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Abstract: In classical radar imaging, such as in Earth remote sensing, electromagnetic waves are
usually assumed to propagate in free space. However, in numerous applications, such as ground
penetrating radar or non-destructive testing, this assumption no longer holds. When there is a
multi-material background, the subsurface image reconstruction becomes considerably more com-
plex. Imaging can be performed in the spatial domain or, equivalently, in the wavenumber domain
(k-space). In subsurface imaging, to date, objects with a non-planar surface are commonly recon-
structed in the spatial domain, by the Backprojection algorithm combined with ray tracing, which is
computationally demanding. On the other hand, objects with a planar surface can be reconstructed
more efficiently in k-space. However, many non-planar surfaces are partly planar. Therefore, in this
paper, a novel concept is introduced that makes use of the efficient k-space-based reconstruction
algorithms for partly planar scenarios, too. The proposed algorithm forms an image from superposing
sub-images where as many image parts as possible are reconstructed in the wavenumber domain, and
only as many as necessary are reconstructed in the spatial domain. For this, a segmentation scheme is
developed to determine which parts of the image volume can be reconstructed in the wavenumber
domain. The novel concept is verified by measurements, both from monostatic synthetic aperture
radar data and multiple-input–multiple-output radar data. It is shown that the computational effi-
ciency for imaging irregularly shaped geometries can be significantly augmented when applying the
proposed concept.

Keywords: radar; subsurface imaging; synthetic aperture radar; ground penetrating radar; MIMO
radar; non-destructive testing

1. Introduction

High-resolution radar imaging originates from Earth remote sensing (see, e.g., [1,2]).
In the past decades, it was adapted to a number of close-range applications, e.g., security
screening of persons [3,4] or automotive radar imaging [5,6]. In all these applications, the
electromagnetic waves can usually be assumed to propagate through free space. However,
there are imaging scenarios where this assumption no longer holds. These include ground
penetrating radar [7], non-destructive testing [8], or through-the-wall radar [9]. In such
scenarios, the waves propagate through an inhomogeneous background (e.g., air and soil
in ground penetrating radar). In that case, an image reconstruction becomes more complex
compared to the classical case: at the material boundary, the wave encounters a change in
propagation velocity, which results in refraction for non-normal incidence. To reconstruct
an image from these scenarios correctly, algorithms that take into account the above-named
effects have to be applied.

An image formation can be performed in the time and space domain or in the temporal
and spatial frequency domain. When using a stepped-frequency continuous wave (SFCW)
radar, as is conducted in our measurements and will be assumed throughout this paper, the
radar data are captured in the frequency domain. Accordingly, reconstruction algorithms
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can be distinguished by whether they operate in the spatial domain or in the spatial
frequency domain (also termed wavenumber domain or k-space).

A classical reconstruction algorithm in the spatial domain is the Backprojection al-
gorithm (refs. [3,10]). It can be applied to any kind of synthetic aperture or array but is
computationally demanding. The computational efficiency decreases further for heteroge-
neous media. In that case, for determining the refracted wave propagation, a numerical ray
tracing step has to be introduced in the reconstruction process. The ray tracer computes
the refracted wave path (also termed optical path) by numerical optimization based on
Fermat’s principle (see, e.g., [11]). Only for a planar material boundary, there is an analytic
formulation for the refracted wave path [11].

In the late 1970s, the first reconstruction algorithms operating in the wavenumber do-
main were introduced in geophysics. These approaches, named Phase Shift Migration [12]
and Range Migration [13], are more efficient than the Backprojection algorithm since they
can reconstruct an image line by line or even altogether in one step. Accordingly, they
were soon adopted for monostatic synthetic aperture radar (SAR) imaging [14] and more
recently to multiple-input–multiple-output (MIMO) radar [15,16]. However, in subsurface
imaging, when there is a heterogeneous background, these efficient algorithms can only be
applied when there is a planar material boundary or a multi-layer scenario with several
planar boundaries.

Some efforts have been undertaken to overcome this problem and use wavenum-
ber domain migration also for geometries below an irregularly shaped surface. These
include Split-Step Migration [17], Phase Shift Plus Interpolation [18,19], and others [20,21].
However, all these approaches are iterative and therefore still lack efficiency.

In short, an efficient image reconstruction of heterogeneous media can only be per-
formed when the material boundary is planar. For reconstructing objects with a non-planar
surface, up to today, often the Backprojection algorithm with ray tracing (see, e.g., [11,22])
is used, and the reconstruction of large objects is far from real-time.

However, many irregular surfaces are at least partly planar: in ground penetrating
radar, this may be a ground that is flat with a few hills and troughs. Such a scenario is
illustrated in Figure 1: a ground penetrating radar, carried by an unmanned aerial vehicle
(UAV), investigates a terrain with an even surface adjacent to a hill. The radar is intended to
help detect structures hidden below the surface. These can be man-made, such as pipelines,
cables, or landmines, as well as geophysical, such as water or soil layers [23].

Test objects from non-destructive testing with a partly planar surface include, e.g.,
rotor blades.

Figure 1. Subsurface radar imaging scenario: a drone carrying a radar to image subsurface regions
below a curved planar ground surface.

Note that, in fact, a partly planar surface is a natural assumption when dealing with
curved surfaces in microwave imaging: if the surface was completely irregular, it would be
hard to reconstruct a good image even with the Backprojection algorithm for heterogeneous
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media. Its ray tracing step is based on geometrical optics—which, in turn, is valid only for
“large” object geometries compared to the employed wavelength (typically larger than ten
times the wavelength).

When the scenario under test has a surface that is partly planar, the question naturally
arises whether it could be possible to use the efficient wavenumber domain reconstruction
algorithms in such cases at least partly.

In this paper, we will demonstrate that, with a proper segmentation of the reconstruc-
tion domain, it is possible to reconstruct the image correctly, completing it partly in the
wavenumber domain. The derivation of such an efficient and yet exact method is the goal
of this work. To our best knowledge, no similar approach has been published before.

The rest of the paper is outlined as follows: in Section 2, the novel image reconstruction
concept is derived. The derivation is illustrated by an example with a monostatic SAR.
In Section 3, the proposed concept is extended to MIMO array imaging in the context of
non-destructive material testing. Eventually, a conclusion is drawn.

2. Novel Reconstruction Concept

In this section, the novel concept for subsurface imaging below a non-planar surface is
presented. For a better understanding, we first recapitulate imaging as a formalism. Based
on this, the novel approach will be derived.

For the sake of simplicity, a monostatic radar with equidistant sampling is employed
for the derivation. However, the concept can readily be extended to sparse MIMO arrays,
as will be shown subsequently.

2.1. Imaging Formalism

Consider an electromagnetic scattering problem, linearized by the first Born approx-
imation, for a monostatic radar system whose aperture is rectangular along the x and y
directions, at z = 0:

sscat(xA, yA, z = 0, ω) =
y

o(x, y, z0)exp
{
−j2k

√
( x− xA)2 + (y− yA)2 + z2

0

}
dx dy dz (1)

In (1), sscat(xA, yA, z = 0, ω) is the scattered signal at a specific antenna location,
denoted by index “A”, and frequency ω. The object distribution is denoted o(x, y, z0). The
exponential term in (1) is the Green’s function (neglecting its amplitude), which describes
wave propagation from the transceiver to the target and back to the transceiver. In it, the
factor 2 accounts for the two-way propagation in the monostatic radar system and k denotes
the wavenumber

k =
2 π

λ
=

ω

c
, (2)

where λ is the wavelength, and c is the propagation velocity. When we assume free-space
propagation, the wave’s propagation path in (1) equals the direct path between an antenna
and a target point.

Imaging is the process of reconstructing an estimate of the object distribution from
the scattered field. An estimate of the object distribution, o′(x, y, z0), can be obtained by
solving the inverse scattering problem:

o′(x, y, z0) =
∫ ∫ ∫

sscat( xA, yA, z = 0, ω)exp
{
+j2k

√
( x− xA)2 + (y− yA)2 + z2

0

}
dxAdyAdω (3)

In a real-world system, the data will be captured at discrete values, which is why the
formulation will read as

o′(x, y, z0) =∑
xA

∑
yA

∑
ω

sscat( xA, yA, z = 0, ω)·exp
{
+j2k

√
( x− xA)2 + (y− yA)2 + z2

0

}
(4)



Sensors 2023, 23, 9021 4 of 14

Implementing the formulation in (4) is referred to as Backprojection. The exponential
term in (4), which is the complex conjugate of the Green’s function, is the reconstruction
kernel of the Backprojection algorithm. Due to the spatial variance of the reconstruction
kernel, the Backprojection algorithm is very flexible but very demanding in terms of
computation time. The reconstruction is performed voxel by voxel.

When there is a multi-material background, the propagation term needs to be ad-
justed. As the wave encounters a change in material, two effects will occur, namely a
change in propagation velocity and (resulting from it) refraction. These two effects can be
incorporated into the reconstruction kernel

h(x, y, z) =exp
{

j2k
√
( xB − xA)2+(yB − yA)

2 + z2
B

}
+ exp

{
j2k
√
εr

√
( x −xB)2+(y− yB)

2+( z− zB)
2
}

(5)

The expression describes the refracted optical path as illustrated in Figure 2. Here,
index “B” denotes the refraction point at the boundary. To account for the change in
propagation velocity, the wavenumber k is scaled by the square root of the material’s
relative permittivity εr.

Figure 2. Illustration of the refracted optical path from an antenna to a target in a two-layer geometry.

To implement a reconstruction kernel as in (5), the refracted optical path, which is
determined by the refraction point (xB, yB, zB), needs to be known. It can be computed by
Snell’s law

n1 · sin(α) = n2 · sin(β) (6)

when the incident angle α is known. However, for an imaging problem, when the starting
point (at the antenna) and the endpoint (the target voxel) are provided instead of the
incident angle, in general, the optical path cannot be computed analytically [11]. To find it,
numerical methods are required. One possibility for this is numerical ray tracing based on
Fermat’s principle. For this method, first, the boundary is discretized into elements. For
each element, the optical paths are computed for a respective antenna and target position.
Fermat’s principle now states that a wave follows that optical path that minimizes the
travel time, which is why it is also known as the “principle of least time”. Therefore,
that boundary point out of the discretized values that minimizes the travel time is the
true refraction point [22]. This method is called “bending”. Other possible approaches
include shooting rays or so-called Eikonal solvers [24]. It is obvious that solving such an
optimization problem decreases computational efficiency further still.

Equivalent to the spatial domain formulation (1), the scattering problem can be formu-
lated in the spatial frequency domain. Again, assuming free-space propagation first, the
wavenumber domain formulation of the scattering problem reads as

Sscat
(
kx , ky, ω

)
= O

(
kx , ky, z0

)
· exp {−j kz z0} (7)
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Here, Sscat
(
kx , ky, ω

)
is the receive spectrum, which can be obtained from a two-

dimensional Fourier transform of the receive data sscat(xA, yA, z = 0, ω) w.r.t. x and y.
The terms kx and ky denote the spatial wavenumbers. Again, neglecting amplitude terms,
the k-space Green’s function equals the exponential term in (7). For it, the wavenumber
z-component, kz, can be computed from the so-called dispersion relation:

kz =

√(
2 k)2 − k2

x − k2
y =

√(
2ω

c

)2
− k2

x − k2
y, (8)

which links frequency and wavenumber. The factor 2 again accounts for the roundtrip. In
the geophysics literature, this is referred to as the “exploding reflector model” [25].

From (8), the inverse scattering problem, formulated in the spatial frequency domain,
can be derived as

O
(
kx , ky, z0

)
=Sscat

(
kx , ky, ω

)
· exp {+j kz z0} (9)

It can be interpreted as a wavefield extrapolation in the wavenumber domain [25].
The exponential term is the reconstruction kernel in the wavenumber domain.

A direct implementation of (9) is the Phase Shift Migration algorithm [12]. It consists
of the following steps (more details can be found in [25]):

1. 2D Fourier transform the receive signal over aperture dimensions (x, y);
2. Shift the spectrum obtained in step 1 iteratively to target planes via phase shift

proportional to depth z0 (Equation (9));
3. Focusing: 2D inverse Fourier transform over kx and ky and sum over frequency.

As can be seen from (9), the reconstruction kernel now solely depends on z and ω,
which is why this kind of reconstruction is computationally more efficient. A depth-by-
depth reconstruction for each depth plane is now possible instead of a voxel-by-voxel
reconstruction as in the Backprojection algorithm.

More efficient still is the Range Migration algorithm. Its main idea is to perform
focusing by means of a 3D inverse Fourier transform instead of a 2D inverse Fourier
transform plus summation over frequency. For this, a rescaling of the wavefield data to
depend on kz instead of ω is necessary. This is performed by an interpolation using the
dispersion relation. The interpolation is termed “Stolt interpolation” after its inventor.
Because of the 3D inverse Fourier transform, the whole reconstruction volume can be
reconstructed in one step. For details on the algorithm, see [13,25].

When there is a heterogeneous background, an adjustment of the Phase Shift Migration
algorithm to can be accomplished by adapting the reconstruction kernel as

H
(
kx , ky, z0, ω ) = exp {+j kzi z0}, (10)

where the index I in kzi denotes the i-th material in the multilayer geometry and

kzi =

√(
2ω

ci

)2
− k2

x–− k2
y (11)

Therefore, simply by adjusting kzi, the same line-by-line reconstruction can be per-
formed as before.

For the Range Migration, a reconstruction per material can be performed (see, e.g., [25]).
Therefore, both wavenumber domain algorithms perform faster than the Backprojection
algorithm. However, they cannot deal with curved boundaries.

2.2. Proposed Approach

As mentioned, the idea of our concept is to form an image from a superposition of
single sub-images where as much of the image volume as possible is reconstructed in the
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wavenumber domain and as little as possible is reconstructed in the spatial domain. For
this, first, a segmentation has to be performed to determine which image parts can be
reconstructed in the wavenumber domain and which have to be reconstructed in the spatial
domain.

To determine which parts can be reconstructed in wavenumber domain, we regard
Equation (10). Inherent in this reconstruction kernel, which is proportional only to z, is
the assumption that the material is varying only along depth z but not along the lateral
dimensions x and y. Therefore, the wavenumber domain reconstruction requires a planar
material boundary. It cannot deal with irregular ones [21].

Accordingly, we have to find those image points whose optical paths will intersect with
the planar boundary parts for all antenna positions. These image parts can be reconstructed
in the wavenumber domain correctly because the underlying assumption of a planar
material boundary will hold. Only the remaining part, which is influenced by the non-
planar boundary part, must be reconstructed in the spatial domain. This segmentation is
the core of our proposed hybrid concept.

In order to find the image segment that can be reconstructed in the wavenumber
domain, simple geometry can be used. This is illustrated in Figure 3, where a scenario
with a partly planar material boundary is illustrated. Here, the boundary consists of a non-
planar section between two planar ones. In the figure, the imaging geometry is sketched
along with three antennas, representing the first, second, and last position of the synthetic
aperture. The lateral dimension is denoted x; the depth dimension is denoted z.

Figure 3. Example geometry sketch for determining the maximum refracted optical path. The
incident and refracted angles are denoted α and β, respectively. The lateral dimension is x; the depth
dimension is z. The hatched area represents the area to be reconstructed in k-space.

At that boundary point that separates the planar and non-planar boundary parts (x1,
z0), the maximum refracted optical path is computed. It obviously corresponds to the
outermost antenna position, as illustrated in Figure 3.

For computation of the refracted path, the refractive index as well as the incident angle
are used: the angle of incidence, α, is provided by the range z0 from the aperture plane
and the distance between the outermost antenna and the intersection point (x1, z0) at the
material boundary:

tan (α) =
x1 − xA

z0
. (12)
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Using Snell’s law, (6), we can find the angle of refraction, β. The coordinate denoted
xmax in Figure 3 is then determined using geometric relations:

xmax − x1 = tan (β) · (zmax − z0), (13)

The point (xmax, zmax) separates the image domain into the part that can be recon-
structed in k-space and that to be reconstructed in the spatial domain. All points right
of xmax (i.e., x ≥ xmax; hatched area in Figure 3) can be computed in k-space. Since the
antenna position with the maximally possible refraction will have an optical path through
the planar boundary part, all other antennas—whose incident angles will be smaller—will
also have an optical path through the planar boundary part. Thus, in total, the hatched
region in Figure 3 can be reconstructed correctly in the wavenumber domain because the
underlying assumption of a planar material boundary is satisfied. Only the area in white
needs to be computed in the spatial domain.

Note that it would be possible to reconstruct all points right of the refracted line in
the wavenumber domain. Merely for the sake of implementation simplicity, the region is
chosen to be rectangular.

The same procedure needs to be performed for the other side of the curved boundary
part. Then, the right-most antenna position must be evaluated, but the calculation is
analogous to Equations (12) and (13).

Note that Snell’s law as in (6) is valid only for real-valued refractive indices, i.e.,
lossless materials. Therefore, we restrict ourselves to lossless materials for our concept.

With the segmentation of the reconstruction domain, the overall image can then be
reconstructed from superposing sub-images. To form the overall image, first, the whole
volume is reconstructed in k-space. Then, the necessary part is reconstructed in the spatial
domain and the first sub-image is overwritten in these regions.

When stitching the sub-images together, care must be taken regarding image ampli-
tudes: the sub-images can possibly display different amplitude scales because they are
reconstructed from two different algorithms. A possible approach to overcome this problem
is to normalize both images to the amplitude of the boundary reflection since it will most
likely be present in both sub-images.

In sum, the novel reconstruction concept consists of the following steps:

1. Divide reconstruction domains according to Section 2.2;
2. Sub-image 1: Reconstruct whole image in k-space;
3. Sub-image 2: Reconstruct necessary image part in spatial domain;
4. Adjust amplitudes by means of boundary reflection;
5. Overwrite necessary image part of sub-image 1 by sub-image 2.

For the reconstruction of sub-image 1, Phase Shift Migration or Range Migration can
be used; for sub-image 2, Backprojection or others (Phase Shift Plus Interpolation, Split
Step Migration, etc.). Detailed descriptions of the algorithms can be found in Section 2.1.

2.3. Discussion

It is possible that some image points within the hatched area in Figure 3 will be
influenced by the planar boundary part as well as by the non-planar part. Nonetheless,
the proposed concept still holds. We justify this by Fermat’s principle. This principle was
originally formulated as the “principle of least time”. However, in its modern version, it
states: when a wave travels from one point P1 to another point P2, the wave will take an
optical path that is stationary w.r.t. the variation in that path. This can be expressed in the
sense of the calculus of variation as [26]

δlopt (x, y, z) = δ

P2∫
P1

n (x, y, z) ds = 0 (14)



Sensors 2023, 23, 9021 8 of 14

where δlopt is the variation in the optical path, which is the geometrical path increment ds
multiplied by the space-variant refractive index n (x, y, z).

Thus, Fermat’s principle version implies that there may be several valid solutions
for the optical path [27]. Therefore, a solution through the planar boundary part may be
one out of possibly several solutions. However, since there is a valid path through the
planar boundary part, the assumptions for the k-space reconstruction are satisfied and the
corresponding image section can be reconstructed in k-space correctly.

2.4. Experimental Verification

Experiments with a quasi-monostatic, equidistantly sampled SAR were conducted to
verify the introduced concept. The SAR system was implemented as a single-input–single-
output (SISO) radar. A photograph of the employed laboratory setup is shown in Figure 4
along with a sketch showing the setup’s dimensions.

Figure 4. Test setup used for the experiments and sketch of setup with dimensions. A quasi-
monostatic SAR illuminates a box filled with sand and four stripes of aluminum foil buried in it
(displayed in white in the sketch).

The experimental setup consists of a down-looking radar that is moved step-wise
along a line on a traversing unit. The radar itself is a vector network analyzer (type Rohde
& Schwarz ZVA 24) combined with frequency extenders. Linearly polarized horn antennas
are used as transceivers. They emit and receive a stepped frequency continuous wave
signal in the frequency range of 75 GHz to 110 GHz. The antennas were mounted to the
frequency extenders on the traversing setup by means of 90-degree bends at a height of
20.3 cm above the sand’s surface.

A line scan with a total length of 18 cm was performed, sampled in steps of 1 mm. At
each point, the frequency range was sampled in 401 steps. From the line scan, a 2D image
can be reconstructed.

The SAR operates in a quasi-monostatic setup. The assumption of a quasi-monostatic
setup is valid only for large distances w.r.t. the wavelength. In our case, for a maximum
wavelength of 4 mm, the distance between the antenna aperture and the sand is more than
50 times the wavelength, which justifies the quasi-monostatic assumption.

The employed test object is a plastic box (H ×W × L: 20 cm × 15 cm × 20 cm) filled
with sand. In the sand, four stripes of aluminum foil are buried, which are four targets to
be imaged. Their width is approx. 1 cm.

To simulate an imaging geometry with a partly planar material boundary, the sand’s
surface was flattened, and then a little hill was added. The resulting geometry, which is
supposed to resemble the one in Figure 3, is shown in Figure 4.

For the reconstruction, the segmentation as described was performed. The result
is shown in Figure 5: for the given geometry, only 47.22% of the image needs to be
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reconstructed in the spatial domain (white area in Figure 3). Accordingly, 52.78%—more
than half of the volume—can be efficiently reconstructed in k-space (hatched area in
Figure 3). Note that this percentage is geometry-dependent.

Figure 5a shows the image reconstructed from the experimental data by means of the
proposed hybrid concept. Figure 5b shows the reference image reconstructed according to
the state of the art, i.e., with the spatial domain Backprojection algorithm combined with
ray tracing as described in Section 2.1. Both images are displayed in logarithmic scaling,
normalized to their respective maximum values.

For the reconstruction, the surface was extracted by means of a maximum search
within a depth area in which we assume the surface to be, followed by a polynomial fit to
smooth the surface and reduce the effect of outliers. The so-found curve is marked by the
dashed white line in Figure 5. The sand’s relative permittivity is 2.5. Since the sand is dry,
we made the assumption of a lossless material.

It can be seen that the novel concept leads to some surface clutter, which might be due
to a non-ideal amplitude adjustment of the two images, but there is no visible difference in
the imaging of the targets. The proposed concept yields an image comparable to the one
obtained with the state of the art.

Figure 5. Image reconstruction by proposed hybrid concept (a) and state of the art (Backprojection
with ray tracing, (b)).

Therefore, it could be demonstrated that the proposed concept is feasible. Additionally,
its computation time is much less than the reference image: when we assume that the fast
Range Migration is used for the k-space reconstruction, a small two-dimensional geometry,
as in the demonstration example, can be reconstructed in about real time. Since more than
50% of the image volume can be computed as fast, the reconstruction of the whole image
takes approximately only half the time compared to the state of the art.

3. Extension to MIMO Radar

In security screening and non-destructive testing with high throughput requirements,
MIMO radars are the state of the art. Therefore, the proposed concept is extended to MIMO
radar imaging in this section. Note that SAR and MIMO are the same except that in SAR
the antennas are moved, whereas in MIMO the frontend is stationary, composed of several
antennas. The numerical aperture synthesis is the same principle in both cases.

3.1. Adaption of Proposed Concept

In the case of MIMO radar and 3D geometry, the segmentation of the reconstruction
domain becomes more complex. In order to deal with it, we make an estimation here. For
both dimensions x and y separately, we search for the maximally possible refracted optical
path that occurs at the transition between planar and non-planar boundary parts. For
determining this maximum refraction, again we have to consider the outermost antennas,
which, this time, can be either transmitters or receivers. The outermost antennas again
determine the maximally refracted optical path. Therefore, they are critical and determine
the field that is influenced by the planar boundary part and therefore can be reconstructed
in the wavenumber domain.
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Then, the procedure remains the same. As a k-space-based image reconstruction
for an MIMO radar and a planar boundary, various algorithms can be employed (see,
e.g., [15,16,28–30]). In this work, we used the algorithm described in [28]. For the space
domain part, the Backprojection algorithm as described before was used.

3.2. Demonstration Setup

As an MIMO imaging radar, we used a Rohde & Schwarz QAR scanner, and 846
transmit (Tx) and receive (Rx) antennas were used each. They are set up in a sparse array
design as depicted in Figure 6. It consists of nine clusters, which are composed of two lines
of 47 transmitters and 47 receivers each.

Figure 6. Employed sparse MIMO array. Transmitters are in red; receivers in blue.

The measurement setup and the employed test sample are shown in Figure 7. The
sample under test is a polyvinylchloride (PVC, εr ≈ 2.7) object that has a surface composed
of two heights. It was illuminated by the radar in such a way that the stepped profile
represented the surface. During the measurement, the lower boundary was 65.3 cm away
from the aperture plane and the upper boundary was 62.8 cm away.

Figure 7. Photographs of measurement setup (left) and test object with dimensions (right).

3.3. Imaging Results

For using the proposed hybrid reconstruction concept, a segmentation of the recon-
struction domains must be performed. The critical region here is the region around the
middle of the stepped profile.

For the two depths mentioned above (65.3 cm and 62.8 cm, respectively) and a max-
imum array length of 70.5 cm given by the scanner, the maximum possible angles of
incidence are 29.1◦ and 28.2◦, respectively. Using Snell’s law and the maximum image
depth, the image segmentation can be obtained. It is shown in Figure 8. The arrows
correspond to the maximum refracted optical paths; the hatched areas depict those areas
that can be reconstructed in the wavenumber domain. Only the area depicted in white
needs to be reconstructed in the spatial domain.



Sensors 2023, 23, 9021 11 of 14

Figure 8. Segmentation according to the proposed concept. The arrows depict the maximally refracted
optical paths at the boundary irregularity. They determine the image area to be reconstructed in
k-space (hatched area).

With the proposed concept, an image can thus be reconstructed from three sub-images:

• k-space reconstruction through planar material boundary part at z = 65.3 cm in the
field x < −0.84 cm;

• k-space reconstruction through planar material boundary part at z = 62.8 cm in the
field x > 1.56 cm;

• spatial domain reconstruction in the field −0.84 cm < x < 1.56 cm.

The field that needs to be reconstructed in the spatial domain equals 7 bins out of
235 along the x-axis. Note that the test object’s surface profile is constant along the y-axis,
which is why no segmentation has to be performed along that domain.

Reconstruction results are shown in Figure 9. Here, cross sections along x and z
are shown. Figure 9a shows a simple segmentation according to the height profile, i.e.,
using two k-space reconstructions with planar material boundaries at 65.3 cm and 62.8 cm,
respectively, for the regions below these boundary parts. It can be seen that, although the
test object is recognizable, there is a gap in the lower boundary (at z ≈ 68 cm). In contrast,
Figure 9b displays the image obtained when using the proposed concept. This time, the
lower boundary is fully depicted, which verifies the approach also for MIMO imaging.

Figure 9. Image reconstruction by segmentation according to boundary parts (a) and proposed
concept (b).

3.4. Computational Complexity Analysis

To underline the efficiency of the proposed method, its computational complexity
is compared to that of the standard Backprojection algorithm. Tables 1 and 2 list the
computational complexities of both algorithms’ single steps. See [28] for an explanation of
the steps of the k-space-based MIMO reconstruction algorithm.
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Table 1. Computational complexity of the proposed method.

Step Computational Complexity

2D FFT Nx · Ny· log2(Nx·Ny)
Backpropagation to boundary Nx · Ny · Nω

Backpropagation inside material Nx · Ny · Nω · (Nz − 1)
2D IFFT Nx · Ny· log2(Nx·Ny) · Nz
Tx phase correction NTx · Nx · Ny · Nz· Nω

Summation ω Nω · Nx · Ny · Nz
Summation Tx NTx · Nx · Ny · Nz
Calculation of optical paths NTx · Nx

’· Ny · Nz + NRx · Nx
’ · Ny · Nz

Spatial domain reconstruction NTx · NRx · Nx
’ · Ny · Nz· Nω

Total (NTx = NRx= 846, Nω = 64,
Nx = Ny = 235, Nz = 35, Nx

′ = 7) 2.74 · 1012

Table 2. Computational complexity of the Backprojection algorithm.

Step Computational Complexity

Calculation of optical paths NTx · Nx · Ny · Nz + NRx · Nx · Ny · Nz
Spatial domain reconstruction NTx · NRx · Nx · Ny · Nz · Nω

Total (NTx = NRx = 846, Nω = 64,
Nx = Ny = 235, Nz = 35, Nx

′ = 7) 8.85 · 1013

In the tables, Nx and Ny denote the number of image points along the lateral dimen-
sions x and y; Nz denotes the number of image points along the range dimension. The
numbers of transmit and receive antennas are NTx and NRx, respectively; Nω is the number
of frequency steps. Nx’ denotes the number of image points along the x direction that need
to be reconstructed in the spatial domain.

It becomes clear that the proposed method has significantly lower complexity than the
Backprojection algorithm. It amounts to a factor of approximately 32 for the demonstration
example from Section 3.2 (NTx = NRx = 846 transmitters and receivers each, Nω = 64 fre-
quency steps, Nx = 235, Ny = 235, Nz = 35 image points in x, y, and z directions, respectively).

4. Conclusions

In this paper, a novel concept for subsurface radar imaging below a curved surface was
introduced. The approach is based on the fact that many non-planar imaging geometries
display a boundary that is partly planar. It was demonstrated that, in this case, efficient k-
space-based reconstruction concepts for planar geometries can be applied for reconstructing
parts of the subsurface image volume. That way, the computational efficiency of the image
reconstruction can be significantly augmented while preserving an undisturbed image
quality. The proposed concept was verified experimentally, both for monostatic SAR and
MIMO radar.

At present, the approach is restricted to geometries that are large compared to the
wavelength so that geometrical optics can be applied. Furthermore, the approach is formu-
lated for lossless materials. Future work will investigate overcoming these restrictions.
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