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Abstract: Deep learning algorithms have achieved encouraging results for pipeline defect segmen-
tation. However, existing defect segmentation methods may encounter challenges in accurately
segmenting the complex features of pipeline defects and suffer from low processing speeds. There-
fore, in this study, we propose Pipe-Sparse-Net, a pipeline defect segmentation system that combines
StyleGAN3 to segment the complex forms of underground drainage pipe defects. First, we intro-
duce a data augmentation algorithm based on StyleGAN3 to enlarge the dataset. Next, we propose
Pipe-Sparse-Net, a pipeline segmentation model based on SparseInst, to accurately predict the defect
regions in drainage pipes. Experimental results demonstrate that the segmentation accuracy of this
model can reach 91.4% with a processing speed of 56.7 frames per second (FPS). To validate the
superiority of this method, comparative experiments were conducted against Yolact, Condinst, and
Mask R-CNN, and the model achieved a speed improvement of 45% while increasing the accuracy
by more than 4%.
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1. Introduction

Urban drainage pipelines are essential components of urban infrastructure and re-
semble the vascular system of a city. With the accelerated urbanization process in China,
the total length of urban drainage pipelines is increasing at a rate of 5.5–10% per year,
reaching 802,000 km [1]. These pipelines provide great convenience to human communities
but require regular inspection, cleaning, and maintenance. Various functional defects can
occur in drainage pipelines, such as sludge deposition, pipe-wall scaling, and interface
leakage. These issues can result in poor drainage, reduced pipeline functionality, and local-
ized flooding or environmental pollution. To ensure the smooth operation and safety of
drainage pipeline facilities, detection techniques are required to understand the functional
and structural conditions inside pipes [2], guiding maintenance and management efforts.

Currently, visual inspection techniques such as Closed-Circuit Television (CCTV) [3]
and QuickView (QV) [4] are primarily used for underground drainage pipeline inspection
and collecting image or video data. With the widespread development and application
of visual inspection technologies used in infrastructure such as CCTV robots and QV,
large volumes of inspection images and videos are generated. Manual classification and
interpretation of these visual data are inefficient and inaccurate [5]. Many researchers have
proposed automated defect recognition techniques based on computer vision and image
processing technologies, which show promise in pipeline defect identification and analysis.

1.1. Related Work
1.1.1. Traditional Computer Vision and Image Processing Techniques

Traditional computer vision techniques have been employed for the automated in-
terpretation of CCTV images, requiring extensive image preprocessing and the design of
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complex feature extractors for tasks such as feature extraction and classification of sewage
pipeline images [6–8]. Li Hongyi [9] proposed a three-dimensional pipeline reconstruction
method based on DWGDirect technology designed to extract entity information from DWG
format files. Huynh et al. [10] proposed a sewage pipeline detection system based on 3D
stereovision. Their method achieved stereovision through calibration, rectification, and
correspondence and used a bilateral edge evaluation algorithm to detect small cracks in
pipelines. They also employed a constrained sliding window algorithm to improve search
speed. However, traditional computer vision techniques face several challenges, including
handling low-resolution and noisy videos, dealing with image distortion and structural
motion [11], and being influenced by lighting and shooting distances [12]. In the field of
pipeline defect recognition, traditional computer vision techniques encounter two main
issues. First, they require the design of complex feature extractors that are specific to the
task at hand. Second, the preparation of training datasets involves extensive image pre-
processing, which makes the training process cumbersome. Furthermore, current research
primarily focuses on identifying and detecting individual defects, such as cracks, while the
automatic recognition and localization of other common defects, such as misalignments
and obstructions, remain limited.

1.1.2. Deep Learning Techniques

In recent years, deep learning algorithms [13–15] have emerged for use in image
classification. Deep learning mimics the neural network mechanisms of the human brain
to recognize and analyze data such as digital images, text, and speech. This involves
combining low-level features of data to form high-level image attribute features that may
not be easily discernible. In contrast to traditional image recognition methods that require
manual feature design and extraction from raw data, deep learning enables the represen-
tation of a large amount of raw data with accurate latent features. This representation
requires specialized knowledge and extensive work experience using traditional methods.
Traditional image recognition methods are complex and inefficient, whereas deep learning
technology provides an effective solution to these challenges.

In 2020, Wang and Cheng proposed an improved neural network called DilaSeg-
CRF [16], which utilizes dilated convolutions and multiscale techniques to generate feature
maps with higher resolutions, thereby enhancing the accuracy of pipeline defect segmenta-
tion. In the same year, Pan et al. [17] introduced a novel semantic segmentation network
called PipeUNet for drainage pipeline defect segmentation, using U-Net as the backbone
network. It achieved high-speed processing of CCTV images at a rate of 32 fps. Qianqian
et al. [18], in 2021, proposed a method based on DeepLabv3+ for automatic pixel-level seg-
mentation and severity quantification of sewer defects. Ma et al. [19] proposed a automatic
intelligent detection and tracking system for road cracks composed of a Generative Adver-
sarial Network (PCGAN) and a crack detection and tracking network called YOLO-MF in
2022. The improved algorithm achieved the highest accuracy of 98.47%. In the same year,
He et al. [20] proposed an image segmentation method based on deep convolutional neural
networks, which achieved pixel-level segmentation of defect regions while classifying
pipeline defects. Li et al. [21], also in 2022, introduced a new instance segmentation model
called Pipe-SOLO, which features an efficient backbone structure (Res2Net-Mish-BN-101)
and an enhanced BiFPN network for underground pipeline defect segmentation.

Deep learning technology provides an important solution by eliminating the need for
manual feature engineering. Instead, a large amount of raw data are directly input into deep
neural networks and then undergo extensive nonlinear transformations based on specific
algorithms to extract high-level abstract features. Deep neural networks achieve learning
of highly complex functions by thoroughly transforming and combining raw data. There-
fore, the prerequisite for applying deep learning methods is to train the neural network
using a substantial amount of data, enabling the network to learn generalizable features.
Various types of defects in drainage pipelines exhibit distinct visual characteristics, which
is advantageous for the automatic recognition and extraction of features by deep learning
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networks. Additionally, the widespread use of CCTV photography techniques for drainage
pipelines allows the acquisition of a large dataset of defect images within a short period.
Deep learning technology can be successfully applied to defect recognition in drainage
pipelines. The significant advantages of applying deep learning to intelligent recognition of
underground pipeline defects include automatic feature learning, replacement of manual
feature engineering, high efficiency and stable performance, and the ability to leverage
parallel computing using graphics processing units (GPUs) for accelerated processing,
resulting in significantly improved recognition speed compared to typical image processing
techniques. Furthermore, deep learning can optimize feature representation by leveraging
joint automatic classifiers, greatly enhancing performance. In 2018, Myrans [22] proposed
a cascaded model based on a SVM radio-frequency classifier for automatic pipeline fault
detection, which significantly reduced false alarm rates. Finally, deep learning can benefit
from the enormous advantages offered by big data, thereby improving its scalability.

1.2. Contributions

As shown in Figure 1, a new intelligent pipeline defect segmentation system was
proposed to further improve the accuracy and speed of underground drainage pipeline
defect segmentation. The main innovations of this study are summarized as follows.

1. To address the issue of insufficient pipeline defect data, a clear image generation
network for drainage pipeline defects, called Pipe-Gan-Net, is established based on
StyleGAN3. This network was used to increase the number of new defect images;

2. To improve the accuracy and speed of pipeline defect segmentation, a pipeline seg-
mentation model called Pipe-Sparse-Net is proposed based on SparseInst. This model
accurately predicts the regions of drainage pipeline defects;

3. To further enhance the detection speed, an acceleration module called TensorRT is
applied to the segmentation model.

The remainder of this paper is organized as follows: Section 2 introduces the creation
of the dataset for pipeline defect segmentation, including data preprocessing, data augmen-
tation, and the instance segmentation model. Section 3 presents the experimental research
on the training and evaluation of image preprocessing and segmentation networks. It
also discusses the impact of data augmentation and TensorRT on segmentation. Section 4
summarizes the findings of the study and discusses future work.
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2. Methodology

In this study, we propose Pipe-Sparse-Net, a pipeline defect segmentation model
combined with StyleGAN3, to segment complex forms of defects in underground drainage
pipelines. First, images collected from the CCTV pipeline robots were selected and resized
to 512 × 512 pixels. StyleGAN3 was used to pre-process the original images and generate a
large number of defect images. Both the original and generated images were input into the
underground drainage pipeline defect segmentation network based on SparseInst. When
defects were detected, the network generated defect prediction masks based on SparseInst
to indicate the actual defects present in the images. Subsequently, the topological features
of the defect regions were extracted based on the accurately predicted defect masks.

2.1. Drainage Pipeline Defect Image Generation Network Pipe-Gan-Net

This study proposes a data augmentation method based on StyleGAN3 [23] that
enhances various pipeline defect images without replacing the original dataset, thereby
improving the performance of the segmentation model. StyleGAN3 addresses the issue
of image coordinates and feature entanglement in StyleGAN2, achieving true invariance
in image translation, rotation, and other transformations and significantly improving the
image synthesis quality. The model consists of a generator network and a discriminator
network, both of which are deep neural networks utilizing Leaky ReLU as the activation
function. The generator network employs a CNN and comprises a mapping network
and a synthesis network consisting of eight fully connected layers. The objective of this
network is to encode the input random noise vector Z into an intermediate vector W, where
the different elements of the intermediate vector control different visual features. These
visual features are used to determine the style of the generated pipeline defect images.
In the mapping network, Fourier features are utilized instead of constant inputs, noise
inputs are removed (the position information of features is solely derived from the coarse
features of the previous layers), the network depth is reduced to 14 layers (previously
18 layers), mixing regularization and path length regularization are disabled, and simple
normalization is applied before each convolution.

The synthesis network consists of 16 convolutional layers, 14 upsampling layers, and
14 downsampling layers, which are responsible for generating pipeline defect images. In
the synthesis network, the network depth is reduced, mixing regularization and path length
regularization are disabled, and simple normalization is applied before each convolution.
Non-linear filtering is improved, and the entire upsample–LReLU–downsample process is
implemented in a custom CUDA kernel. To achieve rotational invariance in the network,
the kernel size of all layers was varied from 3 × 3 to 1 × 1. The quantity of the feature map
was doubled to compensate for the reduced feature capacity.

The generated data from the generator network aim to be as close as possible to real
data, allowing us to effectively augment the research data. The structure of our model is
illustrated in Figure 2.

In this study, after preprocessing, the numbers of images in the dataset for cracks,
obstacles, and holes were 499, 315, and 472, respectively. After applying this data augmen-
tation method, the number of images for the three types of damage mentioned above was
1497, 945, and 1416.
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2.2. Drainage Pipeline Defect Image Segmentation Network Pipe-Sparse-Net

Recently, deep learning-based segmentation algorithms have been divided into
two categories. The first category comprises region-based methods, such as Faster R-
CNN [24], which detects objects and obtains bounding boxes. RoIPooling [24] or RoI
Align [25] is then applied to extract region features for pixel-wise segmentation. Mask
R-CNN [25], as a representative method, extends Faster R-CNN by adding a mask branch
to predict object masks. The second category includes center-based methods. YOLACT [26]
generates instance masks by combining mask coefficients and prototype masks. MEInst [27]
and CondInst [28] expand upon FCOS [29] by predicting encoding mask vectors or mask
kernels of dynamic convolutions [8]. SOLO [30,31], as a detector-free method, still per-
forms object localization and recognition based on the centers and generates mask kernels.
SparseInst [32] uses sparse instance activation maps to represent objects in a simple and
efficient manner.

SparseInst outputs a fixed-size set of prediction results. To address the end-to-end
training problem, we represent label assignment as bipartite matching [33] in Equation (1).
We propose a pairwise matching score C(i, k) based on the Dice coefficient, which is
determined by the classification score and Dice coefficient of the segmentation mask, to
match i predictions with k ground-truth instances.

C(i, k) = p1−α
i,ck

· DICE(mi, tk

)α
(1)

where α is a hyperparameter used to balance the influence of classification and segmentation
and is empirically set to 0.8. ck represents the class label of the kth ground truth instance,
and pi, ck denotes the probability of the ith prediction belonging to class ck. mi and tk



Sensors 2023, 23, 9019 7 of 19

are the masks of the ith prediction and kth ground-truth instance, respectively. The Dice
coefficient is defined by Equation (2).

DICE(m, t) =
2∑x,y mxy · txy

∑x,y m2
xy + ∑x,y t2

xy
(2)

where mxy and txy represent the pixels at coordinates (x, y) in the predicted mask m and the
ground-truth instance mask t, respectively. Then, we utilized the Hungarian algorithm [34]
to find the optimal matching between K ground-truth instance objects and N predicted
objects. The training loss is defined in Equation (3) and includes the classification loss,
object prediction loss, and segmentation loss.

L = λc · Lcls + Lmask + λs · Ls (3)

where is the focal loss [35] for object classification, is the mask loss, and is the binary
cross-entropy loss for IoU-aware objectness. Considering the severe imbalance between
the background and foreground in full-resolution instance segmentation, we employed a
hybrid mask loss that combined the Dice loss [36] and pixel-wise binary cross-entropy loss
for segmentation masks, as shown in Equation (4).

Lmask = λdice · Ldice + λpix · Lpix (4)

where and are the Dice and binary cross-entropy losses, respectively, and and are the
corresponding coefficients.

We propose a deep learning model called Pipe-Sparse-Net for the segmentation of
defects in underground drainage pipes. It consists of a backbone network, instance context
encoder, and decoder based on the Iterative Anchor Matching (IAM) algorithm. The
backbone network utilizes ResNet50 [37] to extract multiscale features from the input
image. The instance context encoder is connected to the backbone network to enhance
contextual information and fuse multiscale features. These features are then fed into the
subsequent decoder based on IAM to generate instance activation maps, highlighting
foreground objects for classification and segmentation. Detailed network parameters are
shown in Figure 3.

Pipe-Sparse-Net utilizes a method that can output sparse instance activation maps
to represent each target object, highlighting the informative regions of the foreground
objects. The highlighted regions are then aggregated to obtain instance-level features for
subsequent segmentation. Based on bipartite matching, the model predicts objects in a
one-to-one manner, avoiding the need for subsequent non-maximum suppression (NMS),
thus improving both the segmentation accuracy and speed of the model.
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3. Experiments and Analysis
3.1. Experimental Settings

This study utilized the Ubuntu 18.04 system as a platform for training the deep
learning model. Specifically, the system was equipped with a 12 GB GeForce RTX3080Ti
GPU and 64 GB RAM I9 9900k, providing high-performance computing support. Python
3.8 was used as the primary programming language, and the detectron2-v0.6 framework
was employed for training, validation, and testing of the deep learning model.



Sensors 2023, 23, 9019 9 of 19

3.2. Pipeline Dataset

In this study, CCTV robots collected images of sewer pipe defects in Zhengzhou and
Tianjin. The original images were strictly selected by professional inspectors to enhance
the image clarity and ensure a balanced number of defects in each category. In addition,
the perspectives varied, including front and side views. A total of 1585 original images
containing three types of flaws (misalignments, obstructions, and cracks) were used for real-
time segmentation. Misalignments were considered lateral deviations of circular pipe joints,
whereas cracks were treated as fractures caused by external pressure on the pipes, including
fissures and pits. In some images, there were multiple flaws in different categories, making
segmentation challenging. Examples of pipe defect images are shown in Figure 4. The
LabelMe software was used to label the data using mask annotations and the LableMe
version is 4.5.13. LabelMe is an open-source semi-automatic image annotation tool that
supports the creation of object segmentation datasets by importing annotated images and
manually tracing the objects using closed curves. Images were randomly divided into
training, validation, and test sets in a 6:2:2 ratio, which is a common segmentation ratio,
especially when the dataset is small. These three datasets do not contain the same images,
ensuring that the trained model can be generalized to new images. Finally, the information
was converted to the standard COCO2017 format [38]. There were 1585 defects in the
original images. Misalignments were the most numerous and cracks were the rarest. The
distribution ratios of the three categories in the training, validation, and test sets were
similar to the 6:2:2 image split ratios shown in Table 1.
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Table 1. Detailed distribution of different types of defects.

Category Total Training Set Validation Set Test Set

Misalignment 675 415 131 129
Obstacle 515 316 110 89
Leakage 395 247 57 91

Total 1585 978 298 309

3.3. Model Training and Validation
3.3.1. Parameter Settings

The goal of training deep learning models is to continuously adjust and optimize the
model parameters through repeated training on massive datasets to minimize the overall
loss. Optimization is performed using stochastic gradient descent, which is one of the
most commonly used optimization methods in deep learning models and outperforms
traditional optimizers. The learning rate controls how quickly the gradient descent moves,
thereby affecting the speed of model training and learning. If the learning rate is too high,
the loss value increases and the model does not converge. If it is too small, the loss value
barely changes and the model learns very slowly. The validation results of the models with
different hyperparameter combinations are presented in Table 2. Ultimately, the learning
rate, momentum, and weight decay were set to 5 × 10−4, 0.9, and 5 × 10−4.

During each training iteration, the images were fed into the network in batches
for processing, with each batch containing four images. This reduced GPU memory
requirements and improved training efficiency. The images were randomly shuffled before
each epoch to prevent overfitting.

Table 2. Hyperparameter settings.

Case Learn Rate Momentum Weight Decay mAP

1 1 × 10−3 0.9 5 × 10−4 0.906
2 5 × 10−4 0.8 1 × 10−4 0.907
3 5 × 10−3 0.85 5 × 10−4 0.905
4 1 × 10−3 0.8 1 × 10−4 0.911
5 1 × 10−3 0.9 1 × 10−4 0.901
6 5 × 10−4 0.9 5 × 10−4 0.914
7 5 × 10−3 0.9 5 × 10−4 0.910
8 5 × 10−3 0.8 1 × 10−4 0.904
9 5 × 10−4 0.85 5 × 10−4 0.896

10 1 × 10−3 0.85 1 × 10−4 0.909

After completing the experimental environment setup and parameter initialization,
we started training the Pipe-Sparse-Net model. The number of training iterations has a
big impact on model accuracy and learning time. Fewer iterations lead to shorter training
times but may be unable to minimize the training loss, resulting in lower accuracy. More
iterations mean the training loss can be minimized but lead to excessively long training
times, wasting resources. The loss is a metric that measures the difference between the
predicted outputs of a model and the actual labels. The loss value is typically a scalar that
indicates the performance of the model. Since the loss value is a numerical quantity, it
does not have a specific unit. The total number of iterations was set to 30,000, with the
loss value on the training set saved every 20 iterations. The loss function curve is shown
in Figure 5. After 22,000 iterations, the proposed model achieved the highest accuracy of
91.4%. The model has strong generalization capability. When the number of iterations is
small, the model has not fully learned the features of the defects and is in the underfitting
stage. When the number of iterations is too large, the model learns meaningless noise,
decreasing accuracy, which is the overfitting stage. From the loss function curve, it can be
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seen that after 22,000 iterations, the loss value tends to converge and reaches a local optimal
solution. The local loss function curve is shown in Figure 6.
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After every 1000 iterations, mAP value testing was performed on the validation set to
prevent overfitting, and AP50 was used as the evaluation metric for the COCO2017 dataset.
AP50 refers to the average precision at an IoU threshold of 50%. The IoU is a metric used to
measure the overlap between the predicted bounding boxes and ground-truth bounding
boxes. Typically, when the IoU is greater than the threshold, the predicted bounding box is
considered a correct prediction. The three curves in Figure 7 show the validation results for
misalignments, obstructions, and cracks in the validation set. Table 3 shows the validation
results after 5000, 10,000, 15,000, 20,000, 22,000, and 30,000 iterations. From Figure 7, it can
be seen that when the number of iterations reached 22,000, the curves were stable. The
mAP value of the trained model on the validation set was 0.914. After comprehensively
considering the total loss during model training and the mAP value of the validation set,
we chose the trained model with 22,000 iterations for subsequent research.
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Table 3. Validation results for different iteration counts.

Iterations
mAP

All Misalignment Obstacle Leakage

5000 0.776 0.838 0.744 0.744
10,000 0.837 0.862 0.873 0.774
15,000 0.886 0.868 0.919 0.886
20,000 0.897 0.871 0.905 0.871
22,000 0.914 0.918 0.938 0.885
25,000 0.910 0.915 0.939 0.877
30,000 0.910 0.915 0.941 0.872

3.3.2. Comparison of Five Cases

To verify the impact of data augmentation, five experiments were conducted using
four data augmentation methods (BigGAN, StyleGAN, StyleGAN2, and StyleGAN3). The
validation set was used to validate the effectiveness of the trained models and the mAP
values of each combination were tested. The experimental results are listed in Table 4. From
Table 4, it can be observed that the data augmentation method using StyleGAN3 produced
the best experimental results. This is because StyleGAN3 solves the problem of image
coordinates and feature entanglement, achieving true image translation, rotation, and other
invariances, thereby greatly improving the image synthesis quality. Therefore, StyleGAN3
generates more effective data, making it easier to extract the features of damaged areas
during the data augmentation stage. Based on the segmentation effect of the trained model,
we chose StyleGAN3 for the data augmentation.

Table 4. Validation results of five cases (1. StyleGAN3 2. no augmentation 3. BigGAN 4. StyleGAN 5.
StyleGAN2).

Case
mAP

All Misalignment Obstacle Leakage

1 0.914 0.918 0.938 0.885
2 0.857 0.861 0.873 0.844
3 0.893 0.896 0.910 0.852
4 0.890 0.892 0.904 0.841
5 0.903 0.904 0.917 0.869
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3.4. Experimental Results

During image acquisition, motion blur may occur owing to the movement of the
pipe robot or the fluid flow inside the pipe. Therefore, to verify the robustness and
generalization ability of the trained model, experiments were conducted on normal and
motion-blurred defect images. The test images in this section were not used for model
training; that is, they were not included in the training set. In each case, three types of
defects were tested: misalignment, obstruction, and crack. A total of 81, 57, and 75 images
under normal conditions and 47, 32, and 17 images under motion-blurred conditions were
used to test these three types of defects. The segmentation results for the two conditions
are presented in Table 5. Examples of the test results are shown in Figures 8 and 9,
respectively. The figures show the input, label, and prediction results from left to right.
The label images were manually annotated using the open-source LabelMe software, and
the predicted images were the defect regions predicted by the Pipe-Sparse-Net model.
From Table 5 and Figures 8 and 9, it can be seen that under normal lighting conditions, the
segmentation model was highly effective, with an mAP value of 0.916, and it also achieved
good segmentation results under motion-blurred conditions, with an mAP value of 0.909.
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Table 5. Segmentation performance under different conditions.

Type
Normal Situation Motion Blur

Number of Category mAP Number of Category mAP

All 213 0.916 96 0.909
Misalignment 81 0.921 47 0.915

Obstacle 57 0.944 32 0.931
Leakage 75 0.888 17 0.882
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Under motion-blurred conditions, the defect regions predicted by the Pipe-Sparse-Net
model were less effective for cracks compared to other types of defects because the texture
features of cracks are more complex and relatively difficult to extract under motion blur.
However, the mAP value for defect segmentation using this model reached 0.882. Therefore,
our trained Pipe-Sparse-Net model produced good segmentation results under the above
test conditions, and almost all the defect regions could be segmented effectively. This
demonstrates that the model is robust to noise and has strong generalization capability and
stability. In future research, small segmentation errors could be reduced by improving the
data collection devices and increasing the amount of data for specific defect types.

3.5. Comparative Experiment

To compare the segmentation performance of Yolact, CondInst, Mask RCNN, and
the proposed Pipe-Sparse-Net model on the same COCO2017 dataset, we conducted
experiments under identical experimental conditions. The deep learning training platform
used was equipped with a 12 GB GeForce RTX 3080 Ti GPU and 64 GB RAM I9 9900k. For
three types of defects (misalignments, cracks, and obstructions), the mAP values of the
four models were compared for three defect types: misalignments, cracks, and obstructions.
From Table 6 and Figure 10a, it can be observed that the Pipe-Sparse-Net model accelerated
by TensorRT achieved an mAP value of 0.914 for pipe defect segmentation. The mAP values
for Yolact, Condinst, and Mask R-CNNs were 0.870, 0.880, and 0.844, respectively. From
Figure 10b–d and Table 6, it can be seen that for the segmentation of misalignments, cracks,
and obstructions, the segmentation accuracy of the proposed Pipe-Sparse-Net model is
higher than those of the Yolact, Condinst, and Mask R-CNN models. The inference speed
of the Pipe-Sparse-Net model accelerated by TensorRT increased by 44.64%. To further
compare the segmentation effects of the four trained models, experiments were conducted
on a test set that was not used for training or validation. Examples of the test results are
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shown in Figure 11. In the first column, the segmentation edges using Yolact, Condinst,
and Mask R-CNNs were uneven. In the third column, the segmentation areas of Yolact,
Condinst, and Mask R-CNN are significantly larger than the defect areas. Based on these
results, the proposed Pipe-Sparse-Net model can detect defects with smooth and correct
boundaries in pipe defect segmentation and has a better segmentation performance than
traditional models.

Table 6. Comparison of segmentation performance among different models.

With/Without Tensor RT mAP Speed

Our model Yes 0.914 56.7 fps
Our model No 0.909 39.2 fps

Yolact No 0.870 35.9 fps
Condinst No 0.880 24.7 fps

Mask R-CNN No 0.844 15.4 fps
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4. Conclusions and Future Work

In previous research, deep learning-based pipeline defect detection algorithms have
achieved high accuracy but have neglected the fact that robot motion or fluid flow in pipes



Sensors 2023, 23, 9019 17 of 19

can cause image blurring. To improve image quality and detection performance, this study
proposes Pipe-Sparse-Net, an underground drainage pipeline defect segmentation sys-
tem combined with StyleGAN3 for segmenting complex forms of defects in underground
drainage pipelines. First, to address the problem of insufficient pipeline defect data, a clear
image generation network called Pipe-Gan-Net, based on StyleGAN3, was established to
increase the number of new defect images. Second, to improve pipeline defect segmenta-
tion accuracy and speed, a pipeline segmentation model called Pipe-Sparse-Net, based on
SparseInst, was proposed to accurately predict drainage pipeline defect regions. To further
improve the detection speed, an acceleration module called TensorRT was applied to the
segmentation model, and extensive experiments demonstrated that the proposed method
has good robustness, generalization capability, and stability for pipe defect segmentation
under complex conditions. It also has a better segmentation performance than traditional
models such as Yolact, Condinst, and Mask R-CNN. The proposed Pipe-Sparse-Net acceler-
ated by TensorRT improved the inference speed by 44.64% compared with the unmodified
network. This method provides a new approach for intelligent detection of underground
pipeline defects.

The experimental results showed that after augmentation with StyleGAN3, the seg-
mentation accuracy increased by 5.7%, demonstrating the efficacy of data augmentation in
improving pipeline defect segmentation performance. Moreover, the proposed pipeline
segmentation model, Pipe-Sparse-Net, achieves good segmentation performance on both
motion-blurred and normal pipeline defect images, with accuracies of 91.6% and 90.9%,
respectively. With the TensorRT module acceleration, the detection speed is increased
by 44.64% to 56.7 fps, effectively solving the problem of achieving accurate and efficient
pixel-level segmentation of pipeline defects. A comparative analysis with existing research
results shows that the Pipe-Sparse-Net model accelerated by Tensor-RT achieves higher
speed and accuracy than the Yolact, Condinst, and Mask R-CNN, with an increase in accu-
racy of at least 4% and a 45% improvement in segmentation speed. It has a clear advantage
in the segmentation of pipeline defects and provides a new and effective method for the
segmentation of underground drainage pipelines. However, it may be possible to further
improve segmentation accuracy by enhancing boundary segmentation and introducing
other types of sewer pipeline defects such as corrosion, foreign object intrusion, and illegal
branch connections. In future, a database containing various pipeline defects should be
established for automated detection. In addition, this study did not quantify defects, such
as statistics on actual defect area sizes and numbers. We plan to improve this research in the
future and propose a tracking network to count the number of defects in a pipeline segment.
Our research goal in this field was to establish a complete pipeline defect detection and
evaluation system.
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