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Abstract: This paper proposes a non-contact continuous respiration monitoring method based on
Fringe Projection Profilometry (FPP). This method aims to overcome the limitations of traditional
intrusive techniques by providing continuous monitoring without interfering with normal breath-
ing. The FPP sensor captures three-dimensional (3D) respiratory motion from the chest wall and
abdomen, and the analysis algorithms extract respiratory parameters. The system achieved a high
Signal-to-Noise Ratio (SNR) of 37 dB with an ideal sinusoidal respiration signal. Experimental
results demonstrated that a mean correlation of 0.95 and a mean Root-Mean-Square Error (RMSE) of
0.11 breaths per minute (bpm) were achieved when comparing to a reference signal obtained from
a spirometer.

Keywords: Fringe Projection Profilometry; structured light; respiration monitoring

1. Introduction

Vital signs, such as body temperature, pulse rate, blood pressure, and the Respiration
Rate (RR), are used to monitor the clinical status of patients and are crucial in detecting
medical problems as they represent the fundamental functions of the body [1]. The RR is an
early indicator for clinical deterioration and is therefore an integral component of numerous
early clinical warning scores [2–5]. Changes in the RR can predict conditions including
respiratory failure [2], cardiac arrest [3,5], chronic heart failure [3], pulmonary embolism [3],
weaning failure [3] or Intensive Care Unit (ICU) readmission [3]. Liu et al. [3] reported that
deviations in the RR from its normal range can identify risks for medical emergencies 24 h
before their occurrence with a probability of 95%. They also noted that the RR provides a
better discriminator than blood pressure or heart rate in identifying high-risk patients. To
measure the RR, the common practice involves manually counting the number of breaths
within a specific time frame [3,6,7]. According to Drummond et al. [4], the measured RR
can vary by 2 to 6 breaths per minute (bpm) between observers. Moreover, in busy clinical
environments, there is often insufficient time to measure longer time frames for each patient
and repeat measurements regularly. Consequently, shorter time intervals of 15 to 30 s are
typically used, further contributing to the variance [4,7]. This variance can result in up to
40% of failures in the early warning scores due to inaccurate RR measurements [4].

Measuring a single RR value is crucial, but continuous monitoring of respiration over
an extended period can be necessary in certain cases. For instance, respiration has been
examined for diagnosing and monitoring patients with conditions like chronic obstruc-
tive pulmonary disease [6], pneumonia [3,5] or sleep breathing disorders [6]. Continuous
respiration monitoring also finds application in diagnostic imaging and radiation therapy,
where the identification and elimination of motion artifacts caused by patients breathing
can enhance measurement quality [5]. While more accurate methods for measuring respi-
ration signals, such as spirometry [6], plethysmography, capnography, piezoelectric and
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bioimpedance-based sensors [7] exist, these methods are often intrusive, interfere with the
normal breathing or cause discomfort for patients. The current diagnosis of sleep breathing
disorders relies on polysomnography, which is highly uncomfortable and often results
in non-representative sleep [6]. In some cases, infants in the neonatal intensive care unit
are too small to use the face masks of the traditional methods. Recently, there has been
a growing awareness of the importance of respiratory monitoring for patients with viral
infections, such as COVID-19 [2,5]. Minimal contact between clinical staff and the patient
is needed. Consequently, contactless continuous monitoring systems have gained greater
interest to address these challenges [5]. The aim is to reduce the restrictions and improve
patient comfort [2] while simultaneously providing an automated, reliable and accurate
solution [3]. Contactless systems differ in their underlying mechanisms and have different
advantages and limitations [3]. Massaroni et al. [5] provided a comprehensive review of
these contactless techniques. The contactless methods measure respiratory sounds, air
humidity [8], air temperature, cardiac activity modulation or chest wall movements. To
measure respiratory sounds in a contactless manner, environmental microphones are used.
The advantage lies in its commercial availability, but challenges persist in distinguishing
between inhaling and exhaling sounds and in its sensitivity to environmental noise [9].
Zhang et al. used electrochemical humidity sensors with a breathing mask to measure
the respiration rate and detect respiration patterns [8]. Thermal cameras are used for the
contactless measurement of air temperature, while red, green, and blue (RGB) cameras can
capture cardiac activity. However, 2D imaging-based methods like RGB cameras or thermal
cameras usually require the patients face to be visible, limiting their utility in regard to
patient positions and ambient lighting conditions [10].

To measure the chest wall movements and extract respiration parameters, several
technologies have been used, including marker-based systems [9], laser vibrometry [11],
radiofrequency sensors [12,13], terahertz sensors [14], ultrasound [15], RGB cameras [16–18]
and depth sensors [2]. While marker-based systems are classified as contactless, they
still require markers to be attached to the body. Consequently, some of the disadvan-
tages of contact-based methods persist, and these systems are in general expensive [5].
Hence, marker-based systems are often unsuitable for contactless continuous monitor-
ing [5]. Although the physical principles differ among these sensors, they all rely on
distance information between the body surface and the sensor. Depth sensors, also known
as 3D sensors, can be based on the principle of Time-of-Flight (ToF) [10,19–23] and structured
light [24–27]. Many studies focus solely on extracting the average RR, while some extract
the Breath-to-Breath Respiration Rate (BRR), measure volume variations, or extract a con-
tinuous respiration signal. Among these 3D sensing technologies, ToF sensors have been
predominantly used for monitoring breathing activity [5] due to the sensor’s commercial
availability and low cost. The Microsoft Kinect v2 ToF sensor has been employed in multi-
ple studies [19,21,28]. Skeletal information was automatically provided by the Kinect SDK
2.0. The Region of Interest (ROI) can be defined based on the joint positions of the shoulders,
hips, and mid-spine. However, these systems are limited to capture subjects facing the
camera, as the joints cannot be detected and the ROI computation fails otherwise. Kempfle
et al. [19] and Aoki et al. [21] indicate that such a method is only suitable for non-moving
subjects. To address this limitation, Kempfle et al. [28] detected and used the throat region,
minimally affected by respiratory motion, as a reference for overall body motion estimation.
This method enabled more accurate measurement of respiratory motion by removing the
overall body motion from the signal. Their approach achieved a correlation to the signal
from a respiratory belt of over 0.9 for more than half the users, even with body motion.
However, when the throat region is covered due to head movements, changes in position, or
occlusion, the correlation dropped below 0.4, restricting the feasibility the feasibility of the
method for various patient positions. Gleichauf et al. [10] proposed the use of a ToF camera
in combination with a microwave interferometric radar sensor, specifically for Neonatal
Intensive Care Units (NICUs). The method was tested using a self developed neonatal
simulation system for different breathing patterns. The ToF camera outperformed the radar
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sensor in the normal range of the RR but led to less accurate results in the low RR region,
differing 31 bpm from the reference rate. The ToF camera’s strong sensitivity to noise and
reflection caused the algorithm to detect additional peaks at low RRs. The radar sensor
was found to be sensitive to body motion artifacts, such as swaying arms. By combining
the two methods, they were able to extract an RR in the normal range with a maximum
deviation of 3 bpm compared to the reference, by complementing each other’s drawbacks.
Another 3D sensing technology, the structured light approach, was used in [24]. The system
was specifically designed for individuals with a normal breathing rate. Different scenarios,
including slight body movement, different clothing, ambient lighting conditions, and user
orientations were compared. The system demonstrated correlations between 0.92 and
0.98 with the spirometer across these scenarios. However, the main limitation identified
was the patient’s orientation, allowing only a maximum deviation of 25◦ from the frontal
view. Consequently, the system is restricted to a limited range of patient positions. The
approach proposed in [25] was also based on structured light, using a pattern composed of
RGB primary colors to illuminate the scene. The subjects were unclothed and laying still.
While an interference effect from ambient light on measurement accuracy was observed, it
was not quantified. Under the predefined conditions, they were able to generate motion
trajectories of a specific point near the diaphragm. However, the results were not verified
using a reference system.

In many studies, the selection of the ROI was manually conducted [20,23,29–31].
However, a recent study [32] focused on the automated selection of the ROI. This pro-
cess involved dividing each depth frame into sub-regions, averaging the depth in each
region, and then applying blind-source separation to each time signal. A scoring system
was applied to assess the resulting signals based on their likelihood of originating from
respiratory activity. As a reference, a respiration belt was used, with participants instructed
to minimize body movement and breathe normally. On average, errors between 2.89 and
11.2 bpm were observed in the detected RR. It is important to note that the scoring system
relies on characteristics of normal breathing and is not suitable for detecting abnormalities.
Despite recent advancements in contactless respiration monitoring techniques, challenges
and questions remain unsolved [7]. The primary challenges include the system’s robustness
in varying ambient lighting conditions, body movement, patient positions, range of RRs,
clothing and also the overall accuracy in general. Moreover, many studies focus solely on
extracting the average RR rather than a continuous respiration signal.

In recent years, remarkable progress has been achieved in contactless 3D shape mea-
surement technologies in general, which is driven by their increasing demand across
various industries [33]. Those advances had, among others, been made in the field of Fringe
Projection Profilometry (FPP). According to several authors [33–35], FPP is one of the most
popular and promising technologies for 3D measurements. Systems based on FPP show
advantages in its achievable speed, depth resolution, accuracy, affordability, versatility and
robustness [33,36] in comparison to other 3D sensing technologies such as ToF cameras or
stereo vision.

This paper introduces a FPP-based contactless respiration monitoring approach and
its evaluation to overcome some of the challenges described above. The focus lies on
the analyzing algorithm for extracting the RR and a respiration signal from the FPP
3D measurements. The system is evaluated in terms of its overall accuracy, robustness
and limitations.

2. Materials and Methods
2.1. System Overview

The system developed in this project comprises the 3D sensor system and algorithms
designed to extract respiratory parameters from 3D images. Figure 1 illustrates the data
flow from the measurements to the extracted respiratory parameters. The 3D sensor system
captures 2D images and reconstructs 3D images from those 2D images. The analysis of the
3D images involves six key steps for extracting the respiratory parameters.
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Figure 1. Overview of the developed system from capturing data to the extraction of the respiratory
parameters.

2.2. Three-Dimensional (3D) Sensor System

To obtain a 3D representation of the thorax and abdomen, an FPP-based 3D sensor
system was used. Due to its flexibility and versatility, a digital video projector was utilized
for projecting computer-generated patterns. Specifically, a DLP LightCrafter 4500 projector
was used, and its specifications are summarized in Table 1. The camera specifications can
be found in Table 2. Additionally, an Arduino microcontroller was responsible for the
synchronization between the camera and the projector.

Table 1. Specifications of the projector used in our 3D sensor [37].

Attribute Value

Model name DLP Lightcrafter 4500
Vendor Texas Instruments
Brightness 150 Lumens
F-number 2.1
Throw ratio 1.2
Aspect ratio 1.6
Resolution 912 × 1140
Mirror arrangement Diagonal
Pixel size 7.6 µm
Maximum binary pattern rate 4225 Hz

Table 2. Specifications of the camera used in our 3D sensor [38].

Attribute Value

Model name GS3-U3-23S6C
Vendor Point Grey Research (Now FLIR)
Sensor Sony IMX174 (1/1.2′′ Color CMOS)
Maximum resolution 1920 × 1200
Corresponding frame rate 163 FPS
Lens mount C-Mount
Pixel size 5.86 µm

While the projector has a fixed resolution and a variable frame rate over 4 kHz [37],
the camera’s resolution and frame rate are dependent. A higher frame rate can only be
achieved by reducing the resolution of the camera [38]. Balancing speed and resolution
led to a camera resolution of 640× 480 pixels and a frame rate of 330 Hz, resulting in a
sampling frequency of 55 Hz for 3D image capture. The corresponding ideal focal length
of the lens was calculated as f = 5.37 mm, ensuring an adequate field of view (FOV)
encompassing the upper body. Considering the limited options for affordable machine
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vision lenses, a focal length of freal = 6 mm was chosen [39]. Opting for a longer focal
length results in a smaller FOV of the camera, ensuring full coverage of the camera’s FOV
by the projected area. The geometrical parameters of the 3D sensor are summarized in
Table 3. Figure 2 shows the setup of the camera, the projector, and the Arduino.

Table 3. Geometrical values for the setup of the 3D sensor system.

Name Variable Value

Focal length f 6 mm
Camera view short sc 433 mm
Camera view long lc 577.3 mm
Projector view short sp 484.2 mm
Projector view long lp 774.7 mm
Distance object plane de 929.6 mm

Figure 2. Setup of the 3D sensor prototype.

While the fundamental concept remains consistent across all FPP methods, there are
variations in the specific details, such as the fringe analysis method, fringe pattern design,
and unwrapping method. In this study, the Phase-Shifting Method (PSM) was used as the
fringe analysis method. According to Zhang [39], the PSM demonstrates reduced sensitivity
to surface texture variations, while other methods are sensitive to noise and surface texture
and/or geometry variations. Due to its high speed, accuracy, resolution, and robustness,
the PSM has found extensive use in optical metrology [36], making it well suited for this
system, particularly concerning spatial resolution and robustness.

To achieve a high speed, a three-step phase-shifting method is typically used. Three
phase-shifted fringe patterns with equal phase shifts can be described as

I1 = I′ + I′′ cos(φ− 2π/3), (1)

I1 = I′ + I′′ cos(φ), (2)

I1 = I′ + I′′ cos(φ + 2π/3), (3)

where I′ is the average intensity, I′′ is the modulation, and φ is the phase to be solved.
Simultaneously solving these three equations gives

φ = tan−1
√

3(I1 − I3)

2I2 − I1 − I3
. (4)

Due to the use of an inverse tangent function, the phase value extracted here is called the
wrapped phase, whose values ranges from −π to +π. The phase has to be unwrapped to
obtain a smooth phase map. Phase unwrapping essentially determines the integer number
of 2π to be added for each pixel

Φ = φ + κ × 2π, (5)
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where Φ refers to the unwrapped map and κ denotes the integer number, which is often
called the fringe order. In this research, we employed the enhanced two-frequency phase-
unwrapping method developed by Hyun et al. [40]. For such an algorithm, six fringe
images were utilized, consisting of two different fringe periods: λ1 = 30 pixels for the
initial three images and λ2 = 380 pixels for the subsequent three images [40]. Additionally,
the binary defocusing technique proposed by Li et al. [41] was employed to allow the
projector to operate at significantly higher frequencies, thereby enabling high temporal
resolution. Using fringe patterns containing multiple periodic stripes necessitates the
unwrapping of the phase obtained from the PSM [39].

The calibration of the 3D sensor system was essential to determining both the extrinsic
and intrinsic parameters of the system using the standard pinhole model for both the
projector and the camera. The pinhole model describes the relationship between the 2D
coordinates of the sensor pixel and the corresponding 3D world coordinates (x, y, z),

sc[uc, vc, 1]T = Ac · [Rc, tc] · [x, y, z, 1]T , (6)

sp[up, vc, 1]T = Ap · [Rp, tp] · [x, y, z, 1]T , (7)

where c denotes camera, p denotes projector, sc and sp denote the scaling factors, Ac and
Ap denote the 3× 3 intrinsic matrices, Rc and Rp denote the 3× 3 rotation matrices, tc

and tp denote the 3× 1 translation vectors, and T denotes the matrix/vector transpose
operation. For this purpose, the calibration method outlined in [34] was adopted. Once the
system is calibrated, those matrices are known. Equations (6) and (7) have 6 equations with
7 unknowns x, y, z, sc, sp, up, vp for any given camera image pixel (uc, vc). The unwrapped
phase Φ of that pixel provides another constraint equation that allows us to solve (x, y, z)
coordinates uniquely pixel by pixel to reconstruct the 3D shape of the object.

2.3. Three-Dimensional (3D) Image Analysis

The resulting 3D point data, captured by the 3D sensor described above, were analyzed
to extract a respiration signal, an RR and a BRR from the chest wall movement. Our
methodology placed significant emphasis on ensuring the system’s robustness and the
generation of continuous results. Consequently, potential patient movements, variations in
patient positions, and diverse surface textures were considered in the development. The
processing involved six main steps, as depicted in Figure 1, each of which is elaborated
upon in the subsequent sections.

2.3.1. Step 1: Preprocessing

The captured fringe images undergo preprocessing before the reconstruction of the 3D
coordinates. A 5× 5 Gaussian filter, with a standard deviation of 1.67, is applied to reduce
significant noise. Subsequently, a threshold is applied to the intensity modulation of the
captured sinusoidal patterns to filter out low-quality phase points.

The captured intensity modulation varies depending on the surface properties. The
threshold aids in distinguishing high-quality and low-quality image points. To build a
robust system, the threshold dynamically adjusts based on the overall light intensity in
the image. Consequently, the system can adapt to varying object surfaces, particularly
those with varying colors. After the 3D coordinates are calculated and saved as a matrix
of (x, y, z) coordinates, additional preprocessing steps were implemented. As depicted
in Figure 3a, the 3D structure comprises the desired torso coordinates along with invalid
outliers and parts of the background. Depth sensors relying on light reflection have often
larger measurement errors in surface areas with steep angles toward the sensor [19], leading
to outliers, especially in the body’s marginal regions. The removal of outliers involves
calculating the derivative of the z coordinate along each row and column. A threshold is
then applied to eliminate pixels displaying rapidly changes in geometry compared to their
neighboring pixels. Subsequently, isolated pixel clusters containing a minimal number of
points are removed, aiming to eliminate points not belonging to the main body. The final
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preprocessing step involves the application of a median filter [19] to further reduce noise in
the captured surface. All points filtered out through these preprocessing procedures are
designated as Not a Number (NaN) values. Figure 3b illustrates the cleaned 3D data.

(a) Before preprocessing (b) After preprocessing

Figure 3. Comparison between two point clouds with and without preprocessing. Color represents
the distance from the sensor with light gold points being closer dark blue points being further away.

2.3.2. Step 2: Determination of Region of Interest (ROI)

The selection of the ROI enables a focus on the body parts affected by respiratory
movement. Lung volumes directly correlate with the expansion of the chest and abdomen.
Depending on the type of breathing, predominant movement occurs either in the abdominal
or thoracic region. Consequently, both regions are relevant for monitoring respiration [42].
Kempfle et al. [19] indicated that the two parameters, namely the size and position of the
ROI, significantly influence the outcome. A smaller ROI is more sensitive to noise, while
an excessively large ROI may capture additional body parts that negatively impact the
measurement. The ROI’s position has to cover the areas where the respiratory motion
is noticeable. Representative heat maps illustrating the maximum variation in the depth
value of body regions during respiration are depicted in Figure 4a,b. Figure 4a displays
the outcome when the subject was instricted not to move with the arms positioned outside
the camera’s FOV. In contrast, Figure 4b depicts a scenario with the arms within the FOV,
and the subject was permitted slight movement. Noticeable high variations are observed in
the marginal area and around the arms due to these slight body movements, emphasizing
the necessity of an ROI to ensure robustness. These observations verify the assumption of
noticeable respiratory motion in the chest and abdominal areas. In the first case (Figure 4a),
the variations are more severe in the abdominal region, while in the second case (Figure 4b),
the variations in the chest region appear more significant. Therefore, both regions were
considered in this study.
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Figure 4. Maximum variation in the z direction in each pixel over a time frame of 30 s.

Furthermore, subjects might reposition themselves within the camera’s FOV during
the course of measurement. Consequently, the ROI needs to be adjusted accordingly.
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In numerous projects, the position and size of the ROI were manually determined post-
recording [23,29–31]. However, such a manual approach lacks the capability to dynamically
adapt the ROI in real time and requires the offline manual analysis. To address these
limitations, the 3D image is segmented into voxels of 40 × 40 pixels, as illustrated in
Figure 5a [17,32]. Each voxel is assigned a score distinguishing between areas within the
ROI and excluded regions. Voxels containing invalid points (NaN values), represented
as white areas in Figure 5a, are discarded. To enhance robustness, a voxel is considered
only if it solely contains valid points in both the current and previous frame. As depicted
in the example in Figure 5c, marginal areas affected by high variations and noise are
not incorporated into the defined ROI. When the subject’s position changes, the ROI
adjusts automatically. The proposed approach aims to automate the selection and dynamic
adaptation of the ROI parameters’ position and size.

(a) (b)
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(d)

Figure 5. Dynamic adaption of the ROI selection before and after body movement. (a) Depth map
of the body centered before movement. (b) Depth map of the body after movement. (c) ROI before
movement. (d) ROI after movement.

2.3.3. Step 3: Extraction of Motion Signal

To derive the respiratory pattern from the 3D reconstructed points of the upper body,
the movements of the chest and abdominal wall were utilized. Two general methods of
depth sensors are found in the literature: one approach estimates the volume of the ROIs,
while the other directly uses the distance from the body to the sensor. The estimation of
the ROIs volume [20–22] presumes that the ROI remains constant [19]. Since depth sensors
solely capture the body surface, the volume has to be approximated. Altering the size and
position of the ROI also changes the volume even without respiratory motion. Thus, this
approach is deemed unsuitable if the ROI is dynamically adapted. Consequently, we opted
for the latter approach to estimate the motion signal.

Three main criteria were considered to accurately extract a motion signal: (1) the noise
in the resulting motion signal should be as low as possible, (2) the algorithm should be
robust toward a dynamically changing ROI, and (3) the duration of the computation should
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be low for continuous monitoring applications. The approach proposed in [24] was chosen
and adapted to the FPP sensor used in this project.

The average depth D(k) is calculated as

D(k) =
1
N

N

∑
i=1

zi(k), (8)

and then the weighted average W(k) is computed as,

W(k) =
∑3

i=0 wk−iD(k− i)

∑3
i=0 wk−i

. (9)

A sliding window is applied to four successive frames and moved one frame at a time. The
weights are chosen as wk = 1, wk−1 = 0.7, wk−2 = 0.4 and wk−3 = 0.1 [24]. Combining
with the sampling frequency Fs, the derivative of the weighted average dW(k) is calculated,

dW(k) = Fs(W(k)−W(k− 1)). (10)

The motion signal S(k) is calculated by summing up the mean values of the change over
time as

S(k) =
k

∑
i=1

dW(i). (11)

2.4. Step 4: Monitoring with Sliding Window

In the context of utilizing the system for monitoring purposes, it is essential to regularly
update the respiration pattern during the measurement. Therefore, the complete signal
cannot be processed all at once, and a sliding window approach is adopted instead. This
approach entails a temporal buffer of size W that holds the last W raw signal values. To
ensure that the window covers a full respiratory cycle, a minimal RR of fresp,min = 6 bpm is
used [43]. The window size can subsequently be calculated as [17]

W = 60×
fsampling

fresp,min
. (12)

2.4.1. Step 5: Motion Separation

The extracted motion signal includes not only the respiratory motion but also incor-
porates body motion, which could potentially generate motion artifacts. To enhance the
system’s robustness, the motion signal undergoes further processing. This study proposes
a motion artifact detection algorithm to detect and eliminate motion artifacts, comprising
three essential steps. Firstly, an operator characterizing the motion is applied. Subsequently,
a threshold is determined to differentiate between respiratory and body motion. Finally, a
binary trust status is assigned to distinguish between valid signal components and invalid
signal components rendered unusable due to significant body motion.

The operator used is the Taeger–Kaiser energy (TKE) operator defined for discrete
time series S(k) as [44]

ψ[S(k)] = S2(k)− (S(k− 1)S(k + 1)). (13)

In [45], the TKE operator was used to detect motion artifacts in the signal of an accelerometer.
Since the motion signal described in Section 2.3.3 is a discrete time series, the TKE operator
was adapted to this system for motion artifact detection.

This operator responds to both frequency and signal amplitude [45]. When the TKE
value exceeds a certain threshold, the corresponding signal values are eliminated and
augmented by interpolation. Considering that the TKE value integrates three consecutive
motion signal values, all three values are eliminated once the threshold is exceeded. The
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threshold must be low enough to effectively detect motion artifacts yet high enough to
avoid categorizing rapid breathing as a motion artifact. Instead of using a fixed threshold,
it is dynamically adjusted to enhance the system’s robustness. One characteristic that
distinguishes respiratory motion from other body motions is its periodicity. The auto-
correlation is calculated to characterize this periodicity. In cases where primarily respiratory
motion is present, the secondary maxima of the autocorrelation are high and located at
the distance of two respiratory motion peaks. The current frequency of respiration can be
estimated from this distance, thereby determining the threshold for the TKE operator as a
function of the frequency. If motion artifacts are present in the window, explicit secondary
maxima may be absent, or the autocorrelation value in the secondary maxima might be low.
In such instances, the estimated frequency remains unchanged, and the threshold for the
TKE operator remains constant. The threshold is recalculated not each time the window is
shifted but rather after the window has been entirely moved by its size. Lastly, the binary
trust status is established based on the TKE operator and autocorrelation. If the sum of the
TKE values in the window exceeds a certain threshold value, the binary trust status is set
to zero (low); otherwise, it is set to one (high). As discussed earlier, the TKE is dependent
on frequency. The periodicity of the signal obtained from the autocorrelation is used to
correct a falsely low trust status particularly in signals of high frequency. This compensates
for minor body motions while labeling signal segments affected by long and intense body
motions as invalid. The proposed approach combines the local TKE operator with the
global correlation across the entire window, enabling the identification and compensation
of locally corrupted signal segments within the context of the current breathing mode.

When a patient changes position during the measurement, not only can motion
artifacts occur during the movement, but the body can also be closer or further away from
the 3D sensor. To compensate the shift, the mean of the signal is calculated for each window
and then subtracted from the signal values.

In addition to motion artifacts, the sensor noise can also affect the extracted motion
signal. Large noise impact is alleviated by the approach described above, but a moving
average filter of size 5 is applied to further reduce noise impact.

2.4.2. Step 6: Calculation of Respiration Rate (RR)

From the processed signal, the RR can be derived, with the literature primarily sug-
gesting two options for RR calculation. The first option involves calculating the frequency
spectrum of the signal and identifying the frequency of the highest peak in the spectrum [16].
Alternatively, peaks in the time domain can be calculated and counted within a specific
time frame [10,20,24]. The latter approach was chosen due to its computational efficiency
and the ease of extracting the average RR from the window.

The MATLAB function “findpeaks” is employed to identify the peaks in the time
domain. The threshold value of the peak detection function is dynamically adjusted based
on the current respiration amplitude. The respiration amplitude is estimated from the
current maximum and minimum values in the window and updated only when the binary
trust status is high.

The time differences between successive peaks represent the respiratory periods [20].
To calculate the RR in bpm, the reciprocals of the respiration periods are multiplied by
60 s, resulting in a BRR [20]. To determine the average RR, the peaks are counted within a
30 s time frame. Dividing the number of breaths by the total duration of all breaths and
multiplying by 60 yields the average RR. Signal segments marked with a low trust status
are excluded from the RR determination with the average RR and BRR remaining at the
last valid value in such cases.

2.5. System Evaluation
2.5.1. Reference System

To assess the system’s performance, a spirometer served as the reference system [2,5].
The spirometer enables a continuous and accurate measurement of lung volume varia-
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tions [3]. As proposed in [46], the spirometer from the company “Vernier Software &
Technology” was used, with the specifications summarized in Table 4 [47]. Through the
Vernier’s Graphical Analysis App interface, the differential pressure (Pa) can be recorded
over time. Additionally, the flow rate (L/s) and the tidal volume (L) can be derived. It is
important to note that only the differential pressure is directly measured with the other cate-
gories being derived from this measurement. The flow rate is calculated using a calibration
equation, and the tidal volume is obtained by integrating the flow rate [47]. Considering
that chest expansion correlates directly with the inhaled and exhaled air volume, the tidal
volume was used as the reference respiration signal.

Table 4. Specifications of the spirometer used as a reference system [47].

Attribute Value

Model name Go Direct Spirometer GDX-SPR
Vendor Vernier Software & Technology
Resolution pressure sensor 0.02 Pa
Sampling rate 50 Hz

Figure 6 shows that an inherent baseline drift is introduced due to the internal volume
calculation. To address this known issue, the volume can be automatically adjusted in
the user interface [47]. The adjusted volume resets to zero after each ventilation cycle,
effectively eliminating the baseline drift. However, this corrective measure distorts the
shape of the volume signal. By eliminating the offset in the flow signal and integrating
the corrected flow, the baseline drift in the volume signal can be minimized as shown in
Figure 6. Given that the spirometer volume signal was used for comparing the pattern of
the extracted respiration signal rather than absolute volumes, it was feasible to eliminate
the linear trend in the reference signal. Furthermore, both the reference signal from the
spirometer and the extracted respiration signal were normalized. To synchronize these
two signals, the subject was instructed to breathe deeply three times at the beginning of
the measurement.

To obtain a reference RR from the continuous volume signal, the volume peaks were
detected and counted in a time frame of 30 s. To obtain a reference BRR, the time shift
between two peaks was calculated as the respiration period. Its reciprocal multiplied by
60 yielded the BRR.

Figure 6. Comparison of the volume signal before and after baseline correction.

2.5.2. Evaluation Metrics

The extracted respiration signal and the derived RRs were then compared to the
reference system. To quantify the similarity between the extracted respiration signal and
the reference signal from the spirometer, the cross-correlation between the two signals
was computed. The time lag between the two signals was determined from the position
of maximal correlation with a compensatory maximum shift of 0.27 s to accommodate
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minor time discrepancies in their synchronization. The Pearson correlation coefficient was
then utilized as a measure of similarity [48]. The RRs were evaluated by calculating the
Root-Mean-Square Error (RMSE) between the reference and the extracted RRs [20]. Both
the RR and the BRR were assessed using this metric. Additionally, the results of multiple
subjects and measurement series were consolidated by calculating the mean values and
standard deviations.

To evaluate the system’s robustness and potential influencing factors, various scenarios
were tested, involving different conditions and patient actions. The experiments included
seven individuals, with each measurement lasting approximately 60 s. Since the first three
breaths were solely for synchronization purposes, the usable signal was shorter. As a
baseline, the subjects were instructed to lie in a supine position. The 3D sensor system
was positioned above and pointing down toward the chest and abdomen, maintaining a
calculated distance of 929.6 mm from the sensor to the subject. Accounting for the chest
depth, the mean value between the minimum value and the maximum value from the
literature was calculated as 236 mm, resulting in a rounded distance of 1165 mm between
the sensor and the surface. Ambient light was turned on, and the subjects were wearing a
white shirt. They were instructed to lie as still as possible and breathe naturally without
conscious thought.

3. Results
3.1. Individual Processing Step Evaluation

As previously discussed, each 3D frame undergoes preprocessing before any further
analysis. Firstly, we experimentally evaluated the performance of the preprocessing algo-
rithm. Figure 3a,b depict an example 3D frame before and after applying our proposed
preprocessing algorithm outlined in Section 2.3.1. Figure 3a illustrates the 3D point cloud
without applying the preprocessing algorithm, while Figure 3b displays the 3D point cloud
after preprocessing. The removal of invalid outliers and the smoother surface are evident.
The remaining stripes, visible even after preprocessing, are due to the texture of the shirt
that the subject was wearing. The depth (z) of each 3D frame was used for further analy-
sis. The submitted Video S1 demonstrates a series of raw depth images before and after
preprocessing, providing clear evidence of the effectiveness of the preprocessing algorithm.

The impact of the preprocessing algorithm was further quantified by comparing the
extracted motion signal to the spirometer signal. Figure 7a,b illustrate the normalized ampli-
tude of the motion measured by the proposed 3D system in comparison to the spirometer’s
result. Figure 7a depicts the motion signal extracted without preprocessing, displaying
noticeable noise and a sudden jump at approximately 5 s. In contrast, Figure 7b shows
reduced noise and the compensated jump after preprocessing. The correlation coefficient
between the measured signal and the reference signal is 0.285 without preprocessing and
0.958 with preprocessing.

(a) Measured signal without preprocessing (b) Measured signal after preprocessing

Figure 7. Comparison of the measured signal and the reference signal with and without preprocessing.
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We then evaluated the effectiveness of the proposed dynamic ROI selection method.
Figure 5 provides an example frame, while Figure 5a illustrates the 3D image when the
body is centered in the FOV, from which the ROI is determined, as shown in Figure 5c. As
the subject moved toward the right side of the FOV, the corresponding ROI also adjusted
accordingly, as shown in Figure 5b,d. The submitted Video S2 demonstrates the adaptability
of the proposed dynamic ROI selection algorithm in response to body movements. In
contrast, Video S3 shows the usage of a fixed ROI.

The performance of the adaptive ROI selection algorithm was further quantified.
Figure 8a diplays the signal when the entire FOV was selected as the ROI with the correla-
tion coefficient between the extracted motion signal and the reference signal measuring
0.888. Upon applying the proposed ROI selection algorithm, the correlation coefficient
increased to 0.955, as depicted in Figure 8b. This experiment further demonstrates the
effectiveness of the proposed ROI algorithm to reduce the noise in the measured signal.

(a) FOV chosen as ROI (b) Proposed adaptive ROI applied

Figure 8. Comparison of the measured signal and the reference signal with and without the adaptive
ROI selection.

The motion separation approach was assessed by instructing the subject to move
during the measurement. Two different levels of movement were defined: slight movement
involving shoulder movement and changes in position and significant movement encom-
passing all degrees of freedom. Figure 9a illustrates a signal with slight body movement,
demonstrating the successful detection and suppression of motion artifacts. The binary
trust value remained high throughout the signal, which is desired because the binary trust
value is important for the RR calculation, and if the motion artifacts can be compensated,
the RR can be calculated. Additionally, the figure illustrates the successful detection of all
respiration peaks.

If the body movement is more severe, too many points are removed from the signal,
making it impossible to reconstruct the original course of respiration. In such cases, the
binary trust status becomes crucial in preventing the misclassification of motion artifacts
as respiration peaks. Figure 9b displays a signal affected by significant body movement,
where the binary trust status marks the areas affected by the body movement. No peaks
were detected in these areas for the RR calculation.

While the approach reliably provided a binary trust status in most cases, the limitation
of the algorithm was found in the measurement shown in Figure 10a. When the breathing
amplitude was shallower (1.2 mm in this case) and slight movement was present, the
algorithm could not reliably differentiate between respiratory movement and motion
artifacts. Consequently, the motion was not detected, and the body motion peaks were
falsely identified as respiration peaks (Figure 10a). Figure 10b shows the second issue. At
about the 30th second, the subject held the breath but started moving at the same time, and
the algorithm failed to distinguish. Note that the amplitudes are normalized to compare
the respiration signal to the spirometer signal. The main challenge was to detect the motion
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artifacts as abrupt changing signal parts but not to incorrectly classify fast breathing as
motion artifacts. Figure 10c shows that the binary trust status was defined in a way that the
fast breathing was not misclassified.

(a) Slight body movement (b) Significant movement

Figure 9. Result of the motion separation algorithm and the introduced binary trust status with
different levels of body movements.

(a) (b) (c)

Figure 10. Result of the motion separation algorithm for three different breathing patterns and subject
behavior. (a) Shallow breathing with slight body movement. (b) Holding the breath with body
movement. (c) Fast breathing.

3.2. Overall System Performance Evaluation

The overall system performance and its robustness were assessed by the evaluation
metrics described above under different scenarios that are summarized in Table 5. A
baseline scenario was defined, and in each of the following scenarios, only one aspect
was altered.

Figure 11 shows a representative result of the extracted respiration signal and the
reference spirometer signal for the baseline scenario. The mean of all observed correlation
coefficients in the baseline scenario is µcc = 0.974, and the standard deviation is σcc = 0.016.
Penne et al. suggested that correlation values between 0.69 and 0.87 are typical for systems
currently utilized in clinical applications [30]. The mean correlation of µcc = 0.974 therefore
confirms its clinical relevance.
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Table 5. Summary of evaluation scenarios.

Scenario Description

Baseline

The subject was laying in supine position, ambient light was
turned on and the subject was wearing a white shirt. The
subject was asked to lay as still as possible and to breathe
normally without conscious thought.

Fast breathing
The subject was asked to breathe as fast as possible. Not all of
them were able to breathe fast for a whole minute; therefore, the
dataset had to be shortened in some cases.

Hold breath The subject was asked to hold their breath for a certain period
within the 60 s measurement.

Deep chest breathing The subject was asked to breathe in deeply and focus on
thoracic breathing.

Deep abdominal breathing The subject was asked to breathe in deeply and focus on
diaphragm breathing.

Slight movement
The subject was asked to move around the upper body lightly.
Actions were for, e.g., improving the position for comfort and
moving the shoulders.

Significant movement The subject was asked to move around more severely in all
degrees of freedom.

Alternating shirt color The subject was asked to wear a shirt of a different color
than white.

Ambient light turned off All ambient light sources in the room were turned off.

Lateral position The subject was asked to lie on their side.

Prone position The subject was asked to lie on their stomach.

Blanket usage The subject was covered with a white blanket.

Figure 11. Comparison of the extracted respiration signal and the reference.

Figure 12 illustrates the comparison of the average RR and BRR to the reference in the
baseline scenario and during significant movements. In the baseline scenario, the mean
error of the RR RMSE is µRR = 0.048 bpm, and the standard deviation is σRR = 0.027 bpm.
For the BRR, the mean error of the RMSE is µBRR = 0.236 bpm with a standard deviation
of σBRR = 0.136 bpm. In general, the BRR errors appear to be higher than the average
RR. This is likely due to the BRR calculation being based on the individual respiration
periods, and thus, a small deviation has a bigger impact on the BRR value. The assessment
of the robustness toward body movements was divided into two parts. The first part
was described above and focused on the motion detection. In this paragraph, the focus is
on the overall performance with regard to body movement. While the removed motion
artifacts from slight body movements could be reconstructed leading to a correlation
coefficient higher than 0.85, significant movements resulted in a much lower correlation
coefficient. This indicates that the reconstruction with interpolation was only sufficient for
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slight body movements. The errors were high in the RMSE values of the RR and the BRR
for significant movements. Investigating the individual measurements in the significant
movement category showed that the errors occurred primarily when the signal was not
trusted and the RR and BRR values were kept at the same level. Figure 12c,d show an
example of the resulting RR and BRR. After approximately 35 s, the RR and BRR were held
at their current values, but in reality, the RR and BRR changed. It can be seen that the area
of the low trust status is narrower than the area where the values are constant. Since the
last reliable value is used, the constant part starts earlier. After the binary trust status is
changed to high, a new window is needed to update the values. The remaining window at
the end was too small to do so. Depending on how early or late the movement occurred
in the signal and how severe the breathing changed during movement, the overall RMSE
value was larger or smaller, leading to larger standard deviation values.

(a) RR in the baseline scenario (b) BRR in the baseline scenario

(c) RR during significant movements (d) BRR during significant movements

Figure 12. Comparison of the 3D measured RR and BRR and its reference.

The different scenarios were assessed on several subjects that were part of this study.
To summarize the results of the different subjects for each scenario, the mean and standard
deviation were calculated for each measure and scenario and are shown in Table 6.

The respiration mode was assessed in terms of alternating fast breathing, deep thoracic
or chest breathing, deep diaphragm or abdominal breathing and holding the breath. In all
cases, the correlation coefficients are similar to the baseline results, showing no clear trend
between the categories. Comparing the results in terms of the RMSE of the BRR, the fast
breathing mode showed a slightly higher mean RMSE compared to the baseline results.
This discrepancy is probably caused by the calculation of the BRR. Assuming a minimal RR
of 6 bpm implies that the respiration periods have an average length of 10 s. Varying the
respiration periods by 0.1 s between the measurement and the reference results in an error
of 0.06 bpm in the BRR. On the other hand, assuming a maximum RR of 60 bpm leads to
respiration periods of 1 s. In this case, a variation of 0.1 s in the respiration periods between
the measurement and the reference causes a deviation of 5.5 bpm, which is significantly
higher. Consequently, the same respiration peak detection accuracy algorithm leads to
higher BRR errors during fast breathing due to its relatively larger error range. Regarding
deep abdominal and chest breathing, the higher standard deviation is noticeable. This is
likely due to body size and physique having a greater influence when breathing in deeply.
However, in all categories, the mean RMSE of the BRR remained small: below 1 bpm.
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Table 6. Experimental results of the correlation coefficient (cc), the RR RMSE and the BRR RMSE (in
bpm) for each scenario. The mean µ and the standard deviation σ are given across all participants of
this study.

Scenario µcc σcc µRR σRR µBRR σBRR

Baseline 0.974 0.016 0.048 0.027 0.236 0.136
Hold breath 0.965 0.022 0.033 0.015 0.437 0.177
Fast breathing 0.966 0.025 0.032 0.006 0.909 0.041
Deep abdomen 0.988 0.005 0.051 0.022 0.422 0.231
Deep chest 0.951 0.032 0.044 0.019 0.405 0.361
Prone position 0.876 0.167 0.017 0.008 0.489 0.438
Lateral position 0.941 0.034 0.517 0.336 0.875 0.137
Blanket used 0.916 0.069 0.078 0.054 0.446 0.149
No ambient light 0.95 0.062 0.074 0.062 0.198 0.032
Colored Tshirt 0.914 0.066 0.06 0.039 0.334 0.271
Slight movement 0.877 0.009 0.329 0.3 1.886 1.297
Significant movement 0.626 0.187 3.498 2.444 6.895 5.677

Three different positions were assessed: the baseline position where the subject was
lying on its back, the prone position and the lateral position. The mean correlation was
high in all positions. The errors in the calculated RR and BRR were lower in the prone
position and higher in the lateral position. This discrepancy is likely due to the resulting
signal being noisier in the lateral position, which is attributable to the increased degrees of
freedom for body movements.

The performance of the proposed method was also evaluated under three scenarios:
varying shirt colors, no ambient light, and the use of a blanket. The correlation coefficient
was consistently above 0.85, and the mean of the RMSE of the RR was low in all scenarios.
Notably, the RMSE value of BRR without ambient light present was similar to the baseline
scenario. However, the use of a blanket and the variation in shirt color led to a slightly
larger mean RMSE and standard deviation of the of BRR value. This could be attributed to
the increased noise introduced by the fabric folding during the respiratory motion. In this
study, only a thin blanket was assessed, and a thicker blanket might further dampen the
respiration movement, leading to worse results. Regarding shirt color, the higher mean
and high standard deviation are noticeable. Green, gray and pink shirt colors were tested.
Since the FPP technology relies on the reflection of the light on the subject’s surface, there
may be a correlation between the darkness of the shirt color and its performance. Further
investigations are needed to precisely characterize the impact, as this study only tested
three different colors.

3.3. Research Findings

After accessing different scenarios, this research leads to the following findings:

• The baseline case demonstrated the successful extraction of a continuous respiration
signal and the respiratory features RR and BRR with minor deviations from the
reference. Varying the respiration modes did not significantly increase the deviations.

• Altering the subject’s position revealed high correlation for the prone and the lateral
positions with more than 80% of all values within 1 bpm deviation of the reference
both RR and BRR values.

• Turning off ambient light had no major impact on the results. Wearing a different
shirt color or using a thin blanket still resulted in high correlation for the continuous
respiration signal and a low RMSE for the extracted RR values. However, for the
extracted BRR values, a higher standard deviation and mean of the RMSE were
observed. Even in these situations, the BRR values remained within 1 bpm deviation
from the reference in 90% of the cases.

• The system demonstrated robustness against slight body movements. For significant
body movements, the body motions could be detected and marked but could not be
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reconstructed in all cases. Maintaining the RR and BRR values at a constant when the
binary trust status was low resulted in errors during that period. The system reached
its limit when the subject held its breath and moved simultaneously with a similar
amplitude as respiratory movement.

4. Conclusions

In this paper, we developed, implemented and evaluated a respiration monitoring
system based on FPP. The system comprised the 3D sensor prototype and the analysis
algorithm to extract the respiratory parameters such as the respiration signal, RR, and
BRR from the 3D images. An overall high mean correlation of 0.95 between the measured
respiration signal and the reference signal was observed. The extracted RR values had a
mean RMSE of 0.11 bpm to the reference values, while the BRR values showed a mean
RMSE of 0.52 bpm to the reference. These values were obtained from various scenarios
assessed to evaluate the system’s robustness. The proposed method proved to be robust
toward slight body movements, but it was found to be less robust when significant body
movements were present. Further research is required to ensure a reliable reconstruction
of the respiratory signal in all cases. The high mean correlation of 0.95 to the reference
indicates the clinical relevance of the proposed method.
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