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Abstract: In this paper, self-modulated ghost imaging (SMGI) in a surrounded scattering medium
is proposed. Different from traditional ghost imaging, SMGI can take advantage of the dynamic
scattering medium that originally affects the imaging quality and generate pseudo-thermal light
through the dynamic scattering of free particles’ Brownian motion in the scattering environment for
imaging. Theoretical analysis and simulation were used to establish the relationship between imaging
quality and particle concentration. An experimental setup was also built to verify the feasibility of
the SMGI. Compared with the reconstructed image quality and evaluation indexes of traditional
ghost imaging, SMGI has better image quality, which demonstrates a promising future in dynamic
high-scattering media such as dense fog and turbid water.

Keywords: ghost imaging; dynamic scattering imaging; self-modulated ghost imaging

1. Introduction

Scattering media are widely present in nature, which hinders the direct analysis of
scene information from traditional optical systems. Image reconstruction through dynamic
and complex scattering media has always been a hot topic [1–7]. A large body of research
has historically focused on compensating or straight-out eliminating scattering effects [8,9],
terahertz imaging [10,11], etc. Ghost imaging (GI) is based on the Hanbury Brown–Twiss
(HBT) effect and reconstructs images by calculating the correlation between the object and
reference beams [1,12]. Ghost imaging has potential applications in many fields [13], such as
optical encryption [14–16], radar imaging [17–19], and three-dimensional imaging [20–22].
GI has also been demonstrated to have the advantage of imaging in scattering media, as it
can effectively reduce the interference of the scattering medium and obtain a clearer image
in this medium [23,24]. At present, most of the research on ghost imaging in scattering
media is focused on the influence of different scattering media on ghost imaging [25],
the effect of scattering media in different paths on ghost imaging [26], and compensation
reconstruction algorithms [27].

Speckle pattern and generation mode is one of the key factors affecting the quality
of GI. Traditional GI uses a laser beam on a rotating ground glass to produce pseudo-
thermal light [28]. Computational ghost imaging (CGI) requires devices such as SLMs or
DMDs to generate random speckles with known rules [29]. However, they are often unable
to withstand high light power. The refresh rate of the spatial light modulation device
should be higher than the sampling rate of the bucket detector signal, or it will degrade
the reconstructed image quality [30]. In some applications, such as GI at a remote distance,
speckle patterns still need to be realized using rotating ground glass.

In this paper, we propose self-modulated ghost imaging (SMGI) in a scattering
medium. Unlike the way of generating pseudo-thermal light in traditional ghost imaging,
in SMGI, the pseudo-thermal light is produced through the dynamic scattering of free
particles’ Brownian motion in the scattering environment. Simulation and experiment
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have verified that SMGI can be realized in a certain particle concentration environment.
Compared with the image quality and evaluation indexes of traditional ghost imaging,
SMGI improves the noise interference caused by the rotating ground glass and shows
better performance.

2. Methods
2.1. GI Principle

Let us briefly review the procedure of ghost imaging first. A typical schematic of
classic pseudo-thermal light source ghost imaging is shown in Figure 1 [31,32]. A collimated
laser beam is divided into two identical light beams through a beam splitter (BS). In the
object arm, the light illuminates the object, and the transmitted light is collected by the
bucket detector (D1), which is an energy detector without spatial resolution. A CCD camera
records the light field in the reference arm. The distances of the beam splitter to the object
surface and the beam splitter to the array detector are the same (z1 = z2). The light energy
collected by the bucket detector D1 is

S =
∫

Iobj(x1)T(x1)dx1 (1)

where Iobj(x1) is the intensity distribution of the illuminating light in the object arm and
T(x1) is the transmission function of the object. The object image is obtained by computing
the second-order correlation, which can be expressed as:

O(x) ∝
〈
Iref(x2)S

〉
−
〈
Iref(x2)

〉
〈S〉 =

∫ 〈
Iobj(x1)Iref(x2)

〉
[g(2)(x1, x2)− 1]T(x1)d(x1) (2)

where 〈·〉means multi-frame averaging, Iref(x2) is the intensity distribution of the speckle
field in the reference path recorded using the CCD, and g(2)(x1, x2) denotes the degree of
second-order coherence defined as

g(2)(x1, x2) =

〈
Iobj(x1)Iref(x2)

〉〈
Iobj(x1)Iref(x2)

〉 (3)
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mately spherical with a diameter of 10 µm) suspended in an oleic acid solution are used 
to simulate the effect of scattering media. Because the density of the two materials is ap-
proximate (the density of oleic acid is 0.89 g/cm3 and the density of polystyrene particles 
is 1.05 g/cm3), the particles can be suspended in oleic acid, and the Brownian motion can 
last for a long time. The scattering intensity can be adjusted by changing the particle con-
centration. 

Figure 1. Ghost imaging experimental schematic diagram.

2.2. Self-Modulated GI

As shown in Figure 2a, the experimental setup of the He-Ne laser (λ = 632.8 nm) se-
quentially passes through the beam expander (L1), collimation lens (L2), and two polarizers
(P1, P2) before incident to the scattering medium. Polystyrene particles (approximately
spherical with a diameter of 10 µm) suspended in an oleic acid solution are used to simulate
the effect of scattering media. Because the density of the two materials is approximate (the
density of oleic acid is 0.89 g/cm3 and the density of polystyrene particles is 1.05 g/cm3),
the particles can be suspended in oleic acid, and the Brownian motion can last for a long
time. The scattering intensity can be adjusted by changing the particle concentration.
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Figure 2. (a) Self-modulated experimental schematic diagram. (b) Scene of the laser beam passing
through the scattering medium. (c) Pattern of the object.

After passing through the scattering medium, the laser beam is divided into two
identical beams by a 50:50 beam splitter (BS). The light in the reference arm is recorded
using the CCD1 (MERCURY2 Industrial Camera, Daheng optics, Beijing, China). For
simplicity of alignment, another identical camera, CCD2, collects the transmitted light
passing through the object in the object arm. At this time, CCD2 is used as a bucket
detector [33,34]. The scene when the laser beam passes through the scattering medium in
the experimental apparatus is shown in Figure 2b. The object (metal mask “H” in Figure 2c)
is placed in the optical imaging path near CCD2, meanwhile ensuring that the distances
from the BS to the two detectors are the same (x1 = x2). The sampling rate of the detector is
set at 30 milliseconds per frame, and the image size for calculation is 256 × 256 pixels.

3. Results
3.1. Relationship between Random Speckle Pattern and Particle Concentration

According to the size of the scattered particles and wavelength of the light source,
atmospheric scattering can be classified into Rayleigh scattering, Mie scattering, and non-
selective scattering. Gong and Han proposed an improved correlation imaging method
that could improve the imaging quality of Mie scattering media [25]. Bina et al. proposed
using differential ghost imaging with the back scattering structure to reconstruct objects
immersed in Rayleigh scattering turbid media [35].

A non-sequential bulk scatter model was established to simulate the scattering of the
expanded laser beam as it passed through the solution containing particles [36,37]. The
simulation parameters were set as follows: the wavelength of the laser beam was 632.8 nm,
the number of analyzed rays was 10,000, the scattering area was a rectangular volume
(20 × 20 × 10 mm), the refractive index of the filling material (oleic acid) in the rectangle
volume was 1.4585, the refractive index of the particle (polystyrene microsphere) was 1.60,
and the particle diameter was 10 microns. According to the ratio of particle radius to
wavelength (2πr/λ≈ 49.6), the simulation was based on Mie scattering [38–40]. A rectangle
detector with pixel size 100 × 100 was placed on the scattering rectangular volume’s rear
surface to observe the intensity distribution of transmitted light.

In order to investigate the relationship between random speckle pattern and particle
concentration, experiments with different particle concentrations (the number of particles
contained per unit volume) while other parameters were fixed were conducted. Figure 3a
displays the intensity distribution of the laser beam that the detector received following
ray tracing, Figure 3b presents the corresponding simulation models, and Figure 4 plots
the relationship between the total intensity transmittance received by the detector and the
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particle concentration. It can be observed that the light transmittance gradually declines
with a linear rise in particle concentration, and the detector’s total intensity is also reduced
linearly. The simulation results show that the scattering effect is not apparent when the
particle concentration is low. If the concentration of particles is too high, the scattering
effect is so strong that most of the light cannot pass through the rectangular volume to reach
the detector. Therefore, only when the laser beam passes through a scattering environment
with a certain concentration range will it produce a random dynamic speckle suitable for
ghost imaging.
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Figure 3. From (1) to (6), the strength of scattering is increasing. (a1–a6) Intensity distribution
received by the detector. (b1–b6) Sequentially corresponding simulation models. The density of
particles is (a1,b1) 5 × 104 cm−3, (a2,b2) 5 × 105 cm−3, (a3,b3) 5 × 106 cm−3, (a4,b4) 1 × 107 cm−3,
(a5,b5) 1.5 × 107 cm−3, and (a6,b6) 2 × 107 cm−3.
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3.2. Properties of SMGI Light Source

A thermal light source is a prerequisite for GI. In conventional GI experiments, the
pseudo-thermal light is typically realized using a rotating ground glass. In order to investi-
gate the property of the light modulated by the scattering medium, experiments and data
analysis for light intensity distribution in time and space were conducted [41,42].

In total, 5000 time-continuous reference light samples (recorded using CCD1) were
taken to calculate the average light intensity value of 6 × 6 pixels in the same area, respec-
tively. The principle is shown in Figure 5a,b, with data for 5000 average light intensity
values, where the x-coordinate represents the number of successive samples and the y-
coordinate is the corresponding average light intensity value. Figure 5c shows the quantity
statistics of the light intensity value. The statistical results show that the complex am-
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plitude of the light field generated by the self-modulation of the scattering medium is
approximately Gaussian random distribution in time.
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A reference light (recorded using CCD1) was randomly selected, and the light intensity
values of 256 pixels in each row and column in the sample were averaged. The principle is
shown in Figure 6a,b, with the statistical results of the average light intensity values corre-
sponding to the above 256 rows and columns, respectively. Figure 6c shows the quantitative
statistics of the light intensity value. The statistical results show that the mean complex
amplitudes of the light field generated by the self-modulation of the scattering medium in
the transverse and longitudinal space are approximately Gaussian random distribution.

The statistical results show that the light source generated through self-modulation
of the scattering medium has strong fluctuation in both time and space, and the complex
amplitudes of both light fields obey Gaussian random distribution, which is the same as
the thermal light source.
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3.3. SMGI Performance

In Figure 7, the reconstructed images with a self-modulated pseudo-thermal source
and a ground-glass-modulated pseudo-thermal source are presented individually. As
a comparison between Figure 7a,b, it is observed that the image reconstructed using
traditional ghost imaging has apparent “fluidity”, and the image reconstructed through
self-modulation is less noisy. This verifies that the pseudo-thermal light generated by
the scattering medium fluctuates more evenly in time and space than that generated by
ground glass.

In order to further compare the performance of SMGI and GI, the edge characteristics
of the “H” figure reconstructed using the two methods were quantitatively analyzed.
Peak signal to noise ratio (PSNR) and structural index measurement (SSIM) were used
as evaluation indexes. The PSNR is most commonly used to measure the reconstruction
quality in image compression. SSIM is a universal objective image quality index that is



Sensors 2023, 23, 9002 7 of 10

easy to calculate and applicable to various image processing applications [43]. Firstly,
two reconstructed images with 10,000 frame samples were average filtered [44], and edge
detection was carried out using Canny, Roberts, Prewitt, and Sobel edge detectors [45]. The
parameter values of each edge detector were adjusted several times to retain the extracted
target graph information to the maximum extent. The parameters of the four edge detectors
were determined to be 0.6, 0.014, 0.02, and 0.019, respectively. The PSNR and SSIM of the
two groups of edge images were calculated. Figure 7c shows the results obtained using
the Canny edge detector, Figure 7d shows the relationship between the two groups of
image PSNRs, and Figure 7e shows the relationship between the two groups of SSIMs. The
experimental results demonstrate that the performance of SMGI is better than that of GI.
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reconstructed with 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, and 10,000 frame samples in
turn. (c) Canny edge detector result. The PSNR (d) and SSIM (e) line charts of SMGI and GI.

As shown in Figure 8, the influence of particle concentration on SMGI was investigated.
First of all, the reconstructed images with 10,000 frame samples for four different particle
concentrations are presented. It is observed that the image quality is poor when the particle
concentration is low. With the increase in particle concentration, the image gradually
becomes clearer. However, when the concentration is too high, the image quality decreases
again, which is very consistent with the simulation results above.
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Based on the simulation and experimental results, when particles with a concentration
ranging from 1.3 to 1.7 mg/cm3 and a travel length of 10cm are in a scattering medium (the
diameter of the particles is 10 µm), a clear image can be reconstructed with 10,000 frame
pictures. The concentration range will vary when the particle diameter and refractive index
change. If the particle concentration is too low, the scattering effect is negligible. It cannot
generate a randomly distributed illuminating light beam. Meanwhile, if the concentration
is too high, the scattering effect becomes excessively strong, and the transmittance becomes
too low; there is too little light able to reach the object.

4. Discussion

When there is a scattering medium in the optical transmission path, traditional imaging
cannot establish the corresponding relationship of the light field. Ghost imaging belongs
to second-order intensity correlation imaging, which has been proven to have strong anti-
interference ability, a simple optical path, low cost, and other characteristics. It provides a
new idea for obtaining clear object images in scattering media and has been widely used
and become a hot research topic in related fields.

This paper demonstrated improved ghost imaging, which we called self-modulated
ghost imaging (SMGI). SMGI can take advantage of the dynamic scattering medium that
originally affects the imaging quality and generate pseudo-thermal light through the
dynamic scattering of free particles’ Brownian motion in the scattering environment for
imaging. The main contribution of this work includes the following three points. Firstly, as
shown in Figures 3 and 4, theoretical analysis and simulation established the relationship
between the random speckle pattern and particle concentration of SMGI, which verified
that self-modulation within a certain particle concentration range could produce random
dynamic speckle suitable for ghost imaging. When light travels in a scattering medium
with a travel length of 10 cm and particle concentration ranging from 1.3 to 1.7 mg/cm3, a
clear image can be reconstructed with 10,000 frame pictures. The experimental results, as
shown in Figure 7, are very consistent with the simulation results above. Secondly, from
the statistical results in Figure 5, we can find that the properties of self-modulating pseudo-
thermal light are similar to those of traditional GI, which can be used as an experimental
light source for ghost imaging. Finally, Figures 1 and 2 are schematic diagrams of the
experimental device, and traditional GI and SMGI imaging experiments were carried out,
respectively. The experimental results are shown in Figure 6 and show that SMGI can
reduce the fringe interference caused by the rotating ground glass in traditional GI imaging.
According to the evaluation indexes PSNR and SSIM, SMGI can improve the quality of
reconstructed images.

Although there are some limitations in the experimental process and results of the
improved GI proposed in this paper, SMGI has potential application prospects for the
reconstruction of images in random dynamic high-scattering environments such as dense
fog and turbid water, and SMGI provides a simple and effective method to generate pseudo-
thermal light for ghost imaging in dynamic scattering media, which provides a new idea
for the application of traditional GI in scattering environments.
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