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Abstract: Protein is one of the primary biochemical macromolecular regulators in the compartmental
cellular structure, and the subcellular locations of proteins can therefore provide information on the
function of subcellular structures and physiological environments. Recently, data-driven systems
have been developed to predict the subcellular location of proteins based on protein sequence,
immunohistochemistry (IHC) images, or immunofluorescence (IF) images. However, the research
on the fusion of multiple protein signals has received little attention. In this study, we developed
a dual-signal computational protocol by incorporating IHC images into protein sequences to learn
protein subcellular localization. Three major steps can be summarized as follows in this protocol: first,
a benchmark database that includes 281 proteins sorted out from 4722 proteins of the Human Protein
Atlas (HPA) and Swiss-Prot database, which is involved in the endoplasmic reticulum (ER), Golgi
apparatus, cytosol, and nucleoplasm; second, discriminative feature operators were first employed to
quantitate protein image-sequence samples that include IHC images and protein sequence; finally,
the feature subspace of different protein signals is absorbed to construct multiple sub-classifiers via
dimensionality reduction and binary relevance (BR), and multiple confidence derived from multiple
sub-classifiers is adopted to decide subcellular location by the centralized voting mechanism at the
decision layer. The experimental results indicated that the dual-signal model embedded IHC images
and protein sequences outperformed the single-signal models with accuracy, precision, and recall of
75.41%, 80.38%, and 74.38%, respectively. It is enlightening for further research on protein subcellular
location prediction under multi-signal fusion of protein.

Keywords: dual signal; benchmark database; discriminative feature operators; protein subcellular
location prediction

1. Introduction

Subcellular proteomics emerged as a unique area of proteomics in eukaryotic cells
with the advent of organelle separation technology and proteomics technology, which are
conducive to analyzing protein composition, determining the role of subcellular structures,
and researching physiological or pathological environments [1,2]. In compartmentalized
cellular structures, proteins appear in the right subcellular neighborhoods and execute bio-
chemical processes or biological functions [2]. Moreover, aberrant locations of proteins have
been linked to many pathological conditions, such as breast cancer, and it provides clues
for comprehending protein function and designing cancer drug-targets [3,4]. Therefore,
predicting protein subcellular location has attracted wide attention, and the automated
systems would address the shortcomings of being time- and labor-consuming compared
with various traditional wet-experiment approaches [5].
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Automated classification models for predicting protein subcellular locations have been
around for a while. They were divided into two groups based on various protein patterns:
one is based on protein sequence assembled by 1D amino acid; the other is directed to
2D microscopic images. Both categories work on the workflow of three-step pipelines:
data preprocessing, extracting discriminative features that distinguish protein subcellular
location, and applying an effective classifier to fit data distribution [6].

One major pipeline in the sequence-based method is that discriminative features were
extracted to explore the correlation of 20 natural amino acids between similar protein
sequences, including hand-crafted features based on traditional statistical algorithms and
abstract features from representation learning. Some feature extraction methods based on
the composition of amino acids were defined to express correlation between amino acids:
such as k-mer frequencies, Position-Specific Scoring Matrix (PSSM), and Pseudo-Amino
Acid Composition (PseAAC) [7–9]. On the other hand, the peptide-based and annotation-
based features were also introduced to search for homologous proteins or fitting protein
subcellular location distributions, such as sorting signals, functional domains, sequence
motifs, and the gene ontology (GO) terms [10–14]. Benefitting from previous works, sub-
sequent scientists proposed more effective feature extraction algorithms. Specifically, the
functional domain information and the sequential evolution information were fused to con-
struct ensemble predictor by Shen et al. [15]. In Guo et al., a fusion feature space consisting
of PseAAC and PSSM was fed into a feature–label matrix to recognize multi-label protein
samples [16]. A novel representation protocol named Hidden Correlation Modeling (HCM)
was utilized to create more compact features by exploring hidden correlations between GO
annotation terms [17]. The dipeptide information with the blank space, coupled with the
gapped k-mer information, was calculated to describe protein properties by quad-tree [18].
In addition, as deep learning advanced, a sequence-based deep-learning approach was pro-
posed, which combines text information from amino acid components and deep-learning
models. For instance, attention mechanism and a Convolution Neural Network (CNN)
were employed to identify motif information of protein sequence in Armenteros et al.; then,
the Recurrent Neural Networks (RNNs) can be viewed as a trainable encoder to map a con-
vincing category space [19]. In Liao et al., bidirectional Long–Short-Term Memory (LSTM)
and CNN were used to refine amino acid composition sequences and evolution matrices
of proteins; next, the outputs from two deep-learning models mentioned previously were
concatenated and flattened to one-dimensional classification array [20]. Following that,
systems built using representation learning and post-process hybrid classifier algorithms
have been created to enhance the bias of positive samples [21,22]. The above sequence-
based models were successful in acting on various scenarios and valuable in laying the
foundation for subsequent research, while 2D microscope images steadily gain attention
due to their objectivity and impressive interpretation.

Two-dimensional microscopic images have grown in popularity with the advent of
microscopic technology since they can show the spatial distribution of proteins in vari-
ous tissues [23]. Similar to the research protocol of sequence-based models, image-based
models based on digital image-processing technologies and machine-learning algorithms
have been developed to analyze subcellular patterns of protein. At present, immunohis-
tochemistry (IHC) and immunofluorescence (IF) images have been used as mainstream
research objects. The Subcellular Location Features (SLFs) included morphological features,
Zernike moment features, Haralick texture features, and wavelet features, which were
employed to quantitatively express statistical characteristics of protein subcellular location
distribution [24,25]. It represents digital information of a global view on microscope images,
such as Zernike moment features showing translation rotation invariance, Haralick features
following Gray-Level Co-occurrence Matrix (GLCM) in various orientations, and DNA
spatial distribution conveys overlapping and distance in protein and nuclear [26,27]. In
addition to this, Local Binary Pattern (LBP), Local Ternary Pattern (LTP), Local Quinary
Pattern (LQP), and other local operators portray local texture, edge, and other structure
information [28–30]. Additionally, a monogenic signal based on the Log-Gabor filter and
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intensity coding strategy in frequency space was adopted to avoid the sparse problem
of protein subcellular image [31]. Some deep features from deep-learning models were
extracted to depict protein images as deep-learning flourishes in natural images, such as
abstract features, abstract morphology, and region contour. To improve supervisory efficacy
of protein microscopic images, feature fusion that links shallow and abstract features was
implemented [32–34]. And further down the line, plentiful deep-learning algorithms, such
as image attention mechanism, transfer learning, and other classical algorithms, were
introduced to analyze subcellular location patterns of proteins [35–39]. Previous studies
have made great contributions based on various protein patterns, such as protein sequence,
IHC images, and IF images. However, few multi-signal fusion methods received attention
due to label inconsistencies and differences in quantitative representations of different
protein patterns [40–42].

In this paper, we reported a dual-signal fusion system for predicting protein subcellular
location by incorporating IHC images into protein sequences, and some key points can
be summarized as follows. An important point of all is that a benchmark dataset with a
common subcellular location of protein was collected and generalized as the experimental
objects from the HPA and Swiss-Prot database. Then, several classical feature operators
were employed to quantify IHC images and protein sequences, and abstract features
derived from deep-learning models were extracted to depict IHC images. Finally, feature
spaces from the mentioned dual signal were applied to build multiple sub-classifiers,
and the decision label was generated using a centralized voting mechanism. From the
experimental results, the dual-signal fusion method based on protein sequence and IHC
images can reach 75.41%, 80.38%, and 74.38% in accuracy, precision, and recall, respectively.
It outperforms other single-signal models. Furthermore, it also serves as a reasonable
reference for subsequent multi-signal studies.

2. Materials and Methods
2.1. The Benchmark Dataset

Appropriate datasets in the machine-learning models would yield significant influence.
In this work, the Human Protein Atlas (https://www.proteinatlas.org/, accessed on 4 May
2022) database was adopted to collect IHC images under tissue cell types according to
data criteria. Specifically, there are two criteria for filtering IHC images, i.e., the protein
expression level presents the staining level of the protein channel, and the reliability
score judged the reliability level for the subcellular localization annotation of protein.
Beyond that, the Swiss-Prot database in Universal Protein Resource (https://www.uniprot.
org/, UniProt, accessed on 11 May 2022) was used to collect the protein sequence dataset.
The 4722 proteins involved in nine major subcellular locations contained centrosome,
endoplasmic reticulum (ER), Golgi apparatus (Golgi), mitochondria, nucleoli, vesicles,
cytosol, nucleoplasm, and plasma membrane, initially selected in HPA. Then, a benchmark
dataset described as high quality and with the same label was collected from the two
databases according to the following steps.

First, a collection with 287 paired samples was captured in line with three rules. The
first is that the protein sequence location in Swiss-Prot should keep the same labels as
the microscopic images’ labels in HPA; the second is to capture IHC images that describe
protein status with high staining levels at the tissue level; the third is that the subcellular
location of all proteins should be verified via biochemistry wet-experiment. According
to the above conditions, 287 protein sequences from Swiss-Prot and HPA were sorted
out, which involved four protein subcellular locations, including ER, Golgi, cytosol, and
nucleoplasm.

Second, homologous protein sequences were removed, and an appropriate number
of IHC image datasets were matched. In the 287 protein sequences involved, some ho-
mologous protein sequences were deleted to reduce sequence redundancy and enhance
the independence of non-homologous protein sequences via CD-HIT (V4.6) software [43],
in which the sequence identity cut-off was set to 0.9. To facilitate feature extraction of

https://www.proteinatlas.org/
https://www.uniprot.org/
https://www.uniprot.org/
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sequences in subsequent stages, the sequences with a length between 50 and 5000 are
reserved. After processing, the remaining 281 protein sequences became the final workable
dataset. At the same time, one image was randomly selected from IHC images of protein
sequence expression at the tissue level to match the protein sequence. Therefore, the specific
protein sequence dataset and IHC images dataset are shown in Table 1.

Table 1. The dataset distribution of protein sequences and IHC images.

Subcellular Location Sequence Image

ER 101 101
Golgi 74 74

Cytosol 59 59
Nucleoplasm 47 47

Total 281 281

2.2. Analyzing Subcellular Patterns of Protein from Protein Sequence

The 281 protein sequences underwent redundancy elimination and length constraint by
CD-HIT software, which is conducive to enhancing independence between non-homologous
protein sequences and improving attribute-class differences for describing multiple feature
information. The CD-HIT is a greedy algorithm. First, the longest of all protein sequences
was considered the clustered representation. Then, common word counting is used to
describe the similarity and redundancy of the remaining protein sequences.

In the protein sequences, some discriminative statistical operators were employed to
quantify statistical properties of residues, as shown in Figure 1. The first type, the Position-
Specific Scoring Matrix-based feature generator for machine learning (POSSUM), a versatile
universal toolkit with an online web server for generating PSSM-based feature descriptors,
was employed to obtain evolutionary information on protein sequences [44]. Herein,
18 types of PSSM-based feature descriptors derived from POSSUM were collected to express
numerical representation of protein sequences. The iteration and E-value are 3 and 0.001,
respectively, in parametric setting. Most of them are gained via matrix transformations, and
the Ei,j is the probability that an amino acid at the ith position of the sequence has mutated
to the jth amino acid during evolution. The second type, a web server named PseAAC, was
obtained to present sequence in a discrete mode, and not lose amino acid sequence-order
information [9,45–49]. In this toolkit, the PseAA mode was set as Dipeptide-composition,
so 420-dimension features were collected in this part, in which the first 20 components are
conventional amino acid composition, and the last 400 components are the fractions of
400 dipeptides, such as AA, AC, and AD. The dep(q) is the total number of qth dipeptides
in Figure 1. Moreover, protein sequences are synthesized through biochemical reactions
between amino acids. Amino acid residues with physicochemical (PC) properties have an
important impact on the function of forming proteins, so the PC properties of amino acids
are introduced to describe protein sequences. The Pearson Correlation Coefficient (PCC)
was used to calculate a 3675-dimensional vector for a protein sequence that was described
by 50 PC properties [50]. It also expresses a correlation between different PC properties,
and pcp

l is the pth PC property of the lth amino acid residue in the sequence.
After the above feature extraction, the feature space of the protein sequence was con-

structed to fit the sub-classifier. To avoid feature redundancy and model overfitting caused
by too high dimension, the Least Absolute Shrinkage and Selection Operator (LASSO) was
adopted in protein sequence features space [51]. The selected feature subspaces were fed
into binary relevance (BR) for identifying the subcellular location of protein sequence [52].
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Figure 1. The flowchart of dual-signal model. Abbreviation definitions: ER: endoplasmic reticulum;
Golgi: Golgi apparatus; Cyto.: cytosol; Nucl.: nucleoplasm.

2.3. Classifying Protein Subcellular Location Based on Shallow and Abstract Features of
IHC Images

Some image-based models have been demonstrated to be advanced in predicting
protein subcellular location by extracting shallow and abstract features [32–36]. In this
work, IHC images from HPA were collected to predict subcellular locations, and the
protocols can be summarized in Figure 1. First, getting protein-target regions from IHC
images; second, extracting shallow and abstract features to qualify IHC images; finally,
the fusion features were put into Stepwise Discriminant Analysis (SDA) to reduce the
dimensions, and the derived subset features were fed into BR to fit category space of
samples. The details are covered in the following sections.

2.3.1. Focusing on Protein-Target Regions by Preprocessing

There are 281 IHC images that meet the staining level and match 281 protein sequences.
In order to improve information richness and focus on the protein-target regions of IHC
images, the 15 protein channel patch images were split from one RGB IHC image following
the steps presented in Figure 1. Step 1, an empirical threshold value of 13 was adopted
to filter out images with poor quality due to artificial staining; Step 2, the Linear Spectral
Separation (LIN) based on color transforming theory was employed to separate the protein
and DNA channel from IHC images [24]; Step 3, the protein channel with 3000 × 3000
resolution was split by a sliding window with 512 × 512, and the first 15 effective protein
channel regions were inhaled as experimental objects to represent RGB IHC images. After
the mentioned process, 15 protein channel patch images were adopted to extract shallow
and abstract features.
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2.3.2. Quantifying IHC Images with Shallow and Abstract Features

In the protein channel patch images, the shallow and deep features were extracted
from the statistical methods and deep-learning models to express the attributes of protein
regions, as shown in Figure 1.

First, the shallow feature composed of Haralick and LBP features was extracted
from protein channel patch images. The Haralick feature is a statistical feature based on
discrete wavelet transform under GLCM. Protein channel patch images were scaled to
32 gray levels and decomposed down to 8 levels by discrete wavelet transform using the
Daubechies filter [24]. Then, three-set 27-dimensional Haralick features were acquired from
the horizontal, vertical, and diagonal reconstructed image, and 26-dimensional Haralick
features were obtained from original protein channel patch image. Thus, one patch image
was described by 674-dimension (3 × 27 × 8 + 26 = 674) Haralick features. The LBP feature
depicted local texture, edges, and flat micropatterns by histogram statistics [27,53]. In the
nine-grid mask of unit radius, the central pixel performs a Boolean operation with the
adjacent pixels, and the 8-bit binary value is converted to a decimal value. After that, the
frequency of each pixel level is counted as LBP features, so 256-dimensional statistical
features are obtained [28].

Second, the abstract features were gained by feeding 15 protein channel patch images
into different layers of the deep-learning model, and the average value of 15 vectors
was calculated to represent the original image. A CNN composed of residual units and
interactive pairwise attention modules was employed to extract abstract features [54,55].
Different from shallow features, abstract features can present the abstract information
of images in a high-dimension space, in which feature maps undergo high-dimensional
space transformation and numerous nonlinear functions in the deep-learning model. The
feature maps from different layers of deep-learning models were extracted to present
local morphological features and nondescript digital image information, which shows
rich representation information and robust discriminative power [33–35]. Therefore, the
Concatenat_3 (C3) with 1024-dimension and Global Average Pooling (GAP) layer with
1024-dimension in the CNN were acquired to depict protein channel patch images.

2.3.3. Improving Performance of Multiple Classifiers by Centralized Voting Mechanism

In this paper, a sample containing a protein sequence and one IHC image is described
via different discriminative quantization methods. Therefore, multiple sub-classifiers
were produced after the above process. To further obtain the final output results, the
centralized voting mechanism was employed to determine the subcellular location of
protein. Specifically, the confidence that each protein belongs to four subcellular locations
was evaluated by multiple sub-classifiers; then, the most reliable location derived from
selected sub-classifiers would participate in the vote; finally, the subcellular location with
the most votes was viewed as the decision result.

3. Results

According to the mentioned methods, two protein signals are represented via multiple
discriminative feature operators. The entire experimental process can therefore be divided
into three parts: the experimental results of protein sequences in statistical features, the
experimental results of IHC images described by shallow and abstract features, and the
decision performance for multiple classifier integration. Beyond that, the five-fold cross-
validation strategy is utilized to produce more general experimental results.

3.1. The Shallow Features of Amino Acid Effectively Act on Protein Subcellular Location

The primary protein structure, which resembles the natural language, shows the chain
structure of the protein sequence through the condensation and dehydration of various
amino acids. Therefore, in describing the properties of protein sequences, 18 PSSM-based
features are employed to characterize amino acid evolution, PseAAC features with 420-
dimension are adopted to describe the properties of pseudo amino acids, and PC features
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with 3675-dimension are used to describe the physicochemical properties and similarity
of amino acids. Moreover, to weaken the redundancy of features and avoid overfitting
problems caused by excessively high feature dimensions, subset features were selected from
original features by LASSO. Next, the subset features were fitted to a high-dimensional
category space by the BR classifier with the Radial Basis Function (RBF) kernel function.
In this section, 281 protein sequences were subjected to five-fold cross-validation, and the
average value of five experimental results is taken as the output result. After the mentioned
process, two graphs show the performance of individual features and concatenated features
in Figures 2 and 3.
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It can be seen from Figure 2 that DP-PSSM (Directional Property PSSM) achieves the
best performance among mentioned 20 individual features. Here, the 18 different PSSM-
based features express protein specificity according to a variety of calculation methods,
and the DP-PSSM is described to calculate the distance similarity between amino acids [56].
It can be seen from the results that DP-PSSM can achieve 55.51%, 55.83%, and 53.30% in
accuracy, precision, and recall, respectively, which is 24.6%, 30.9%, and 24.62% higher than
the worst result in the above three evaluation indicators. Therefore, DP-PSSM was selected
as a partial of fusion feature space, and PseAAC features and PC features are also involved
in pairwise concatenate. Four combinations of feature fusion schemes are shown in Figure 3.
The feature space connected DP-PSSM with PC features, outperforms other cases, and can
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achieve 55.72%, 54.72%, and 53.89% in accuracy, precision, and recall, respectively. The
experimental performance improved significantly in the concatenated feature space con-
taining PseAAC features by comparing the results of only the PseAAC feature. Compared
to experimental results before concatenating, the best results are only slightly floating on
the original features space. Therefore, the representatives of the mentioned experimental
results in the decision layer are the sample probabilities derived from connecting DP-PSSM
features with PC features.

3.2. IHC Images Perform Better in Identifying Protein Subcellular Location Than Protein Sequence

The image-based system on protein subcellular location and protein-target regions of
IHC patch images are conducive to weakening blank areas in the images and increasing the
receptive field of feature operators [32,36]. Therefore, 15 protein channel patch images with
512 × 512 derived from original RGB IHC images with 3000 × 3000 are absorbed to extract
shallow and abstract features to describe the original image. Among shallow features, the
experimental results are presented in Figure 4. About abstract features, feature maps at
different depths of CNN were extracted to present multiple digital image characteristics,
the result can be seen in Figure 5. The C3 represents the output of the Concatenat_3 layer,
and GAP represents the output of the global average pooling layer. The SDA was employed
to decrease feature dimensions to avoid dimension curse and overfitting problems. The
individual features of 15 protein channel patch images were averaged according to feature
dimensions to represent an original sample.
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10 Daubechies filters is relatively stable in the overall change trend, and the overall per-
formance falls within a limited range. After concatenating LBP features, a similar trend is
shown in Figure 4b. The discrepancies in the sample distribution of IHC images and the
properties of shallow features can account for these experimental results. First, proteins
can be expressed in different tissues and presented as IHC images at various tissue levels.
Therefore, the sample distribution of IHC images is affected via protein sample diversity
and differences in protein regions at the tissue level. Second, Haralick features were used
to describe statistical information from the global view of the IHC image, such as inertia,
entropy, and energy. The LBP features were utilized to express local texture statistical
information by using the histogram. Thus, basic image characteristics were described at
the shallow features; limited specificity and weak discrimination were prone to unimpres-
sive performance. The experimental results show that the best performance evaluation
indicators appear in db8 no matter whether before or after concatenating.

Next, the fusion features that include feature maps at different depths of CNN and
shallow features were applied; the experimental results are shown in Figure 5. Compared
with shallow features, the performance of abstract features has been greatly improved.
Moreover, the best performance can reach 72.39%, 75.48%, and 71.21% in accuracy, preci-
sion, and recall, respectively, after connecting GAP features, Haralick features with db8
Daubechies filters, and LBP features. The protein channel patch images, coupled with
multi-view abstract features from CNN, lead to good performance. First, protein channel
patch images with larger protein-target regions were transmitted in CNN, so that the
characteristic properties of protein-target regions can be effectively captured. Second,
protein channel patch images pass through some nonlinear mapping functions in CNN,
and abstract representation is gradually revealed from shallow to deep layers, so the dis-
crimination and robustness of feature maps are significantly improved. Among the above
experimental results, some sub-classifiers were adopted in the decision layer of the model
according to the above experimental results.

3.3. Superior Performance Obtained with the Centralized Voting Mechanism

So far, according to dual signals composed of protein sequence and IHC images,
each protein sample has been digitally characterized from various features, so multiple
sub-classifiers have been established. Therefore, to produce a final result, the centralized
voting mechanism was employed to assemble multiple confidence of some predictors with
better performance to obtain predicted labels. Here, five classifiers were adopted, i.e., the
first is based on DP-PSSM and PC features of protein sequence; the second is based on
C3 features of IHC images; the third is based on GAP features of IHC images; the fourth
is based on C3, Haralick, and LBP features of IHC images; and the fifth is based on GAP,
Haralick, and LBP features of IHC images; the results are shown in Figure 6. It can be seen
that the performance has been effectively improved by integrating experimental results of
the five-fold cross-validation of multiple sub-classifiers. As shown in Figure 6a, the best
result can reach 85.96%, 85.23%, and 85.42% in accuracy, precision, and recall, respectively,
and the overall average result can reach 75.41%, 80.38%, and 74.38% in the three evaluation
indicators mentioned. To intuitively understand the prediction performance between
different classes, confusion matrix visualization is employed to show how each class is
predicted as other classes, as shown in Figure 6c–g. From the specific situation of confusion
matrix, ER achieved the best 85.19% accuracy among four categories, followed by cytosol,
nucleoplasm, and Golgi apparatus. In addition, a large number of protein samples were
more biased to be predicted as ER, especially Golgi apparatus. Furthermore, a box plot is
drawn to express the prediction performance fluctuation of different categories in five-fold
cross-validation, as shown in Figure 6b. The results showed that experimental results of
cytosol had the biggest fluctuant range, and nucleoplasm was the smallest.
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Figure 6. The multi-classifier outputs result and visualization by centralized voting mechanism.
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4. Discussion

The experimental results from multiple sub-classifiers obtained can effectively im-
prove the assessment indicators of the model by the centralized voting mechanism. It is
undeniable that the results of five-fold cross-validation have fluctuated violently in the
existing sample category distribution, according to the box plot in Figure 6b. The primary
cause is the small data volume and imbalanced category distribution. Therefore, the Leave-
One-Out (LOO) cross-validation is utilized to further illustrate modal performance to
release the issue of unstable performance produced by the imbalanced dataset. Specifically,
280 out of 281 samples are selected as the training dataset in each fold experiment, and the
remaining one sample is viewed as the test dataset. Here, five feature spaces were adopted,
i.e., the first is based on C3 features of IHC images; the second is based on GAP features
of IHC images; the third is based on C3, Haralick, and LBP features of IHC images; the
fourth is based on GAP, Haralick, and LBP features of IHC images; and the fifth is based
on DP-PSSM and PC features of protein sequence; the results are shown in Figure 7. It
clearly expresses that the experimental results have significantly improved compared with
five-fold cross-validation, and the best performance reached 84.70%, 83.31%, and 86.63%
in accuracy, precision, and recall, respectively. Some information can be summarized as
follows: First, experimental results of five predictors based on LOO were all significantly
improved compared with the five-fold cross-validation; the main reason is that the category
fitting ability of these classifiers was enhanced due to the increase in the number of training
samples. Second, 280 out of 281 samples are utilized as training datasets, and only one
sample in a category was viewed as the test dataset. It facilitates the representational ability
of the model to fit the data distribution in maximizing the extent, which is conducive to
expressing confidence in the test sample in the distribution space. On the other hand, al-
though the experimental performance of the five classifiers has been significantly improved,
the cost of time consumption is obvious. The main reason is that the single completed
round required the completion of 281 model fitting procedures.
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5. Conclusions

In this study, we developed a dual-signal model composed of protein sequences and
IHC images to analyze protein subcellular location patterns. One contribution of this
work is that a benchmark dataset with the same protein subcellular location label was
collected from the HPA and Swiss-Prot databases and provides a dataset basis for following
multi-signal studies of protein subcellular location. Additionally, according to different
protein presentation patterns, corresponding feature extraction operators were employed to
quantify and characterize protein samples. Specifically, 18 PSSM-based features, PseAAC
features, and PC features were adopted to represent protein sequences. Moreover, Haralick
features, LBP features based on statistical methods, and abstract features derived from
the different depths of CNN were adopted to quantify IHC images. Specially, due to
the quantitative differences of different protein signals, LASSO and SDA were applied to
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protein sequences and IHC images to reduce the feature dimensions to avoid dimension
curse and overfitting. Finally, the output confidence of multiple BR sub-classifiers is
absorbed to output confidence of protein at the subcellular location, and the centralized
voting mechanism was employed to obtain the decision result. The experimental results
show that the prediction performance of the dual-signal model based on protein sequence
and IHC images can reach 75.41%, 80.38%, and 74.38% in accuracy, precision, and recall,
respectively. It proved that the dual-signal model is advanced by incorporating IHC
images into protein sequences. However, there is a clear data imbalance in the benchmark
dataset from the Swiss-Prot and HPA databases, thus data equalization processing and
discriminative representation will be the next research work.
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