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Abstract: The development of effective methods for dopamine detection is critical. In this study,
a homogeneous colorimetric strategy for the detection of dopamine based on a copper sulfide
and Prussian blue/platinum (CuS@PB/Pt) composite was developed. A rose-like CuS@PB/Pt
composite was synthesized for the first time, and it was discovered that when hydrogen peroxide
was present, the 3,3′,5,5′-tetramethylbenzidine (TMB) changed from colorless into blue-oxidized
TMB. The CuS@PB/Pt composite was characterized with a scanning electron microscope (SEM), an
energy dispersive spectrometer (EDS), and an X-ray photoelectron spectrometer (XPS). Moreover,
the catalytic activity of the CuS@PB/Pt composite was inhibited by the binding of dopamine to the
composite. The color change of TMB can be evaluated by the UV spectrum and a portable smartphone
detection device. The developed colorimetric sensor can be used to quantitatively analyze dopamine
between 1 and 60 µM with a detection limit of 0.28 µM. Furthermore, the sensor showed good
long-term stability and good performance in human serum samples. Compared with other reported
methods, this strategy can be performed rapidly (16 min) and has the advantage of smartphone
visual detection. The portable smartphone detection device is portable and user-friendly, providing
convenient colorimetric analysis for serum. This colorimetric strategy also has considerable potential
for the development of in vitro diagnosis methods in combination with other test strips.

Keywords: colorimetric; dopamine; rose-like CuS@Prussian blue/Pt; smartphone

1. Introduction

Dopamine (DA) is an important neurotransmitter that plays a key role in neuropsy-
chiatric illness [1]. DA is an important and abundant monoamine neurotransmitter that is
closely connected to many neuronal activities, such as cognitive function [2], motor con-
trol [3], and memory function [4]. In particular, the pathophysiology of several psychiatric
and neurological conditions, including Parkinson’s disease [3], Huntington’s disease [5],
food and drug addiction [6], and schizophrenia [7], is intimately linked to aberrant DA
secretion. Parkinson’s disease is the second most common neurodegenerative disease;
however, the early pathophysiological events and sequences of its dysfunction remain
unknown. The loss of dopaminergic neurons and lower levels of striatal DA can lead to the
motor impairments in Parkinson’s disease [3]. Therefore, the development of an efficient,
consistent, and sensitive method of detecting DA is crucial.

Recently, several techniques have been developed for DA detection, including high-
performance liquid chromatography (HPLC) [8], liquid chromatography-mass spectrom-
etry (LC-MS) [9], electrochemical methods [10–12], fluorescence spectrophotometry [13],
and colorimetric sensors [14]. These methods have demonstrated advantages in terms of
accuracy and precision. However, these methods, more or less, have some weaknesses. For
example, the HPLC and LC-MS have disadvantages such as time consumption, expensive
instruments, and operator training. Electrochemical detection has been widely noticed
because of its low cost, fast detection, high sensitivity, and simple operation, but it is
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relatively less intuitive. The colorimetric assay has the advantages of simplicity, rapidity,
and intuitiveness. It has also been reported that an electrochemical-colorimetric dual-mode
detection of dopamine has been established [14]. Moreover, there have also been reports
of colorimetric detection using smartphones by capturing the color changes without the
need for additional tools. Colorimetric sensors are based on enzymes that change their
color and absorbance during DA detection. Since these sensors are inexpensive, portable,
rapid-acting, and clearly visible to the naked eye, they have been extensively utilized for
DA detection [15–17].

Nowadays, many nanomaterials are known to exhibit enzyme-like activity. These
nanomaterials include precious metal nanoparticles [18], metal oxides [19], metal sulfides,
carbon nanotubes [20], graphene and derivatives [21], metal-organic frameworks [22], etc.
Recently, precious metal nanomaterials such as platinum nanoparticles (NPs) have been
considered promising candidates for application in colorimetric sensors owing to their
peroxidase activity [23]. However, they regularly group together in catalytic reactions,
which decreases the catalytic activity. Currently, an efficient solution to this issue is the
hybrid nanomaterials created by growing Pt NPs on substrates such as graphene oxide,
MoS2 nanosheets, MoO3 nanosheets, and Pd nanosheets [24–27]. More importantly, these
hybrid nanomaterials’ catalytic activity can be significantly increased due to the synergistic
interaction between their bimetallic active centers. Cu-based nanomaterials such as cop-
per oxide (CuO) [28]and copper phosphate Cu3(PO4)2 [29] have received a great deal of
attention for sensing and catalysis-related applications [30]. Due to their enzymatic-like
behavior for the catalyzed oxidation of per-oxidase substrates in the presence of H2O2,
copper sulfide (CuS)-based nanomaterials have been shown to be promising nanozymes for
glucose, cholesterol, and uric acid sensing [31]. A CuS-based sensor for sensing dopamine
has previously been reported in conjunction with rGO [32]. Among them, Prussian blue (PB)
has attracted a lot of study interest because of its significant peroxidase mimic catalytic activity,
which is related to its mixed valence states of Fe atoms, which are similar to Fe3O4 [33,34].
Due to their excellent peroxidase mimic characteristics, they are commonly employed as
transducers in the development of electrochemical biosensors [34]. Prussian blue (PB) NPs
with high enzyme-mimicking activity supported by MoS2 nanocomposites have been reported
as peroxidase-like nanozymes for the colorimetric sensing of DA [35–37]. Compared with
single nanomaterials, multi-component systems may be able to solve the above problems and
can generally exhibit high enzymatic simulation catalytic activity.

In this study, we developed a rapid, homogeneous colorimetric method based on
copper sulfide Prussian blue/platinum (CuS@PB/Pt) NP composites for DA detection. The
colorimetric performance of the NPs was improved by the addition of Pt. To effectively
replace natural enzymes like horseradish peroxidase (HRP) in the chromogenic reaction
between H2O2 and 3,3′,5,5′-tetramethylbenzidine (TMB), the CuS@PB/Pt NP composites
were synthesized. DA successfully prevented the chromogenic reaction by oxidizing
colorless TMB to blue oxidized TMB (ox-TMB), effectively turning off the colorimetric
signals. This assay was validated for the detection of DA in human serum. This method
provides a strategy for DA identification and may be suitable for practical application.

2. Materials and Methods
2.1. Reagents and Apparatus

The details are described in the Supplementary Materials.

2.2. Synthesis of CuS@PB/Pt

The CuS NPs and CuS@PB composites were prepared using methods described by
Qu et al. [38] and Li et al. [39], whereas the CuS@PB/Pt composite was prepared using
a method described by Gong et al. [28]. The Supplementary Materials contain a detailed
description of the preparation procedures.
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2.3. Colorimetric Detection of DA

In PBS buffer (0.01 M, pH = 7, 320 µL), different concentrations of DA aqueous solution
were mixed with CuS@PB/Pt (1 mg/mL, 30 µL). Then, TMB (50 mM dissolved in ultrapure
water, 110 µL) and H2O2 (50 mM, 50 µL) were added to the above solution. After 16 min
of incubation at 45 ◦C, the mixture was subjected to UV-vis absorption spectroscopy to
measure the absorbance. A calibration curve was prepared by plotting the absorbance
at 652 nm as a function of the DA concentration (A = A0 − A, where A0 and A are the
absorbance values at 652 nm in the absence and presence of DA, respectively). We took
pictures immediately, and the RGB value of the color change of the reaction system was
extracted using the built-in chromaticity extraction software (Color extractor, Android app
market). The R value was used to quantitatively determine the DA concentration in the
system. A portable smartphone colorimetric detection device was developed according to
the method reported by Qu et al. [40]. We made a slight improvement by adding a cover to
the device to avoid affecting the stability of the method due to a change in the light source.
A schematic of the device is shown in Figure 1c.
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Figure 1. (a) Schematic illustration of a CuS@Pb/Pt colorimetric sensor for DA. (b) Two methods for
detecting dopamine. (Coloured lines for UV-vis absorption spectroscopy; Shades of blue for visible
color of DA) (c) The schematic representation of the portable device.

2.4. Quantitative Analysis of DA in Human Serum Samples

To successfully detect DA in human serum, samples from healthy volunteers were
obtained from the Guizhou Staff Hospital (Guizhou, China). Before use and after thawing
at room temperature, the samples were centrifuged (6708× g) for 10 min to precipitate
macromolecular proteins and other impurities, and the supernatant was diluted 50× for
testing. In addition, different concentrations of DA standard solution (2–30 ng/mL) were
added to the prepared serum samples and measured using UV-vis absorption spectroscopy
and a smartphone. The recovery rate was calculated using the following formula:

Recovery(%) =
Cdetected −Cadded

Cadded
× 100% (1)

3. Results
3.1. Characterization of Materials

To ensure the success of the experiment, it was important to determine whether the
CuS@PB/Pt composite had been properly synthesized. First, the morphologies of CuS,
CuS@PB, and CuS@PB/Pt were characterized using SEM. As shown in Figure 2a, the CuS
NPs exhibited the shape of a rose composed of nanosheets. The thickness of the nanosheets
was uniform and clear [38]. The CuS@PB (Figure 2b) changes in morphology mean that the
thickness of the nanosheets was thicker. As shown in Figure 2c, the CuS@PB/Pt composite
recovered its flower shape, and small particles were present on the nanosheets. In addition,
the EDS results revealed the presence of S, Fe, Cu, and Pt in the CuS@PB/Pt composite
(Figure 2d,h,l).
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XPS spectra of (f) C 1S, (g) Cu 2p, (i) S 2p, (j) Pt 4f, and (k) Fe 2p. (d,h,l) The corresponding EDS
elemental mapping images of the prepared CuS@PB/Pt, including the S, Cu, Fe, and Pt. Scale
bar: 2 nm.

X-ray photoelectron spectroscopy (XPS) was used to further investigate the chemical
composition of the CuS@PB/Pt composites. As shown in Figure 2g, there were two main
characteristic peaks at 930.97 and 950.78 eV in the Cu2p spectrum, which were assigned to
Cu 2p3/2 and Cu 2p1/2, respectively. Peaks corresponding to S 2p appeared at 160.88 eV
(S 2p3/2) and 162.13 eV (S 2p1/2) [39] (Figure 2i). The Pt 4f profile showed two peaks at
71.63 and 76.53 eV, which correspond to metallic Pt 4f7/2 and Pt 4f5/2, respectively. Pt
mainly exists in the zero-valence and 2+-valence forms. Three peaks in the Fe 2p spectrum
(Figure 2k), which correspond to Fe 2p3/2, are evident at approximately 708.6, 709.6, and
711.53 eV [39].

3.2. Feasibility of the Designed Colorimetric Strategy

Evaluation of the oxidase activity of the CuS@PB/Pt composite is essential because it
directly influences the TMB signal response. First, we studied the oxidase activity of the
synthesized materials using UV-vis absorption spectroscopy. TMB, the most widely used
chromogenic substrate in nanoenzyme catalysis, was used as a chromogenic reagent in
this experiment. Typically, CuS@Pb/Pt (1 mg/mL, 30 µL) was dispersed into PBS buffer
(0.01 M, pH = 7, 320 µL) and ultrapure water (480 µL). TMB (50 mM, 110 µL) and H2O2
(50 mM, 50 µL) were added to the solution. The TMB was dissolved in ultrapure water.
The mixture was incubated at 37 ◦C for 10 min. After that, the absorbance data were
immediately collected using UV-vis absorption spectroscopy. The peroxidase-like catalytic
activities of CuS, CuS@PB, and CuS@PB/Pt (1.0 mg/mL) were investigated. As shown in
Figure 3a, the CuS@PB/Pt composites exhibited a high absorbance of 652 nm compared
to the other components, such as CuS and CuS@PB. Moreover, except when H2O2 and
the CuS@PB/Pt composite existed at the same time, the absence of an absorption peak at
652 nm in the other components further demonstrates the superiority of the composite
over the alternatives (Figure 3b). This phenomenon agrees with previous reports that H2O2
would first be quickly catalyzed into hydroxyl radicals in the presence of peroxidase, which
would then further oxidize the colorless TMB to a blue ox-TMB [41].
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In addition, we investigated the oxidase activity of the CuS@PB/Pt composite using
a color-producing process. The CuS@PB/Pt composite oxidized colorless TMB to blue
ox-TMB in the presence of hydrogen peroxide. The oxidative activity was demonstrated
by Michaelis–Menten kinetics (v = Vmax[S]/(Km + [S]), where [S] is the concentration of
the substrate, v is the initial velocity, Km is the Michaelis–Menten constant, and Vmax is the
maximal reaction velocity.

As shown in Figure S1a,c, CuS@PB/Pt had a Km value of 3.5 mM when H2O2 was
used as the substrate, which was less than that previously observed for HRP (3.70 mM) [42].
Unlike HRP, which has a Km value of 0.434 mM, the CuS@PB/Pt nanocomposites have a
Km value of 0.298 mM (Figure S1b,d) with TMB as the substrate. In addition, the feasibility
of the proposed colorimetric strategy for the detection of DA was explored. As shown
in Figure 3c, when DA was added in various quantities, the ox-TMB absorption peak at
652 nm decreased in intensity (10 µM, 100 mM). To further investigate the feasibility of the
suggested colorimetric strategy, the oxidative reactions of other chromogenic reagents such
as 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and o-phenylenediamine
(OPD) were also performed (Figure S3a,b). The characteristic absorbance of the UV-vis
spectra (Figure S2a,b) indicates that the colorimetric strategy for DA detection was success-
fully developed.

3.3. Optimization of Experimental Parameters

HRP and other peroxidase mimics are comparable to natural peroxidases, and the
pH and temperature of the experiment can significantly impact the catalytic ability of the
CuS@PB/Pt composites. To investigate how pH affects the catalytic oxidation of TMB by
CuS@PB/Pt in the presence of H2O2, we conducted pH experiments using buffer solutions
with different pH values. In Figure 4a, the changes in the peroxidase-like activity of the
CuS@PB/Pt composites are shown at different pH levels (3.0–8.0). The findings show that
the best catalytic activity was achieved at approximately pH 7. Therefore, a pH of 7 was
selected for the ensuing test. Additionally, a broad temperature range (20–60 ◦C) was
examined to find out how temperature affected the catalytic activity of CuS@PB/Pt. The
catalytic activity of CuS@PB/Pt was found to be at its optimum level at 45 ◦C (see Figure 4b).
These results are consistent with those of Figure 3d, which suggests that the relative activity
of CuS@PB/Pt is maintained above 40% over the temperature range of 20 ◦C to 60 ◦C. The
response time of the CuS@PB/Pt composite to ox-TMB was also investigated. When the
CuS@PB/Pt composites interacted with TMB, the UV-vis spectra of ox-TMB tended to be
maximal and constant after 16 min of reaction, as shown in Figure 4c.
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Figure 4. (a) UV-vis absorption spectra with different pHs of PBS (0.01 M) buffer. (b) UV-vis
absorption spectra with different reaction temperatures. (c) UV-vis absorption spectra with different
reaction times.

3.4. Analytical Performance of Colorimetric Detection of DA

To evaluate the sensing capacity of CuS@PB/Pt for the colorimetric detection of DA,
various concentrations (1–60 µM) of DA were measured under the optimal conditions. As
shown in Figure 5a, the absorbance decreased progressively as the DA content increased,
which is compatible with the color change shown in Figure 5c. There were two linear ranges
at low (1–10 µM) and high concentrations (10–60 µM) of DA. The following regression
equation applies: y1 = −0.011x1 + 0.8934 (R2 = 0.9965), where x1 is the concentration of
1–10 µM; y2 = −0.031x2 + 1.119 (R2 = 0.993), where x1 is the concentration of 10–60 µM, and
the detection limit is 0.28 µM. In addition, we captured the color changes on a smartphone.
According to the R value produced by the smartphone, the DA concentration has a linear
relationship with color at low concentrations (1–10 µM). The linear regression equation is
as follows: y = 6.5182x–0.6515 (R2 = 0.9921), and 0.42 µM is the detection limit. The linear
concentration range and detection limit for DA measurement in this study are consistent
with those of previous DA detection methods (Table 1). These results have the advantages
of a short detection time, the use of portable equipment, and detection by smartphone.
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Table 1. Comparison of different methods for the detection of dopamine.

Method Materials LOD Sensitivity Ref

HPLC-MS/MS / 1.87 µM 1.87 × 10−5–1.87 µM [9]
Electrochemical Co3O4–Fe2O3 0.24 µM 10–100 µM [41]

Fluorescence 2, 3-diaminophenazine 1.76 µM 2.0–61 µM [13]
Colorimetric MVCM 0.74 µM 5–100 µM [42]
Colorimetric CuS@PB/Pt 0.28 µM 1–60 µM This work
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3.5. Selectivity, Reproducibility, and Stability of the Colorimetric Method

Several common ions in human serum were studied under the same conditions to
assess the selectivity of the novel colorimetric technique for DA detection. As shown in
Figure 6a, only DA can drastically reduce the signal intensity. However, although their
concentration was five times greater than that of DA (250 µM), the other ions seldom
led to a discernible loss in signal intensity. As shown in Figure 6d, the same result was
obtained using the smartphone to measure the R value. At the same time, Figure 6a,e
shows that the absorbance of the other interferents, with the exception of AA, remains
almost unchanged in the colorimetric sensor. Therefore, we introduced a masking agent,
iodoacetamide (IAM), to address this issue. The introduction of IAM shields the interfering
signal response well, thereby improving the selectivity of the sensor for DA, as shown
in Figure 6b,f. Additionally, we evaluated the reproducibility of the suggested method
using intra- and inter-batch experiments. Three different concentrations of DA (5 µM,
10 µM, and 30 µM) were tested using the same batch of synthetic CuS@PB/Pt composite.
The relative standard deviation (RSD) corresponding to the absorbance values of three
parallel experimental groups was less than 0.80%. The RSD values corresponding to R
with three different concentrations (2 µM, 5 µM, and 10 µM) were less than 0.01%. Three
batches of CuS@PB/Pt composites were used to detect DA samples (10 µM). The RSD
values were below 1.19% and 0.8%, respectively. Additionally, under the same experimental
conditions, samples prepared at the same DA concentration were tested seven times to
evaluate the repeatability of this method. The UV-vis spectral responses and R values of
the seven replicates were similar, indicating that the constructed sensor had satisfactory
reproducibility (Figure 6b,e). This indicates that the colorimetric method has satisfactory
reproducibility. We further examined the stability of the CuS@PB/Pt composite because the
system had a significant impact on sample detection. When the response of the CuS@PB/Pt
composite was examined after storage at 4 ◦C for 30 d, the absorbance of 5 µm DA changed
rarely. As shown in Figure 6f, the same result was obtained using the smartphone to
determine R. This demonstrates the excellent stability of the fabricated system. The result
indicates that the CuS@PB/Pt composite has the potential for use in long-term applications.
to be used for long-term applications.
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fering compounds are present in concentrations five times (50 µM) greater than DA’s. (e) Specificity
of the established method for DA of RGB colorimetric (4R = R − Rblank). (b,f) The UV-vis spectra
responses and RGB colorimetric values of DA, AA, and coexisting systems. The concentration of
interferents is three times higher than that of DA (10 µM). (c,g) The repeatability of the developed
method (DA = 10 µM). (d,h) The 30-day storage stability of the established method (DA = 50 µM for
UV-vis spectra, DA = 5 µM for RGB colorimetric).



Sensors 2023, 23, 9029 8 of 10

3.6. Real-Sample Analysis

The feasibility and applicability of the sensor for analyzing actual samples were
further verified by testing DA added to the human serum samples of healthy volunteers
and calculating the recovery rate. As shown in Table S1, the recovery rate of the standard
addition by the UV-vis absorption spectrum was 94.18–105.55%, and the average recovery
of the smartphone signal was 88.71–107.58%. The detection results of the two methods
were compared with those of HPLC-MS/MS. After mutual fitting, the slope of the linear
equation obtained by the two modes was close to 1, and the intercept was close to 0, which
indicates that the two detection methods are consistent with HPLC-MS/MS and further
proves that the sensor is feasible and accurate for detecting DA (Figure 7).
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4. Conclusions

In this study, a rose-like CuS@PB/Pt composite was successfully fabricated. Moreover,
the excellent peroxidase-like catalytic activity of the composite was observed for the first
time. However, the system has economic challenges due to the use of precious metal
nanomaterials. The narrow range of detection using smartphones is also a limitation. In
spite of this, we developed a homogeneous colorimetric strategy for the measurement
of colorimetric signals using UV-vis absorption spectroscopy that can instantly produce
smartphone readouts for DA detection. The developed colorimetric sensor can be used to
quantitatively analyze dopamine between 1 and 60 µM with a detection limit of 0.28 µM.
In addition, we developed an easy-to-use portable device to aid in colorimetric detection
by smartphone. The quantitative point-of-care analysis of DA is possible because of the
rapid (16 min) detection time and portable smartphone readouts for detection signals.
The applicability of the proposed approach for the analysis of actual sample data was
demonstrated through the acceptable detection of DA in real samples by the proposed
colorimetric sensor. In summary, a practical and effective colorimetric detection platform
was developed for the detection of DA in human serum that will broaden the potential
point-of-care applications in biotechnology and clinical diagnosis. This platform also
provides a good future research direction for detecting dopamine precursors or metabolites,
such as phenylalanine and tyrosine. Moreover, the potential application of novel, high-
performance artificial enzyme simulations based on nanomaterials was demonstrated.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/s23229029/s1. Figure S1: (a,c) Steady-state kinetic analysis
utilizing the Michaelis–Menten model of H2O2 and TMB; (b,d) Lineweaver–Burk double-reciprocal
model of H2O2 and TMB; Figure S2. UV–Vis absorption spectra with different chromogenicreagent
of the addition of DA at different concentrations ((a) ABTS; (b) (OPD)); Table S1: Determination of
dopamine in human serum.
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