP} ∈ Zm+2
q

with m + 2-elements, encompassing the medical data in the first m + 1 elements, using the
(m + 2)− th element for storing the randomly generated masking number bP.

After that, P selects a uniformly random element β
R←− Zq to encrypt TP as follows

CTP = {C1
TP

, C2
TP

, C3
TP
} = {gβ

2 , g
β·N−1

1 ApTP
>

2 , g
β·N−1

2 BpTP
>

2 }

It is noteworthy that C2
TP

and C3
TP

are arrays of size (m + 2) G2 elements. Ultimately,
the patient sends CTP to CS for the diagnosis.

4.5. Classification

Using the ciphertext of the model parameters and the ciphertext of the medical data
of users, in this phase, the server computes the inner product result of the the model
parameters and medical data which results in masked classification score (i.e., the medical
diagnosis). Figure 4 outlines the computations performed by CS to classify the medical
diagnosis. The specifics are as follows.

Diagnosis(PP , CWj , CTP) −→ zj: The encrypted model’s parameters CWj and the en-
crypted patient’s medical data CTP are the algorithm’s input, which then produces the
masked classification zj.

A random positive number r is used by the cloud server for the model’s intellectual
property protection. This protection can be accomplished by multiplying r with the first
m + 1 elements of CWj . D1 = ê(C1

Wj
, C1

TP
) = ê(gα

1 , gβ
2 ) and D2 = (E1 × E2)

r are used to
compute the inner product of CWj and CTP for every model j, where

E1 = ê(C2
Wj

, C2
TP
) = ê(g

αWj MN1
1 , g

βN−1
1 ApTP

>

2 )
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and

E2 = ê(C3
Wj

, C3
TP
) = ê(g

αWj MN2
1 , g

βN−1
2 BpTP

>

2 )

Subsequently, the algorithm checks for the existence of its output zj ∈ S satisfying
(D1)

zj = D2, where S is a polynomial-sized subset of Zq, zj = r× dj(TP)+ bP and dj(TP) =
w1t1 + · · ·+wmtm + b. If no such zj exists, the algorithm outputs⊥. Note that this algorithm
demonstrates efficiency as |S| = poly(λ). Figure 5 illustrates the structure of vectors used
in computing the classification result .

Figure 4. Medical diagnosis.

Theorem 1. For each SVM model, CS uses the encrypted patients’ data to calculate the masked
classification result.

Proof.
D1 = ê(gα

1 , gβ
2 ) = ê(g1, g2)

αβ (5)

E1 = ê(g
αWj MN1
1 , g

βN−1
1 ApTP

>

2 )

= ê(g1, g2)
αβWj MN1 N−1

1 ApTP
>

= ê(g1, g2)
αβWj MApTP

>

(6)
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similarly,

E2 = ê(g
αWj MN2
1 , g

βN−1
2 BpTP

>

2 )

= ê(g1, g2)
αβWj MBpTP

>
(7)

Then,

D2 = (E1 × E2)
r

= ê(g1, g2)
rαβWj MApTP

>+rαβWj MBpTP
>

= ê(g1, g2)
αβrWj M(ApTP

>+BpTP
>)

= ê(g1, g2)
αβrWj MM−1TP

>

= ê(g1, g2)
αβrWjTP

>

= ê(g1, g2)
αβr(MVj ·DVP)+bP

(8)

Therefore, if zj = r× dj(TP) + bP ∈ S, such that (D1)
zj = D2, the secure classification

algorithm outputs the masked classification result zj.

Figure 5. An illustration of the vectors utilized to compute the classification result is provided below.
(a) Model vector: m + 1 elements for the model parameters and the (m + 2)-th element contains
one. (b) Data vector: m elements for the patient’s medical data, one in the (m + 1)-th element, and
the (m + 2)-th element comprises a random number bP utilized for masking the classification result.
(c) The masked classification: calculated by the cloud server.

Finally, the CS transmits all the multiclass SVM model’s masked results {zj}j=1...k to
P . To obtain the unmasked scores, the patient can subtract bP from {zj}j=1...k. Then, the
final classification result is the highest positive unmasked score.

5. Security Evaluations

This section uses a preposition/proof format to present the main security/privacy
features provided by our proposal.

Proposition 1. Our proposal can resist attacks launched by external eavesdroppers.

Proof. As discussed earlier in the threat model section, attackers can be external eavesdrop-
pers who have the capability to capture all messages exchanged in our scheme and they
analyze these messages looking for vulnerabilities to infer sensitive information or compute
the parameters of the diagnosis model. As explained earlier, the messages exchanged in
our system are as follows: (1) the ciphertext of the diagnosis model sent from the model
owner to the server; (2) the ciphertexts of the medical data sent by users to the server for
classifications; and (3) the masked diagnosis returned by the server to the users. The first
two types of messages are encrypted using private keys and without learning the keys,
the external attackers cannot infer the messages. This is proved in the original paper of
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the inner product encryption we modified. For the diagnosis returned by the server to the
users, as explained earlier, random numbers that are known only to the users are used
to mask the diagnosis, and thus, because the attackers do not know these numbers, they
cannot unmask the diagnosis to learn the diagnosis.

Proposition 2. Our proposal is robust against the known-ciphertext model attacks when the master
secret keyMSK is unknown to the attackers.

Proof. As explained earlier, the matrices AP, Bp, N−1
1 and N−1

2 are used to compute the
secret key of the model users (PSKP), and this key is used to compute the ciphertexts of
the medical data. Additionally, the matrices M, N1 and N2 are used to create the secret key
of the model owner (HSK), which is used to compute the ciphertext of the parameters
of the diagnosis model. Our proposal is secure under the known-ciphertext model if the
attacker does not know the master secret keyMSK, which includes the matrices N1, N2,
and M. The attackers can capture the ciphertexts of the medical data and the ciphertext of
the model parameters, and without knowing the matrices N1, N2, and M, it cannot infer
the medical data or the model parameters.

Proposition 3. Our proposal is secure under the known-background model, i.e., external attackers
and the cloud server cannot compute the classification result (diagnosis).

Proof. Under the known-background model, attackers are equipped with some back-
ground information, such as the distribution of diseases in a certain area to infer sensitive
information. For instance, the work in [22] is not secure under the known-background
model because the server can link the ciphertexts of the same diagnosis, so by using the
distribution of a disease and the frequency of a ciphertext, the server can figure out the diag-
nosis of the users. In order to secure our proposal under the known-background model, we
mask the classification result of the diagnosis model using random numbers that frequently
change. These random numbers are known only by the users so they are the only ones
who can unmask the results of the model and learn the diagnosis. In summary, external
eavesdroppers and the server cannot learn the diagnosis because they are masked by a
secret random number and cannot use background information to deduce the diagnosis
because the random number frequently changes.

Proposition 4. Our proposal can resist the known-plaintext model attacks when the attackers do
not know the users’ random numbers utilized to mask the diagnosis model’s output.

Proof. In the Known-plaintext model, attackers can gather pairs of plaintext and correspond-
ing ciphertext messages exchanged in the system and then analyze these pairs to infer
any information that can be used to figure out new patients’ medical data. Because our
proposal uses inner product operations to evaluate the diagnosis model, one way to launch
the Known-plaintext model attack is by creating equations and solving them. Specifically,
if each vector (either the medical data or the model) has ne elements, the attacker needs
to create ne equations to solve them and obtain the ne unknowns. To do that, the attacker
needs to learn ne medical data vectors and the result of the classification to make ne equa-
tions and solve them to compute the model’s parameters. The attack can also be launched
with the objective of computing the medical data of the users. This attack can be launched
by external eavesdroppers and/or the cloud server. In order to secure our proposal against
this attack, we allocate the (m + 2)th element in the medical data vector for a random
number that should change every time the user sends data for classification. By doing that,
we introduce a new variable each time the inner product is computed, i.e., the result of
the inner product of the medical data and the diagnosis model is masked by the random
number and is not known to the attackers. In summary, our proposal is secure against
Known-plaintext model attacks because the attackers (either the cloud server or the data
users) know only masked classifications (the result of the inner product of two vectors), and
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by changing the random number in each medical data, attackers cannot make equations
and solve them to infer sensitive data because this random number adds a new variable in
each equation.

Proposition 5. To preserve privacy, the same medical data (or same classification) of a patient sent
at different diagnosis occasions are not linkable in our proposed approach.

Proof. Even if attackers are not able to decrypt the ciphertexts in our system, sensitive
information can be inferred if ciphertexts of the same data are linkable. For instance,
if a user sends the same medical data on different occasions and attackers can link the
ciphertexts, side information can be inferred such as no change in the users’ symptoms
and vital data and thus no change in the health condition. Similarly, even if the attacker
cannot unmask the masked diagnosis score that the server returns, linking the masked
classifications of the same diagnosis reveals side information, such as no change in the
health status of the users. To secure our proposed approach against this attack, in the
encryption of the medical data, a random number (β) is used so that the ciphertexts of
the same data look different when it is encrypted multiple times on different occasions.
Additionally, by masking the output scores of the diagnosis model by different random
numbers, the masked diagnosis scores of the same classifications look different.

Proposition 6. Our proposed approach can protect the confidentiality of the diagnosis
model’s parameters.

Prepositions 4 explains how the cloud server cannot compute the diagnosis model’s
parameters leading to the protection of the intellectual property. Moreover, a random
number (r) is used by the cloud server to prevent the users from computing the parameters
of the model. Without using this random number, the users can compute the model’s
parameters because they can use the medical data vectors and the diagnosis scores returned
by the server to create equations and solve them to obtain the parameters of the model.
Specifically, if the size of the vectors is ne elements, then attackers need ne equations by
requesting ne diagnosis. Note that the diagnosis score is the inner product result of the
vectors of the medical data and the model parameters. To protect our proposed scheme
against this attack, a random number r is used by the cloud server to add a masking level to
the output score resulting from the evaluation of the model. In this way, the user does not
know the exact result of the product of the two vectors of the medical data and the model’s
parameters and for each diagnosis operation, the random number r adds a new variable
in the equations the user tries to solve. The server needs to change the random number
each time it performs a diagnosis process. Note that the classification is determined by
the sign of the classification score after unmasking the classification received by the users.
This necessitates that the random number (r) is positive to avoid changing the sign of the
classification value.

6. Experiments and Results

The purpose of this section is to quantitatively compare our proposal in this paper to
the most relevant approaches in the literature. The section first presents the environment of
the experiments and then discusses the results obtained.

6.1. Environment of the Experiments

In our experiments, to compute the computation and communication costs of our
proposed approach, the Python charm cryptography library [36] is used. We used a
computer with an Intel processor with Core i7-8700, a ram with 8 GB, and a frequency of
3.20 GHz. We implemented our proposal, in addition to the most relevant works in the
literature, including the work done by Xie et al. [13] and the work done by Zhang et al. All
results are presented in an average of 1000 trials.
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Additionally, in order to evaluate the accuracy of the diagnosis model, we used the
dataset in [19] that has data samples for six skin diseases to train our multi-class SVM
model. These six diseases include Psoriasis, Seboreic dermatitis, Lichen planus, Pityriasis rosea,
Chronic dermatitis, and Pityriasis rubra pilaris. The dataset has 366 data samples in total for six
diseases, including 112 samples for Psoriasis, 61 samples for Seboreic dermatitis, 72 samples
for Lichen planus, 49 samples for Pityriasis rosea, 52 samples for Chronic dermatitis, and
20 samples for Pityriasis rubra pilaris. Each data sample has 34 features. Examples of these
features include scalp involvement, age, erythema, family history, polygonal papules, and
mucosal involvement. While one feature takes a binary value, the remaining 33 features
take numerical values.

In our experiments, we measure three metrics to evaluate our proposal and the
most relevant ones, including computation cost, communication cost, and diagnosis accuracy.
The computation cost measures the computation resources needed from each entity in our
proposal, including model owners, users, and cloud servers. It is preferable to reduce
this cost, especially on the users because they usually use resource-constraint devices like
tablets and cell phones. The communication cost measures the amount of data (in bytes)
exchanged between the different parties in our system. It is preferable to reduce this cost to
reduce the amount of bandwidth needed in our system. The diagnosis accuracy measures the
performance of the SVM model in two cases, including: (1) without protecting the model’s
intellectual property and preserving user privacy, i.e., executing the model using plaintext
data; and (2) using our inner product encryption cryptosystem, i.e., executing the model
over encrypted data. The diagnosis accuracy is measured in terms of Accuracy, False Alarm,
Recall, F1-score, and Precision, which are defined as follows.

• Accuracy is the number of data samples that are diagnosed correctly to the total number
of samples. The diagnosis model performs better as this metric increases. This metric
is computed using this equation:

Accuracy =
Trp + Trn

Trp + Trn + Fap + Fan
× 100,

where Trp measures the number of data samples of sick people that are diagnosed
correctly by the model, Trn measures the number of data samples of healthy people
that are diagnosed correctly by the model, Fap measures the number of data samples
of healthy people that are diagnosed incorrectly by the model, Fan measures the
number of data samples of sick people that are diagnosed incorrectly by the model.

• False Alarm is the number of data samples of sick people that are diagnosed incorrectly
to the total number of samples of sick people. The diagnosis model performs better as
this metric decreases. This metric is measured as follows:

FalseAlarm =
Fap

Fap + Trn
× 100

• Recall is the number of samples of sick people that are correctly diagnosed to the total
number of samples of sick people. The diagnosis model performs better as this metric
increases. This metric is measured as follows:

Recall =
Trp

Trp + Fan
× 100

• Precision is the number of samples of sick people that are diagnosed correctly to the
total number of samples of sick people. The diagnosis model performs well as this
metric increases. This metric is measured as follows:

Precision =
Trp

Trp + Fap
× 100
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• F1-score gives the average of Precision and Recall. This metric is especially a good
indicator of the model’s performance when the dataset is not balanced. This metric is
measured as follows:

F1-score =
2PRRC

PR + RC
× 100,

6.2. Experimental Results
6.2.1. Computation Cost

The computation costs for model owners at different numbers of diseases (or classes)
and numbers of model features for our proposal, as well as the works in [12,13], are
depicted in Figure 6a and Figure 6d, respectively. Comparing our proposal to those
in [12,13], the two figures illustrate that our proposal imposes the least computation cost on
model owners. This improvement is due to the fact that, unlike our proposal which only
requires the encryption of the diagnosis model parameters, the proposal in [12] necessitates
model owners’ participation in computing the diagnosis results in collaboration with the
cloud server, in addition to the computations needed for model encryption. The figures
also indicate that our proposal outperforms the work in [13] because it utilizes two non-
colluding servers to execute the scheme. Thus, it requires the encryption of the diagnosis
model twice using two different keys and distributes one ciphertext to each server.

The computation cost on the model users at different numbers of diseases (or classes)
and numbers of model features for our proposal and the works in [12,13] are shown in
Figure 6b and Figure 6e, respectively. Compared to the proposals in [12,13], the two figures
show that our proposal imposes the least computation cost on the model users. The reason
for this big reduction in the computation cost can be attributed to the use of an efficient
inner product encryption cryptosystem compared to the use of Pailler cryptography and
multi-party computation. Additionally, Figure 6b shows that the computation cost in our
proposal and the work in [13] are constant at the different numbers of classes. On the
contrary, the computation cost in the proposal of [12] increases with the increase in the
number of classes. This can be attributed to the fact that in the proposal of [12], in addition
to encrypting its medical data, the model users are required to compute the ciphertext of
the model’s score and decrypt the diagnosis class. Figure 6e illustrates that the computation
cost in our proposal and the two other works increases with the number of features. This is
due to the fact that model users need to encrypt their medical data, and the size of this data
depends on the number of features.

The computation costs on the cloud server at different numbers of diseases (or classes)
and numbers of model features for our proposal and the works in [12,13] are shown in
Figure 6c and Figure 6e, respectively. Compared to the proposal in [13], the two figures
show that our proposal requires much less computation cost on the cloud server. This is
attributed to two facts: (1) the inner product encryption cryptosystem used in our proposal
is much more efficient than the multi-party computations needed in [13]; and (2) due to
using two servers in the case of [13], computation resources are required from the two
servers and the figure displays the total computation cost on the two servers. For the
proposal of [12], the figures show that our proposal outperforms it when the number of
classes is less than five and the number of features is less than thirty. We also observe a slight
increase in the computation cost of our proposal compared to the proposal in [12] when
the number of classes is five or more and the number of features is thirty or more. This is
because our proposal allocates more computations to the cloud to reduce the computations
on the model users and owners. This is totally acceptable because the cloud server has
much more computation resources than the model users and owners.
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Figure 6. The required computation time by our approach and the most relevant ones varying the
number of classes and the number of features. (a) Time on model owner vs. number of classes.
(b) Time on model users vs. number of classes. (c) Time on cloud server vs. number of classes.
(d) Time on model owner vs. number of features. (e) Time on model users vs. number of features.
(f) Time on cloud server vs. number of features.

As discussed earlier, we have modified the inner product encryption cryptosystem
proposed by Kim et al. [15] that is designed for a single-encryptor single-decryptor setting
to make it efficient for the single-encryptor multiple-decryptor setting, which fits our
application due to the existence of one model owner (i.e., decryptor) and multiple users
(i.e., encryptor). To evaluate this modification, we have implemented our SVM model using
the cryptosystem of [15] and the modified cryptosystem in this paper. Figure 7 presents
the computation costs on the model owner at different numbers of patients (or users) for
our cryptosystem and using the cryptosystem of Kim et al. [15]. The figure shows that our
modified inner product encryption cryptosystem significantly reduces the computation
cost on the model owners and it does not depend on the number of users (or patients). The
reason for this can be attributed to the fact that by using the cryptosystem in [15], the model
owner needs to conduct one encryption operation for each patient because it is designed for
a single-encryptor single-decryptor setting; on the contrary, our cryptosystem needs only
one encryption operation by the model owner and this encryption can be used by all users
because it is designed for a single-encryptor multiple-decryptor setting. In conclusion, our
cryptosystem can reduce the number of encryption operations by the model owner from n
to only one, where n is the number of patients.
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Figure 7. The computation time required by the model owner in the case of the original inner product
cryptosystem proposed in [15] and our modified cryptosystem in this paper.

6.2.2. Communication Cost

The communication costs on the model owner at differ numbers of diseases (or classes)
for our proposal and the works in [12,13] are shown in Figure 8a. The figure shows that
our proposal requires less communication cost than the approaches proposed in [12,13].
Specifically, in the approach of [12], the model owner needs to send three messages to the
server to send the ciphertext of the model and it also needs to send messages during the
computation of the diagnosis. As explained earlier, the model owner is involved in the
computation of the diagnosis in the approach proposed in [12]. Unlike this approach, our
proposal is not involved in the computation of the diagnosis and it needs to send only one
message to the server containing the ciphertext of the model. On the other hand, due to
using two servers in [13], the model owner needs to send messages containing the model’s
parameters to two servers instead of only one server in our proposal.

The communication costs on the model users at different numbers of diseases (or
classes) for our proposal and the works in [12,13] are shown in Figure 8b. Compared to the
approach of [13], the figure shows that the communication cost of our approach is lower
and it does not depend on the number of classes in our proposal and the one in [13]. On the
other hand, the figure shows a slight advantage for the proposal of [12] over our proposal.
This can be justified as follows. In our proposal, the users send encrypted medical data
to the cloud server that sends a masked diagnosis result to the users that unmask it to
compute the diagnosis, but in the approach of [12], the users compute the encryptions of the
diagnosis scores of all classes using encrypted model parameters and return the ciphertexts
to the cloud server that returns the ciphertext of the exact diagnosis (or classification).
Although the approach of [12] reduces the communication overhead slightly compared to
our proposal, the cost of this improvement is a big increase in the computation cost on the
model users, as shown in Figure 6b. This is not acceptable practically because the model
users usually use resource-constrained devices such as tablets and cellphones.

The communication costs on the cloud server at different numbers of diseases (or
classes) for our proposal and the works in [12,13] are shown in Figure 8c. The figure shows
that the communication cost on the cloud server in our proposal slightly increases with the
increase in the number of classes and is significantly lower than the costs of [12,13]. This big
reduction can be attributed to these facts: (1) Compared to the work of [12], our proposal
requires the cloud server to send only the masked diagnosis to the users, while in [12], the
server requires sending encrypted model parameters to the users and exchanging several
messages with the model owner to compute the diagnosis result; and (2) because of using
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multi-part computations in the approach of [13], it requires exchanging several messages
between the two servers used in this approach.

(a) (b)

(c)

Figure 8. The communication costs of our proposal and the relevant works in [12,13]. (a) The
communication cost on the model owner. (b) The communication cost on the model users. (c) The
communication cost on the cloud server.

6.2.3. Diagnosis Accuracy

We have used the dermatology dataset in [19] to implement our diagnosis model
and the models proposed by Zhang et al. [12] and Xie et al. [13]. We conducted two
implementations: one for evaluating the model on plaintext data and the second one for
evaluating the model over encrypted data (privacy preservation implementation). We have
divided the dataset into two sets with a ratio of 8 to 2. The first set is used to train the
SVM models while the second set is used to evaluate the models. To evaluate the diagnosis
accuracy, we measured the metrics defined in Section 6.1, including Accuracy, False Alarm,
Recall, F1-score, and Precision. The results we obtained are given in Table 1. The results
indicate that the performance of our model is similar to that of [12] because both of them
train linear SVM models. On the contrary, the approach in [13] trains a non-linear SVM
model, which justifies its different performance results. The given performance results
also indicate that the diagnosis accuracy is the same in the two implementations, which
indicates that evaluating the models over encrypted data does not degrade the precision
of the calculations compared to the evaluation using plaintext data. The table indicates
that the accuracy in our model and the models of [12,13] are the same. However, the
model of [13] exhibits a slightly better false alarm compared to our proposal and the model
of [12]. This is because the model of [13] uses a non-linear SVM model that can create a
more sophisticated decision boundary. This slight advantage of the model of [12] costs
a significant increase in the communication and computation overheads as discussed in
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the last two subsections. This is because the execution of the non-linear operations of [12]
over encrypted data requires extensive overhead, while the linear operations in our model
and in [13] can be executed more efficiently over encrypted data. As discussed earlier,
the proposed approach is efficient because it uses an efficient inner-product encryption
cryptosystem. We used a dataset as a case study, and by using a different dataset, the
model parameters may change, but our cryptosystem can still be used to execute these
models over the ciphertext domain for protecting the confidentiality of the input data and
the model’s parameters.

Table 1. Summary of the performance of our proposal and the most relevant works in the literature.

Metric/Scheme [13] [12] Our Proposal

Accuracy 97% 97% 97%

Precision 97% 97% 97%

Recall 98% 98% 98%

F1-score 97% 97% 97%

False Alarm 0.4% 0.5% 0.5%

7. Literature Review

Our objective is to protect the confidentiality of the users’ data, health status, and
model’s parameters and enhance the computational and communication efficiency. Addi-
tionally, we aim to create a diagnosis system that needs a single cloud server and does not
need to involve the model owner in the computation of the classification result. To the best
of our knowledge, our scheme stands out as the only one capable of achieving all of them.
We refer to Table 2 for a concise comparison between our approach and the most relevant
state-of-art works. Furthermore, this section delves into more detailed explanations of
other schemes and compares them to our proposal.

Due to its potential, machine learning has been widely used in different medical
diagnoses [37–39]. Artificial neural networks, SVMs, and regression trees are used in [40]
for diagnosing Parkinson’s disease in early stages, while in [41], linear SVM is used to
diagnose Alzheimer’s disease. In another example, random forest, Naive Bayes (NB), and
SVM are used in [42] to diagnose COVID-19. There is no doubt that machine learning
will play a major role in the realization of smart healthcare systems. Nevertheless, in most
of the existing schemes, including the aforementioned works, machine learning models
are evaluated using plaintext data and the outsourcing of these models to a third party
that provides cloud diagnosis service endangers the privacy of the users and the model’s
parameters. In comparison to these schemes, our proposal in this paper can achieve the
objective of protecting the confidentiality of the model’s parameters and the users’ data
and health status, which cannot be accomplished by the aforementioned schemes.

The privacy problem in machine learning-based medical diagnosis can be divided
into two parts, including training and testing. While our paper aims to preserve privacy
during the testing phase, several works in the literature have studied privacy in the training
phase such as [11,16–18]. These works aim to train SVM models without exposing the
sensitive information of the dataset of the training. The approach proposed in [43] trains
the model using an encrypted dataset instead of using plaintext data to avoid revealing
sensitive information. In [44], different entities have datasets for drug formulas and the
work investigates an approach to enable a central unit to compute a model trained on all the
datasets without sharing the data or exposing sensitive information. The work in [45,46]
has investigated the use of blockchain technology to create a privacy-preserving approach
for training SVM models, where the data are owned by different parties that do not want to
reveal them. To do that, each entity stores the ciphertexts of their data on the blockchain and
then these ciphertexts can be used to train the SVM model without being able to compute
the plaintext data. The work in [28] investigates the use of mimic learning techniques to
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train a machine learning model without revealing the datasets that are owned by different
parties. Each data owner trains a model, called teacher, using its local dataset, and then
uses it to label insensitive unlabeled data used to train the usable model, called student.
This process actually transfers the learning from the teacher model to the student without
exposing the sensitive data to preserve privacy. In contrast to these works, which primarily
focus on training machine learning models without exposing sensitive information, our
emphasis in this paper lies in executing a medical diagnosis model while protecting the
confidentiality of the users and the model’s parameters and building an efficient scheme by
using lightweight cryptosystems and ensuring that it does not need involving the model
owner in computing the diagnosis (or classification) scores.

Table 2. Comparison between our proposal and the state-of-art works.

[8] [9,10] [12] [13] Our
Scheme

Uses cloud server
√ √ √ √ √

Preserving the privacy of patients
√ √ √ √ √

Model’s intellectual property protection × ×
√ √ √

Concealing classifications
√ √

×
√ √

Multiple classes ×
√ √ √ √

Uses a single cloud ×
√ √

×
√

Computation of diagnosis without the MO × × ×
√ √

Requires low resources × × × ×
√

Few works have investigated the evaluation of medical diagnosis models with privacy
preservation. In [47], homomorphic encryption cryptosystem [48] is used to develop
a medical diagnosing approach that can be run by a distrusted third-party server that
provides cloud service. In [49], homomorphic encryption is used to evaluate a single
decision tree medical diagnosis without revealing sensitive information on the patient’s
data. The work in [9] has investigated the use of homomorphic encryption to evaluate a
multiclass SVM medical diagnosis system hosted by a cloud server. However, as explained
in [10], this work suffers from several limitations, where the most prominent one is exposing
sensitive information by the server. Compared to these schemes, our approach can protect
the diagnosis model’s confidentiality and preserve the privacy of the users’ data and health
status, and it does not need the participation of the MO to compute the diagnosis scores
while maintaining low resources in term of communication and computation.

The approach of [12] is close to our proposal. It uses the Okamoto–Uchiyama (OU)
cryptosystem [50] to build an online medical diagnosis system based on multi-class SVM.
It is worth noting that the homomorphic operations are used in the OU cryptosystem to
evaluate the model over encrypted data. Nevertheless, there are several shortcomings
associated with the approach proposed in [12], which can be summarized as follows.
First of all, under the known-background model, the proposed approach reveals the
classification (diagnosis) results to the cloud server, which creates a serious privacy issue.
Specifically, because the server can link encrypted classifications that are for the same
diagnosis, the server can easily determine these diagnoses by using some contextual data,
like the prevalence of a particular disease in a certain area. The second shortcoming is that
the MOs participate in the proposed computation of each diagnosis score in [12]. By doing
this, the advantage of outsourcing the diagnosis model to a third party that provides a
cloud service is diminished because it has to be always online and allocate computation
and communication resources for the medical diagnosis process. The third shortcoming
is that the MO has to send some model parameters to all users, if it needs to update the
diagnosis model run by the cloude server, i.e., to add more diseases or increase the accuracy.
The reason for this is that the proposed approach requires that the users execute a part of
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the model. In another notable shortcoming, because the users need to compute a part of
the model, as just explained, the proposed approach imposes high computation overhead
on the users. This requirement may be difficult to achieve practically because some users
may use resource-limited devices like tablets and cellphones. Compared to the proposed
approach in [12], our approach can hide diagnosis results without the need for online and
interactive model owners to compute the diagnosis scores, in addition to requiring low
resources in terms of communication and computation.

In [13], the authors attempted to address the limitations of [12] discussed above.
The work in [13] proposes a multi-class SVM-based diagnosis system using two cloud
servers that are assumed non-colluding. Although this system was able to address several
limitations such as protecting the confidentiality of the diagnosis model’s parameters
and the classification results, and computing the classification without the involvement
of the model owner, it suffers from several limitations. Much more communication and
computation resources are needed especially as more diseases (or classes) are diagnosed
by the model. Additionally, two servers are needed to execute the proposed approach
in [13], and the servers should not be colluding to ensure the security of the approach.
Such a requirement is costly compared to our approach which needs only one server
and the requirement that the two servers are not colluding is hard to achieve. Finally,
the proposed approach uses a non-linear SVM model, and evaluating this model in the
ciphertext domain needs extensive computation and communication resources because it
is not easy to compute non-linear operations using encrypted data. In some applications,
employing non-linear SVMs might seem appealing due to making a more sophisticated
decision boundary compared to linear SVM. However, this choice often adds complexity to
the scheme’s implementation in the ciphertext domain to preserve privacy. Our experiments
in this paper showed that linear SVM gives good accuracy and, at the same time, it is easier
to implement in the ciphertext domain. Compared to the approach proposed in [13], our
proposal in this paper develops a single-cloud system and offers more efficient computation
and communication overheads.

8. Conclusions and Future Work

We have developed a new privacy-preserving approach for SVM-based medical diag-
nosis. In our approach, the model owner encrypts the model’s parameters using an efficient
cryptosystem that can compute inner product operations over encrypted data and then
it sends the ciphertext to a cloud server run by a third party that provides cloud services.
Additionally, users encrypt medical data, including symptoms and vital data, and send it
to the server for diagnosis. The server can use the encrypted model and data to compute an
encrypted classification without being able to figure out the plaintext model’s parameters
and the users’ data. Our approach is based on an efficient inner product encryption scheme.
This paper has modified a cryptosystem that can conduct inner product operations over
encrypted data to make it more suitable for the setting considered in this paper, which
includes one party (i.e., the model owner) that encrypts a vector (i.e., model parameters)
while each user encrypts its medical data vector with a unique key while the inner product
can be computed by the cloud server using these two ciphertexts. Moreover, unlike some
existing proposals that require two non-colluding servers, our proposed approach is exe-
cuted by only one cloud server. For the efficient implementation of the diagnosis system,
all the classification computations are moved to the server without the need to involve
the users or the model owner. To evaluate our proposal, extensive analyses and experi-
ments are conducted, and the classification accuracy and computation and computation
overhead are the main metrics measured. The results of our analysis demonstrate that our
proposed scheme successfully fulfills our security and privacy objectives, including pro-
tecting the confidentiality of the user’s medical data and the diagnosis model parameters.
Our experiments have indicated that our proposal consumes fewer resources in terms of
computation and communication compared to the most relevant works in the literature
while maintaining high classification accuracy.
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