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Abstract: Force-based human posture estimation (FPE) provides a valuable alternative when camera-
based human motion capturing is impractical. It offers new opportunities for sensor integration
in smart products for patient monitoring, ergonomic optimization and sports science. Due to the
interdisciplinary research on the topic, an overview of existing methods and the required expertise
for their utilization is lacking. This paper presents a systematic review by the PRISMA 2020 review
process. In total, 82 studies are selected (59 machine learning (ML)-based and 23 digital human model
(DHM)-based posture estimation methods). The ML-based methods use input data from hardware
sensors—mostly pressure mapping sensors—and trained ML models for estimating human posture.
The ML-based human posture estimation algorithms mostly reach an accuracy above 90%. DHMs,
which represent the structure and kinematics of the human body, adjust posture to minimize physical
stress. The required expert knowledge for the utilization of these methods and their resulting benefits
are analyzed and discussed. DHM-based methods have shown their general applicability without the
need for application-specific training but require expertise in human physiology. ML-based methods
can be used with less domain-specific expertise, but an application-specific training of these models
is necessary.

Keywords: human pose prediction; activity recognition; motion capture; classification; machine
learning; digital human model; virtual sensor; biomechanics; pressure sensor

1. Introduction

Human posture estimation is an essential method for data acquisition in many appli-
cations, including the fields of sports science, ergonomics, rehabilitation and user-centered
product design [1–6]. Traditionally, camera-based motion capture systems have been used
for human motion capturing and posture estimation [7,8]. Camera-based systems, espe-
cially marker-based systems, offer high precision but are limited by the need for external
measurement equipment such as cameras, leading to a restricted measurement space and
significant preparation effort [9,10]. However, in recent years, non-camera-based sensors
have also emerged as valuable alternatives for human posture estimation [11–13]. Non-
camera-based sensors can offer advantages in terms of flexibility and portability as well as
cost-efficiency [14–16].

Common alternatives to camera-based methods include the use of data from inertial
measurement units (IMUs), electromyography (EMG), and pressure or force sensors [17–19].
The sensors for measuring these data do not need to be set up externally to observe the
subject. They can be worn directly on the human body or be integrated into smart products
like smartwatches, phones, or even sensor-integrated devices such as exoskeletons or smart
seats [17,20–23]. While estimating human posture using IMU sensors for dynamic motion
has been well investigated and is used in some commercial motion-capturing systems for
sports analyses and the film industry, this technology has limitations when capturing static
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postures [20,24]. For static postures, such as lying in a bed, sitting on a chair or standing
in the same position for a long period of time while working, the displacement of the
measurement data is small. Thus, the drift of the sensors has a large impact on the accuracy
of the posture estimation [25].

New approaches investigate the application of force and pressure data from pressure
and force sensors or as a virtual force vector in simulations to estimate human posture in
static applications. Since the first approaches were published in the early 2000s through
the dissemination of machine learning algorithms (ML) and digital human models (DHM),
research in this area is relatively new. As a result, many models and methods for force-based
human posture estimation has emerged in various research disciplines. However, there
is currently a lack of a comprehensive overview of these methods, as well as criteria for
selecting the most suitable models and methods for specific applications. Such an overview
is necessary to fully exploit the potential of this technology and to guide further research
in this area. To address this gap, this systematic literature review aims to summarize the
existing models and methods in the literature and answer the following research questions:

1. What are the existing input data sources and estimation methods used in studies to
estimate human posture based on force data and pressure maps?

2. Which human posture estimation methods are used for which types of application
scenarios, and what previous expert knowledge is required for their use?

2. Human Posture Estimation

Human posture estimation, the process of determining the spatial configuration of
the human body, has diverse applications across various domains, e.g., computer vision,
sports analyses, biomechanical research, security, and surveillance. It involves identifying
the positions and orientations of body parts, typically using visual or sensor data. The
term “human posture estimation” or “human pose estimation” is most commonly known
by camara-based computer vision applications [26,27], as shown in Figure 1. In computer
vision, it is crucial for tasks like gesture recognition and human–computer interaction by
the identification of the human joint positions or body shapes from rgb or depth images [28].
However, human posture estimation is not limited to cameras, as described so far.
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Figure 1. A general schemata for the data processing of human posture estimation in computer
vision on 2D rgb images (right hand side) and examples of identified human postures in diverse
activity contexts (left hand side) described in a graphical abstract by Ben Gamra and Akhloufi [26]
(Reprinted with permission from [26], 2023 Elsevier).

In the following literature review, the term “human posture estimation” is generally
used for refer to the detection of human posture (joint angles, sitting positions, sleeping
positions, etc.) from a measured data set. Examples of slouch detection and sleeping posture
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are shown in Figure 2. In the case of our literature review, the data on which the estimation
is based are limited to pressure maps and force vectors. We also included studies from the
representative literature for the review that use activity recognition and re-infer the most
probable posture. This method can be applied if the activity is dominated by instinctive
movements like gait activities and is not influenced by external boundary conditions, like
in the case of a working posture. It is unique for a certain task and working environment.
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Figure 2. Different human postures that are estimated based on force data in representative studies
in the literature review. (a) Human sitting postures classified by pressure data from a sensor on top
of a chair [29]; (b) Sleeping postures that can estimated using ML-based algorithms [13] (Reprinted
with permission from [13,29], 2023 Springer Nature).

3. Materials and Methods

This systematic review follows the criteria of the “Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA 2020)” statement [30,31]. The steps of
the review process according to PRISMA 2020 are illustrated in Figure 3.
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3.1. Information Sources and Searching Strategy

This systematic literature review is performed on publications between 2000 and 2022
using the databases of Scopus, IEEE Xplore and PubMed. A versatile string is used for the
review due to differences in the declaration of the methods. Combining synonyms of the
five major terms “human”, “posture”, “estimation”, “force”, and “method” (Table 1) leads
to the following string: TITLE-ABS-KEY (human AND (posture OR pose) AND (prediction OR
estimation OR classification OR recognition) AND (force* OR pressure OR load OR weight) AND
(model* OR method*)). To limit the results to non-camera-based methods and exclude studies
on human blood pressure, the following keywords are used: “rgb”, “video”, “*vision*”,
“*cular”, “*blood*” and “*birth*”. Further, the results are limited to the subareas “medicine”,
“engineering”, “computer science”, “health professions”, “multidisciplinary” and “nursing”.
Other subareas are checked by random samples and excluded due to their lack of relevance.
The language is limited to English.

Table 1. Clustered keywords selected as search string for this literature review.

Human Posture Estimation Force Method

pose prediction pressure model

classification load

recognition weight

3.2. Screening Process

Searching in both databases resulted in a total of 1365 papers. To select the relevant
ones, the papers are summarized by title, author and abstract in a spreadsheet using EXCEL
2019 (Microsoft Corporation, Redmond, WA, USA). The following exclusion criteria are
defined for screening the primary results by title and abstract:

• The minimum required input for posture estimation includes data from at least one
force sensor, pressure mat or virtual force vector.

• The output of the estimation includes the human posture, e.g., whole-body postures
or one or more joint angles.

• Additional sensor inputs are allowed, except human motion data from classical motion
capture systems. Classical motion capture systems are only allowed for the evaluation
of the results.

Non-relevant papers are excluded from further steps. After selecting the relevant
papers by title and abstract, the full text reports of the remaining papers are manually
screened again during the data analysis. No automated tools are used for the screening
process. The literature is managed using the software CITAVI 6 (Swiss Academic Software
GmbH, Wädenswil, Switzerland). As a result, a total of 72 papers, each representing a
distinct study, are selected for further data analysis.

3.3. Additional Reports with Non-Standardized Terminology

Due to the use of inconsistent terminology in describing ML-based and DHM-based
methods, 10 additional papers on force-based human posture estimation are included
after the screening process. This non-systematic literature review is based on the main
methods, models and applications that are identified by analyzing the results of the struc-
tured literature review. A valuable input for additional relevant papers is provided by a
systematic literature review by Ngueleu et al. [32]. This review also covers some methods
of force-based human posture estimation from insole pressure data, but the main focus in
this review is on insole force sensors and methods for step-counting. Additional papers
are also approved using the criteria of the screening process and are marked with an
asterisk in the table. The reasons for the decision to add these papers are reflected further
in the discussion.
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3.4. Data Analysis

To answer the research questions, information about the following main categories is
extracted from each paper, as far as possible.

• Input Data Source: The input data source describes the origin of the sensor data or
virtual force vector input information used for posture estimation.

• Estimation Method: The estimation method describes the method used to estimate
human posture to give an overview of the most relevant methods.

• Application Scenario The application describes the scientific domain in which the
study was conducted as well as the specific activities the participants performed in
the studies.

Two large tables—one for ML-based posture estimation methods and one for DHM-
based posture estimation methods—list all the information that is extracted for each paper
in detail. To sum up all the information, the findings of the review are described for the
main categories.

The required expertise and previous knowledge about the application context needed
for using the methods cannot be quantified statistically from the review. Therefore, the
results contain sections summarizing the estimation methods, input data sources and
applications that form the basis of this review. The discussion section of this paper explores
how the required expertise and knowledge about the application context affect the use of
these methods in various domains, as elaborated by the authors.

A statistical evaluation of the results is presented using a Sankey diagram, which
illustrates the relationship between the methods, models and corresponding data types
used for human posture estimation. The Sankey diagram is created using the online
tool SankeyMATIC (www.sankeymatic.com, Steve Bogart, accessed on 24 October 2023).
Additionally, the diagram highlights the most commonly applied methods and models
in different domains. To assess the novelty and current relevance of the methods found,
the number of publications per year is plotted, with different colors representing the ML
and DHM approaches in the period from 2000 to 2022. Therefore, the Software IBM SPSS
Statistics Version 28.0. (IBM Corp. in Armonk, NY, USA) is used.

4. Results

The main results of our literature review are summarized, focusing on the main
categories we aimed to analyze. Thereafter, a statistical evaluation of the results is shown.

4.1. Input Data Sources and Sensors

The following summary is clustered into three sections. The first section covers the
measurement principles that are used in the representative studies to record the data for
posture estimation. Afterwards, the next section is about the sensor layouts of the hardware
sensors before the difference between commercial and self-designed sensors is reflected.

4.1.1. Measurement Principles

The first screening criterion requires force or pressure data from hardware sensors
or virtual force vectors as the main input parameters for human posture estimation. The
sandwich structure of film pressure sensors consists of a top and bottom copper layer
connected by a piezoresistive material (see Figure 4) [33].

The most commonly applied hardware sensors are thin film sensors that measure
piezoresistive [13,16,34,35] or capacitive principles [15]. The sandwich structure of piezore-
sistive sensors consists of a top and bottom copper layer connected by a piezoresistive
material (see Figure 4) [33]. Physical stress reduces the electrical resistance of the piezore-
sistive material and can be detected by an electronical measurement unit connected to the
copper layers. The measurement principle allows a sensor thickness of up to 200 µm (Flexi-
Force A301, Tekscan Inc., Boston, MA, USA) and high flexibility. Capacitive sensors are
filled with a non-conductive dielectric between the copper layers. Physical stress reduces

www.sankeymatic.com
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the electrical capacity between both layers. Both measurement principles offer a similar
measurement accuracy [36].
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Additionally, load cells are also used in some studies to measure input data for posture
estimation. Load cells differ in functionality and geometry from film pressure sensors.
They typically use strain gauges or piezoelectric sensors and are not as thin as film sensors.
Some load cells are capable of measuring more than just the force oriented perpendicular to
the sensor. They also are capable of measuring forces in multiple directions and sometimes
torques acting on the sensor. [37] Load cells are often more accurate than film pressure
sensors. However, they tend to be more expensive and challenging in terms of the technical
requirements for system integration [38].

Virtual force vectors are based on experience and knowledge about the application
scenario. It requires a high expertise to define valid virtual sensors. They are found mostly
in simulation studies.

4.1.2. Sensor Layout

The main difference that could be analyzed in the sensor layout is the difference
between single-point film sensors, which can only measure the force or pressure value at
one certain spot. The layout for load cells is comparable to the layout of single-point film
sensors; also, they can partially measure the force in more than one dimension. The benefit
of sensor matrixes is their ability to measure the force at multiple positions over a surface.
On the other hand, the acquisition technology is more complicated for matrix sensors than
for single-point sensors. Figure 4 shows the differences in the structure of a piezo-resistive
single-point sensor and a piezo-resistive matrix sensor.

The selected sensor also influences the layout and positioning of the sensors in the
application. The matrix sensors can mostly cover the entire relevant surface for pressure
mapping. Single-point sensors have to be placed on the right spots to obtain all the relevant
pressure information. Therefore, high expertise in the application is needed. Examples of
different sensor layouts are given in Table 2.

4.1.3. Commercial Hardware Sensors and Self-Designed Hardware Sensors

The commercial hardware sensors used in the reviewed studies are mostly developed
for laboratory studies and are distributed by official partners. This allows other researchers
to obtain the same equipment to replicate the study setup, reproduce the study and compare
their results with it. Thus, the measurement quality of these sensors is standardized,
which improves the comparability of the results. However, the sensors and additional
measurement equipment can be quite expensive.

Self-designed sensors allow more individual adaptions through integration into prod-
ucts instead of commercial hardware sensors [42–46]. All the reviewed, self-designed sen-
sors are film pressure sensors. They are mostly made of a pressure-sensitive film known by
the brand names VELOSTAT (3M Company, St. Paul, MN, USA) and LINQSTAT (CAPLINQ
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Corporation, Ottawa, ON, Canada). Alternatives are offered by Matthies et al. [15], who
developed their own capacitive sensors for a smart mattress, and by Milovic et al. [43], with
their research on textile sensors, as shown in Figure 5.

Table 2. Examples of sensor layouts for measuring the contact forces for force-based human posture
estimation in different application scenarios.

Application Scenario Positioning of Single-Point Sensors Layout of Sensor Matrix

Sensor mattress
(health care + sleep research)
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4.2. Methods and Models for Human Posture Estimation

Human posture estimation methods can be divided into ML-based methods and
DHM-based methods. ML-based methods work with only statistics, while DHM-based
methods involve a lot of expert knowledge about the kinematics and dynamics of the
human body.

4.2.1. Machine Learning Methods

In the reviewed papers, the performance and resource efficiency of different ML
algorithms are compared under different constrains.

A general statement on the suitability of the algorithms for classification is not possible
due to the different assumptions and constraints in the studies, as well as the lack of com-
parative values across studies. An overview of the most of used classification algorithms is
given in Table 3. The resulting quality of the output data ranges from the simpler identifi-
cation of body segments on a sensor mattress [13,47,48], to the assignment of predefined
movement activities, to the classification of individual gait cycle phases directly related to
leg joint angles during walking [43]. By using classification, only certain previously selected
human postures can be recognized. These methods are well suited, e.g., to identify a critical
situation during patient monitoring or analyze everyday activities. The continuous motion
of a joint angle is not estimated using classification algorithms. Regression algorithms
can also be used to estimate continuous joint angle motions. The regression model links
the distribution and intensity of interaction forces in different situations to joint angles.
Choffin et al. [12] use a K-nearest neighbor algorithm (kNN) and Clever et al. [49] use a
convolutional neural network for posture estimation to obtain the continuous progress of a
joint angle motion. Unlike other studies within this review, Rihar et al. [48] use an image
recognition algorithm to evaluate the pressure map of a film sensor matrix to identify the
different segments of a human body in a sleeping position. Image recognition is commonly
used in AI applications. However, it is not popular for human posture estimation based on
interaction forces.
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Table 3. Overview of the most often studied classification algorithms for force-based human
posture estimation.

Classification Algorithm Classification Accuracy Feature Extraction Methods Relevant Studies

Support vector machine (SVM) 70% [34]–99.79% [50]
Raw data [51], statistics [50,52],

sliding window [40,50],
HOG [39,46]

[14,16,22,34,39–41,46,50–60]

K-nearest neighbor (kNN) 78% [34]–98.52% [22]
Raw data [61,62],

statistics [50],
sliding window [50]

[13,22,34,40,41,47,50,54,55,61–65]
used for regression:

[12]

Convolutional Neural Networks (CNNs) 84.80% [21]–99.84% [66] Mostly automated feature
extraction by CNN network

[21,29,35,63,66–72]
used for regression:

[29,49]

Random forest (RF) 52.2% [34]–100% [40] Sliding window [40],
statistics [60] [34,40,53,54,57,60,63,73,74]

Naïve Bayes (NB) 40.09% [22]–84.33% [16] Mostly filtered
raw data [16,22,34,44,54,63,73]

Decision Tree (DT) 76.79% [16]–98.10% [50] Statistics [50]
Sliding window [41,50] [16,41,50,53,54,63,73]

The classification accuracies reach values above 90% for the most used algorithms (see
Table 3). Data pre-processing is used in most of the studies to improve the quality of the
data input to the algorithms. Filtering, e.g., using Gaussian filters or the sliding window
effect, is used to reduce the noise in raw data. Different recording frequencies of sensors
are also equalized, and sensors values can be fused, e.g., when defining measurement areas
on a matrix in the pre-processing step.

Feature extraction and data pre-processing influence the time and resource efficiency
and the accuracy of ML-based human posture estimation. The selection of feature extraction
methods is contingent upon the sensor type and application scenario considerations of the
different studies, e.g.,

• Center of pressure determination;
• Histogram of Oriented Gradients (HOG) analysis;
• Sliding window techniques;

Some studies embrace convolutional neural network (CNN), which obviate intricate,
hand-crafted feature extraction. The most representative feature extraction methods are
also listed in Table 3.

4.2.2. Digital Human Models

DHM-based human posture estimation uses, unlike ML-based methods, knowledge of
the kinematics and dynamics of the human body to extrapolate a human posture from force
or pressure data. The DHMs used in the reviewed studies can be divided into two main
categories. The first category consists of basic kinematic and dynamic models that focus on
separating the segments of the human body. On the other hand, there are more complex
and widely used DHMs that are commercially available or open-source and are often
recognizable by their brand names. Based on the thermology of Demirel et al. [75], the latter
ones can be further categorized into DHMs for 3D CAD and modeling and DHMs built as
a finite element or multibody dynamics simulation. In most cases, posture estimation is
realized by optimizing the joint angles to minimize a certain criterion, e.g., muscle activity
or joint torques. An overview of the optimization criteria is given in Table 4:
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Table 4. Overview of the optimization criteria for DHM-based human posture estimation.

Optimization Criterium Digital Human Models Relevant Studies

Reduction in joint torque 3D dynamic human model [76–78]

Reduction in muscle effort Musculoskeletal human model [79,80]

Hypothesis of quasi-static equilibrium Dynamic human model [81]

Reduction in joint fatigue 2D three-compartment controller fatigue model [82]

Simple dynamic models are usually represented by rigid elements and joints with
different degrees of freedom without spring or damper properties. An evaluation of these
dynamic models is conducted via an inverse kinematic analysis. A typical dynamic model
that is used for the posture estimation of a weightlifting sportsperson by Rahmati and
Mallakzadeh [78] is visualized in Figure 6.
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2023 Elsevier B.V.)

Some of the studies use DHMs that were originally developed for early validation
during the design process of ergonomic workshops and automotive cockpits. Thus, the
concept of these models is a combination of a rigid dynamic model of the human body
and a body shape model to provide a realistic impression of how humans can move
inside the application environment [83]. In the reviewed studies, the SANTOS model
(SantosHuman Inc., Coralville, IA, USA) is mainly used to perform inverse kinematic
analyses [77,84,85]. Its evaluation is similar to that of simple kinematic models but is
supported by the user interface and a realistic representation of the human body. The
JACK model (Siemens Industry Software Inc., Plano, TX, USA) [86], the RAMSIS model
(Human Solutions GmbH, Kaiserslautern, Germany) [87,88] and the 3DSSPP model
(VelocityEHS Inc., Chicago, IL, USA) [89] are used as dynamic models similar to the
SANTOS model [88], but also as body shape models, e.g., to calculate the contact surface
between the human and a pressure-sensing object. A use case for the RAMIS DHM is
shown in Figure 7.

The DHMs in the “finite elements and multibody dynamics DHM” category represent
the structure and the interaction of the human body in the most detailed, but also most
complex, way. The studies for human posture estimation are dominate by the use of
musculoskeletal models. Musculoskeletal models are multibody dynamic simulations built
up from the bones of the human skeleton as rigid bodies and the muscles as dynamic
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connections. In many studies, the commercial software AnyBody (AnyBody Technology
A/S, Aalorg, Denmark) is used to calculate muscle activity and optimize the body posture
for minimal muscle activity [79].
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4.3. Application Scenarios

Human posture estimation based on interaction forces serves as an automated alternative
when traditional camera-based posture estimation is infeasible or more costly to install. This
is particularly useful in scenarios where camera installation may limit mobility or when the
use case involves a virtual posture estimation. In such cases, the main input condition is the
impact of an external force on the human body. The main application domains of the studies
investigated are healthcare—especially for patient monitoring—[13,22,35,39,46–48,61,64,71], sleep
research [45,49,91–93], sports science [37,76,94], product [84] and automotive design [34,87,88]
and the sub-domains of ergonomics—industrial ergonomics [12,50,77,80,82,86,89,95,96], gait
analyses [43,51,65,85,97] and sitting ergonomics [14,16,21,44,54,69,72,98–101]. The context of the
application scenarios also influences the estimation methods that are best to use for the posture
estimation. For example, the application scenario can limit the training data that can be generated
for the ML-based methods. Further, the application scenarios also influence what kind of sensor
can be used and where it should be placed to measure the force data.

4.4. Findings

The findings and results from the reviewed papers can be categorized into several
areas, including the design and integration of sensor hardware into products for specific
applications, testing the performance of new ML algorithms for posture estimation and
comparing them, applying and testing validated ML algorithms for new applications
and input data and improving existing DHMs for human posture estimation. Figure 8
shows the result of lower-body posture estimation nearly fitting perfectly to the ground
truth data.
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Figure 8. Comparison of estimated lower-body motion and a motion-captured ground truth [102]
(Reprinted with permission from [102], 2023 IEEE Xplore).

4.5. Sankey Diagram

The Sankey diagram (Figure 9) shows the connections between the input data sources,
the estimation methods and the application scenarios for which the estimation methods are
used. It also shows the percentage of times each data source, method, and application are
used in the reviewed studies. When dividing studies into those with ML-based methods
and DHM-based methods, the classification algorithms favor ML-based estimation meth-
ods, while the basic dynamic human models favor the DHM-based estimation methods.
Furthermore, film pressure sensor matrices and single-point film pressure sensors are the
main input data sources for the classification, and virtual force vectors are mainly used as
input for DHM-based posture estimation. The utilization of the different methods is evenly
distributed among the different applications. Only in the healthcare domain—especially for
patient monitoring—classification algorithms dominate. The main applications are patient
monitoring in the healthcare domain and product optimization in various subdomains
of ergonomics.
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4.6. The Novelty and Relevance of Human Posture Estimation

The histogram in Figure 10 shows the emergence of DHM-based methods for human
posture estimation, with the investigation of these methods starting in the early 2000s. There
has been a notable increase in the number of publications on ML-based methods since 2007,
indicating a growing interest in recent years. In contrast, the number of publications on
DHM-based methods has remained relatively constant over the years.

Datailed Information about the Analysed Studies

A detailed analysis of the representative studies serves as the basis for the summarized
findings below and is presented in the following tables. Within Table 5, the data includes
input data sources, estimation algorithms, performance evaluations, data preprocessing
and feature extraction, and application scenarios derived from studies using machine
learning-based methods. Meanwhile, Table 6 presents information from studies using
digital human models (DHMs), including details on input data sources, the specific DHM,
optimization criteria, and application scenarios.
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Table 5. Summary of relevant studies for ML-based human posture estimation and the analysis of the used input data sources, estimation algorithms, acquired
accuracy, data pre-processing/feature extraction and application scenarios (* marks the extra-added reports after the structured literature review); the best performing
estimation algorithm for each study is highlighted bold.

Author Year Input Data Source Estimation Algorithm Estimation Performance Data Pre-Processing/
Feature Extraction Application Scenarios

Adami et al. [92] 2011

Single-point film
pressure sensors:

AG100 C3SH5eF (Scaime™,
Juvigny, France)

Classification:
Gaussian mixture models

Classification rates for
individual subjects:
from 76.7% to 95.3%

Over all
classification rate:

up to 84.6%

Data pre-processing:
Analysis of the trajectory of the body’s

center of mass
Feature extraction:

(1) the Euclidean distance between
initial and end points of the trajectory

(2) the trajectory length and
(3) the variance of the trajectory in the

y-direction perpendicular to the
sleeper’s body axis

Sleep research:
Classification of the movement

type lying in a bed

Adami et al. [91] 2014

Single-point film
pressure sensors:

6 AG100C3SH5eU (Scaime™,
Juvigny, France)

Classification:
Linear discriminant function

Classification rate:
96.9%

Spearman’s correlation
coefficient between the periodic

leg movement indexes
estimated by the system and

those obtained from
a polysomnogram is 0.927

Data pre-processing:
trajectory of the center of

pressure (CoP)
Feature extraction:

(1) the Euclidean distance between
initial and end points of the trajectory

(2) the trajectory length, and
(3) the variance of the trajectory in the

y-direction perpendicular to the
sleeper’s body axis.

Sleep research:
Detection of periodic limb

movement events

Ahmad et al. [53] 2021

Single-point film
pressure sensors:

Large-area screen-printed
sensor (16 pressure-sensing

elements, covering an effective
sitting area of 505 cm2

Classification:
k-nearest neighbors (kNN),

support vector machine (SVM),
random forest (RF), decision
tree (DT) and light gradient

boosting machine (LightGBM)

Classification accuracy:
kNN: 98.27%
RF: 98.07%

SVM: 95.00%
DT: 97.81%

LightGBM: 99.03%

-
Sitting ergonomics:

Identification of sitting posture
abnormalities on a wheelchair

Aminosharieh Najafi
et al. [21] 2022

Single-point film
pressure sensors:

8 force-sensing resistors
(FSRs, unspecified)

Classification:
Feedforward artificial neural

network, multilayer perceptron
(MLP), convolutional neural

network (CNN), bidirectional
long short-term memory
(Bi-LSTM), CNN-LSTM

(CNLSTM), convolutional
LSTM (CVLSTM), and echo

memory network (EMN)

Classification accuracy:
MLP: 90.83%
CNN: 86.99%
LSTM: 88.71%

BDLSTM: 88.98%
CNLSTM: 89.14%
CVLSTM: 89.97%

EMN: 91.68%

Data pre-processing:
Smoothing motion raw data using

Savitzky–Golay filter

Sitting ergonomics:
Classification of sitting postures
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Table 5. Cont.

Author Year Input Data Source Estimation Algorithm Estimation Performance Data Pre-Processing/
Feature Extraction Application Scenarios

Antwi-Afari et al. [50] 2018

Film pressure sensor matrix:
Wearable insoles ”OpenGo”

(Moticon GmbH,
Munich, Germany),

3D MEMS-accelerometer (BMA
150, Bosch Sensortech GmbH,

Reutlingen, Germany)

Classification:
Artificial neural network

(ANN), decision tree (DT),
K-nearest neighbor (kNN), and
support vector machine (SVM)

Classification accuracy
(10-fold cross-validation):

ANN: 97.60%
DT: 98.10%

KNN 98.60%
SVM: 99.79%

Data pre-processing:
Sliding window segmentation (0.32 s)

with 50% data overlap
Time-domain features:

(1) Mean pressure;
(2) Variance;

(3) Maximum pressure;
(4) Minimum pressure;

(5) Range;
(6) Standard deviation

Frequency-domain features:
(1) Spectral energy

(2) Entropy
Spatial temporal features:
(1) Pressure time integral

Industrial ergonomics:
Classification of awkward

working positions

Antwi-Afari et al. [95] 2022

Film pressure sensor matrix:
Wearable insoles ”OpenGo”
(Moticon GmbH, Munich,

Germany),
3-axis gyroscope (MEMS

LSM6DSL, ST Microelectronics,
Plan-les-Ouates, Swiss)

Classification:
RNN-based deep learning

models:
long short-term memory

(LSTM), Bi-LSTM, and gated
recurrent units (GRU)

Classification accuracy:
LSTM: 97.99%

Bi-LSTM: 98.33%
GRU: 99.01%
Training time:
LSTM: 31 min

Bi-LSTM: 56 min
GRU: 54 min

Automated feature extraction by RNN
Industrial ergonomics:

Classification of awkward
working positions

Bhatt et al. [67] 2021
Simulated pressure sensors:
A synthetic portion of the

bodies at rest data set

Classification:
Convolutional neural network
(CNN) with a ResNet backbone

Recall score:
up to 99%

Automated feature extraction by CNN
algorithm

Sleep research:
Sleeping posture detection

Beltrán-Herrera et al.
[46] 2014

Film pressure sensor matrix:
Low-cost flexible array pressure

sensor with 448 units

Classification:
Support vector machine (SVM) -

Feature extraction:
Histogram of Oriented Gradients

(HOG) descriptor

Health care:
Body classification

in lying state

Bourahmoune et al.
[73] 2022

Single-point film
pressure sensors:

LifeChair
(Pressure-sensitive desk chair
with 9 DIY piezoresistive film

pressure sensors)

Classification:
Decision tree classification and

regression trees (DT-CART),
random forest (RF), k-nearest

neighbors (kNN), linear
regression (LR), linear

discriminant analysis (LDA),
naïve Bayes (NB) and neural

network multilayer perceptron
(MLP).

Classification accuracy:
RF: 97.09%

DT-CART: 96.19%
kNN: 92.13%

NN (MLP): 80.09%
LR: 5367%

LDA 53.16%
NB: 41.71%

Feature extraction:
Pressure distribution
Additional feature:

Body mass index (BMI)

Sitting ergonomics:
Posture detection for desk

working scenarios
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Table 5. Cont.

Author Year Input Data Source Estimation Algorithm Estimation Performance Data Pre-Processing/
Feature Extraction Application Scenarios

Casas et al. [61] 2018

Film pressure sensor matrix:
Pressure sensors arranged

horizontally and equidistantly,
covering an area of 2 m × 1 m.

Regression:
Fusion of k-nearest

neighbor (kNN)

Mean absolute errors (MAE):
Joint angle: 17.5–25.4◦

Joint position:
9.76–14.02 cm

Feature extraction:
Each sensor

represents a stand-alone feature

Health care:
Patient monitoring

Choffin
et al. [12] 2021

Single-point film
pressure sensors:

6 FSR sensors (FlexiForce A301,
Tekscan Inc., Boston, MA, USA)

Regression:
K-nearest neighbor (kNN)

Motion classification accuracy:
93.6%

Angle Regression accuracy:
87.4%

-
Industrial ergonomics:

Lowering risk of
musculoskeletal injuries

Clever et al. [49] 2020 Simulated pressure sensors:
Co-simulation: FleX and DART

Regression:
Convolutional neural network

(CNN)

Average pose
estimation error:

<5 cm

Automated feature extraction using
CNN algorithm

Sleep research:
Estimation of human sleeping

posture

Cruz-Santos et al. [39] 2014

Film pressure sensor matrix:
2 pressure sensor arrays with

16 × 16 units in an area of
1108 × 554 mm (SensingTex,

Barcelona, Spain)

Classification:
Support vector machine (SVM)

Classification accuracy:
Raw Data: 99.70%

HOG: 98.70%
SIFT: 98.95%

Feature extraction:
(1) Raw data;

(2) Histogram of Oriented Gradients
(HOG) descriptor;

(3) Scale Invariant Feature Transform
(SIFT) descriptor

Health care:
Patient monitoring

Cun et al. [54] 2021

Film pressure sensor matrix:
Body pressure measurement
system (BPMS) (Tekscan Inc.,
Boston, MA, USA) (2 Sensors)

Classification:
K-nearest neighbor (kNN),

support vector machine (SVM),
random forest (RF), decision

tree (DT) and naïve bayes (NB)

Classification accuracy:
kNN: 82.65%

SVMRBF: 89.26%
SVMlinear: 83.47%

RF: 85.95%
DT: 77.69%
NB: 79.34%

Algorithm specific features;
no detailed description

Sitting ergonomics:
Classification of sitting

postures/activities

Diao et al. [45] 2021

Film pressure sensor matrix:
Low-cost flexible array pressure
sensor with 32 × 32 units based
on Velostat® film (3M Company,

St. Paul, MN, USA)

Classification:
Deep residual network

(ResNets)

Classification accuracy:
short-term: 95.08%

overnight sleep study: 86.35%

No hand-craft
feature extraction

Sleep research:
Estimation of human

sleeping posture

Diao et al. [55] 2021

Film pressure sensor matrix:
Low-cost flexible array pressure
sensor with 32 × 32 units based
on Velostat® film (3M Company,

St. Paul, MN, USA)

Classification:
K-nearest neighbor (kNN),

support vector machine (SVM)

Classification accuracy:
kNN: 79.02%
SVM: 78.19%

Feature extraction:
(1) Pressure-covered area of the mat;

(2) Local pressure coverage area ratio;
(3) Local pressure value ratio;

(4) Left–right symmetry;
(5) Left–right balance

Sleep research:
Estimation of human

sleeping posture



Sensors 2023, 23, 8997 17 of 34

Table 5. Cont.

Author Year Input Data Source Estimation Algorithm Estimation Performance Data Pre-Processing/
Feature Extraction Application Scenarios

Diao et al. [103] 2022

Film pressure sensor matrix:
Low-cost flexible array pressure
sensor with 32 × 32 units based
on Velostat® film (3M Company,

St. Paul, MN, USA)

Classification:
Self-developed low-cost

estimation algorithm, LeNet-1, 2
Conv + 3 FC, ResNet18

Classification accuracy:
New estimation algorithm:

98.3%
LeNet-1: 99.1%

2 Conv + 3 FC: 99.2%
ResNet18: 99.4%

Data pre-processing:
(1) Threshold filtering;
(2) Gaussian filtering;

(3) Adjacent affected noise removal
Feature extraction:

(1) The Euclidean distance between
initial and end points of the trajectory

Sleep research:
Estimation of human

sleeping posture

Djamaa et al. * [40] 2020

Single-point film
pressure sensors:

3 x FSR 402 (Interlink
Electronics, Inc., Shenzhen,

China);
Additional Sensors:

Bend sensor
+ IMU MPU 6050 (TDK

InvenSense, Inc., San Jose,
CA, USA)

Classification:
Support vector machine (SVM),
k-nearest neighbors kNN (k = 5),

stacked random forest (RF),
MultiBoostAB with RF

(MB-RF) and MultiBoostAB
with logistic model tree

(MB-LMT)

Classification accuracy:
SVM: 98.20% (8 s)

RF: 100% (7 s and 8 s)
MB-RF: 100% (7 s)

MB-LMT: 96.59% (10 s)
Stacked: 91.51% (3 s)

kNN: 87.91% (3 s)
Response time:

MB-RF: 0.4589 ms
RF: 1.6113 ms

SVM: 0.7272 ms

Feature extraction:
Segmentation using a sliding window
procedure with a fixed-length window

Gait analysis

Feng et al. [104] 2016 Fiber optical pressure Sensor Classification Classification accuracy:
96% to 100% - Fall detection

Fulk et al. [56] 2011

Single-point film
pressure sensors:

5 force-sensitive resistors (FSR,
Interlink Inc, Camarillo, CA,

USA)
Additional Sensors:

3-dimensional accelerometer

Classification:
Support vector machine (SVM)

Classification accuracy:
99.91% to 100%

Feature extraction:
(1) nonoverlapping 2 s epochs

(2) normalized on a scale of [0, 1]
Gait analysis

Gao et al. [66] 2022

Single-point film
pressure sensors:

Mattress with 8192
force-sensitive resistors (FSR,

Interlink Inc, Camarillo,
CA, USA)

Classification:
AlexNet,

2-layer CNN,
VGG and

MatNe

Classification accuracy:
AlexNet: 93.67%

2-layer CNN: 94.09%
VGG: 98.59%

MatNe: 99.02%
Response time:AlexNet: 0.094 s

2-Layer CNN: 0.043 s
VGG: 0.56 s

MatNe: 0.095 s

Automated feature extraction Sleep research
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Table 5. Cont.

Author Year Input Data Source Estimation Algorithm Estimation Performance Data Pre-Processing/
Feature Extraction Application Scenarios

Gelaw et al. * [57] 2022

Film pressure sensor matrix:
Intelligent Interfaces and

Interaction research unit of
Fondazione Bruno Kessler (FBK,

Trento, Italy).

Classification:
Random forest (RF), Gaussian

naïve bayes, logistic regression,
support vector machine (SVM)

and deep neural network
(DNN)

Classification accuracy:
RF: 82%

GNB: 88%
SVM: 75%
LR: 81%

DNN: 93%

Feature extraction:
(1) 64 sensor features

(2) center of mass of the 32 sensors of
the seat and back

(3) features for each of the seat and
back sensors, dividing the given

32 sensors into four
quadrants and edges

Sitting ergonomics:
Estimation of sitting posture

during work on a PC

Goldstein et al. * [29] 2020
Film pressure sensor matrix:
TekScan BPMS (Tekscan Inc.,

Boston, MA, USA)

Classification and Regression:
Convolutional neural network

(CNNs);

Classification accuracy:
95%

Regression accuracy:
average marker position error:

8.84 cm

Automated feature extraction by CNN
algorithm

Sitting ergonomics:
Slouch detection

Grimm et al. [47] 2011

Film pressure sensor matrix:
XSensor X3 PX100:26.64.01
mattress (XSensor, Calgary,

AB, Canada).

Classification:
K-nearest neighbor (kNN)

Classification accuracy:
96.0% - Health care:

Patient monitoring

Grimm et al. [13] 2012 Film pressure sensor matrix:
Pressure-sensing mattresses

Classification:
K-nearest neighbor (kNN)

Classification accuracy:
95.5% - Health care:

Patient monitoring

Harada et al. [105] 2002

Single-point film
pressure sensors:
Mattress with 210

force-sensitive resistors (FSR,
Interlink Inc, Camarillo,

CA, USA)

Classification - - Health care:
Patient monitoring

He et al. [68] 2022

Film pressure sensor matrix:
Thin-film array pressure sensor,
which is made by transferring

nanometer force-sensitive
materials, silver paste and other
materials to a flexible thin-film

substrate, via a precision
printing process

Classification:
Convolutional neural network

(CNN)

Classification accuracy:
Improved ResNet:

99.86%
ResNet: 90.99%
VGG16: 81.26%

MobileNet: 78.30%

Data pre-processing:
Cross-mean filtering

Extreme value processing
Feature extraction:

(1) Improved ResNet
(2) ResNet50
(3) VGG16

(4) MobileNet

Sitting ergonomics:
Detection of sitting postures
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Author Year Input Data Source Estimation Algorithm Estimation Performance Data Pre-Processing/
Feature Extraction Application Scenarios

Hsia et al. [58] 2009

Single-point film
pressure sensors:

Two types of FSR from Interlink
Electronics [10] were used: part
no. 402 (0.5′′ circle) and part no.

408 (24′′ trimmable strip).

Classification:
Support vector machine (SVM)

Classification accuracy:
PCA + SVM: ≤75%

Raw data + SVM: ≤92%
Descriptive statistics + SVM:

≤95%

Feature extraction:
Principal component analysis (PCA),

descriptive statistics (mean, variance,
standard deviation, root-mean

squared features, etc.)

Sleep Research:
Sleeping posture classification

Hu et al. [35] 2021

Film pressure sensor matrix:
Low-cost flexible array pressure
sensor with 32 × 32 units based
on Velostat® film (3M Company,

St. Paul, MN, USA)

Classification:
Convolutional neural network

(CNN)

Classification accuracy:
(1) Standard training-test

method: 84.80%;
(2) Subject-specific method:

91.24%

Automated feature extraction using
CNN algorithm

Health care:
Patient monitoring

Jeong [62] 2021

Single-point film
pressure sensors:

6 force-sensing resistors (FSR)
Additional sensors:
6 distance sensors

Classification:
k-nearest neighbor (kNN)

Classification accuracy:
(1) Pressure sensors only: 59%;
(2) Distance sensors only: 82%;

(3) Mixed sensor: 92%

Feature extraction:
(1) pressure sensors only;
(2) Distance sensors only;

(3) Mixed sensor

Sitting ergonomics:
Classification of sitting postures

Lee et al. [69] 2022
Film pressure sensor matrix:
64 (8 × 8) FSRs (TechStorm,
Seoul, Republic of Korea)

Classification:
Convolutional neural network

(CNN)

Classification accuracy:
99.66%

Automated feature extraction using
CNN algorithm

Sitting ergonomics:
Classification of sitting

postures/activities

Li et al. [96] 2020 Film pressure sensor matrix:
Pressure-sensing floor

Classification:
Convolutional neural network

(CNN), support vector machine
(SVM), k-nearest neighbor
(kNN), random forest (RF),

decision tree (DT), naïve bayes
(NB), BP neural network

classifiers and
CSK-DS-fusion algorithm

(CNN + SVM + kNN + D-S)

Classification accuracy
with threshold filter:

CNN: 96.28%
SVM: 94.45%
kNN: 91.38%
RF: 92.16%
DT: 89.23%
NB: 83.37%
BP: 83.28%

CSK-DS: 99.96%

Data pre-processing:
Threshold filtering
Gaussian filtering

Industrial ergonomics:
Standing posture estimation

Li et al. [63] 2020 Film pressure sensor matrix:
Pressure-sensing floor

Classification:
Convolutional neural network

(CNN),
Classification accuracy96.6% - Industrial ergonomics:

Standing posture estimation
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Author Year Input Data Source Estimation Algorithm Estimation Performance Data Pre-Processing/
Feature Extraction Application Scenarios

Liu et al. [70] 2019

Film pressure sensor matrix:
Flexible piezoresistive array

sensor with pixel size of 64 × 32
and single sensor with

maximum test pressure of 500 N

Classification:
Convolutional neural network

(CNN)

Classification accuracy:
CNN: 97.2%

Automated feature extraction by
CNN algorithm

Sleep Research:
Sleeping posture classification

Ma et al. [22] 2017

Single-point film
pressure sensors:

12 force-sensitive-resistor
pressure sensors (FSR-406,
Interlink Inc., Camarillo,

CA, USA)

Classification:
J48 decision tree (J48), support

vector machine (SVM),
multilayer perceptron (MLP),

naïve bayes (NB; default +
BayesNet), and k-nearest

neighbor (kNN)

Classification accuracy:
J48: 99.48%

SVM: 79.08%
MLP: 95.5%

Naïve Bayes (default): 40.09%
BayesNet: 94.53%

kNN (k = 1): 98.53%
kNN (k = 5): 98.52%

Algorithm-specific feature extraction
Health care:

Patient monitoring in a
wheelchair

Matar et al. [106] 2020

Single-point film
pressure sensors:

a matrix of 64 × 27 textile-made
piezoresistive pressure sensors

Classification:
Feed-forward artificial neural

network (FFANN)

Classification accuracy:
97.9%

Feature extraction:
(1) Histogram of Oriented Gradients

(HOG) descriptor
(2) Local Binary Patterns (LBP)

Sleep Research:
Sleeping posture classification

Matthies et al. * [15] 2021

Single-point film
pressure sensors:
DIY-sensor mat:

pressure tiles (binary switches) +
capacitive sensor (continuous

data stream).

Classification:
Random forest (RF)

Classification accuracy:
85.02% -

Health care:
Patient monitoring: bed-exit
intention detection, pressure
ulcer prevention and sleep

apnea mitigation

Meyer et al. [44] 2010

Film pressure sensor matrix:
Textile pressure sensor (new
sensor), Tekscan Conformat

(Tekscan Inc., Boston, MA, USA)

Classification:
Naïve bayes (NB)

Classification accuracy:
Up to 82%

Data pre-processing:
With and without

hysteresis compensation
Feature extraction:

(1) Sensor value from each sensor
element;

(2) Center of force;
(3) Pressure applied to 4 and 16
equally aggregated areas of the

seating area

Sitting ergonomics:
Classification of sitting

postures/activities
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Merry at al. [41] 2021

Film pressure sensor matrix:
F-Scan pressure measurement
insoles (Tekscan Inc., Boston,

MA, USA)

Classification:
Support vector machine

(SVM), decision tree (DT),
discriminant analysis (DA), and

k-nearest neighbors (kNN)

Classification accuracy:
SVM: 89.73%

DT: 89.45%
DA: 83.86%

kNN (k = 1): 84.87%

Data pre-processing:
Subdivision of the plantar side of the

foot using a modified “PRC” mask
(Novel GmbH, Munich, Germany)

Feature extraction:
Overlapping sliding window

approach of a single variable over a
specific time duration

Gait analysis:
Classifying sitting, standing

and walking

Milovic et al. [43] 2022

Single-point film
pressure sensors:

Textile pressure sensor made of
a low-density polyethylene

(LDPE)
sheet (ANT006BCB), integrated

in expandable pants

Classification:
Random forest (RF), time series

forest (TSF), and
multi-representation sequence

learner (Mr-SEQL)

Classification accuracy:
RF: 91.22%
TSF: 90.53%

Mr-SEQL: 78.97%

Data pre-processing:
(1) Outlier elimination;

(2) Fifth-order low-pass Butterworth
filter

Feature extraction:
TS Fresh Relevant-Feature Extractor

function

Gait analysis:
Detection of gait phases

Mutlu et al. [14] 2007

Single-point film
pressure sensors:

Force-sensitive resistor pressure
sensors (FSR, Interlink

Electronics, Inc.,
Shenzhen, China)

Classification:
Simple logistic, naïve bayes

(NB), artificial neural network
(multi-layer perceptron) and

support vector machine (SVM)

Classification accuracy:
Simple logistic: 82.5%

NB: 74.9%
Multi layer perception: 79.1%

SVM: 78.5%

Feature extraction:
(1) Position and size of the bounding

box;
(2) Distance between the bounding

boxes;
(3) Distance and angle between the

centers of the pressures;
(4) Centers, radii and orientations of
two ellipses fit to the pressure areas

Sitting ergonomics:
Classification of sitting

postures/activities

Rihar et al. [48] 2014

Film pressure sensor matrix:
2 CONFORMat systems, Model

5330, (Tekscan Inc., Boston,
MA, USA)

and 6 IMUs (STMicroelectronics,
Plan-les-Ouates, Swiss)

Image recognition -
Health care:

Observation of
newborn children

Rodríguez et al. [71] 2020

Film pressure sensor matrix:
Pressure mat sensor (BodiTrak
BT3510, Vista Medical GmbH,

Vienna, Austria)

Classification:
Convolutional neural network

(CNN)

Classification accuracy:
Model A: 98.8%
Model B: 99.0%

Data pre-processing
Fuzzy representation

Health care:
Monitoring of elderly patients
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Table 5. Cont.

Author Year Input Data Source Estimation Algorithm Estimation Performance Data Pre-Processing/
Feature Extraction Application Scenarios

Roh et al. [16] 2018

Load cells:
4 low-cost load cells (P0236-I42,

Hanjin Data Corp., Gimpo,
Republic of Korea)

Classification:
Support vector machine

(SVM), linear discriminant
analysis (LDA), quadratic

discriminant analysis (QDA),
naïve bayes (NB), and random
forest (RF), decision tree (DT)

Classification accuracy:
SVMrbf: 97.20%
SVMlin: 86.27%

LDA: 88.56%
QDA: 89.56%
NB: 84.33%
RF: 93.17%
DT: 76.79%

Feature extraction:
Sensor fusion

Sitting ergonomics:
Sitting postures/activities

Sazonov et al. [51] 2011

Single-point film
pressure sensors:

Five force-sensitive resistors
(FSRs) (Interlink Electronics,
Inc., Shenzhen, China) and a

3D accelerometer (LIS3L02AS4)

Classification:
Support vector machine (SVM)

Classification accuracy:
On full sensor set: 95.2%

optimized sensor set: 98%
No feature extraction Gait analysis:

Gait activities

Sazonov et al. * [52] 2015

Single-point film
pressure sensors:

“SmartShoe” device:
5 force-sensitive resistors (FSR)

(Interlink Electronics, Inc.,
Shenzhen, China)

and a 3D accelerometer
(ADXL335)

Classification:
Support vector machine

(SVM), multinomial logistic
discrimination (MLD),

multilayer perceptron (MLP)

Classification Error:
Manual activity annotation:

5.0%
SVM: 5.0%
MLD: 5.5%
MLP: 5.1%

Feature extraction:
Mean value (mean),
entropy (ent) and

standard deviation (std).

Gait analysis:
Gait activities

Seo et al. [72] 2021 Film pressure sensor matrix
Classification:

Convolutional neural network
(CNN)

Classification accuracy:
CNN: 99.84% - Sitting ergonomics:

Sitting postures

Tam et al. [102] 2019

Single-point film
pressure sensors:

8 pressure sensors (FlexiForce
A301, Tekscan Inc., Boston,

MA, USA)
MU (MPU-6050, InvenSense,

San Jose, CA, USA)

Regression:
Deep neural network (DNN)

Regression accuracy:
MSE: >0.00021

R2: <0.93

Feature extraction:
224 features using 3 convolution layers

Gait analysis:
Gait activities
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Table 5. Cont.

Author Year Input Data Source Estimation Algorithm Estimation Performance Data Pre-Processing/
Feature Extraction Application Scenarios

Tang et al. * [107] 2012

Single-point film
pressure sensors:

2 “SmartShoe” devices and
5 force-sensitive resistors (FSRs)

(Interlink Electronics, Inc.,
Shenzhen, China) and a

3D accelerometer

Classification:
Support vector machine (SVM) No feature extraction Gait analysis:

Gait activities

Tang et al. [108] 2014

Single-point film
pressure sensors:

2 “SmartShoe” devices,
5 force-sensitive resistors (FSRs)

(Interlink Electronics, Inc.,
Shenzhen, China) and a

3D accelerometer

Classification:
Support vector machine (SVM),

multilayer perceptron (MLP)

Classification accuracy:
SVM: 97.0%

SVMrej: 98.7%
MLP: 97.3%

MLPrej: 99.8%

Feature extraction:
Mean value, minimum value,

standard deviation, entropy, variance,
maximum value, number of mean
crossings (NMC), mean absolute
deviation (MAD) and the ratio

between the root mean square of
wavelet coefficients

Gait analysis:
Gait activities

Tessendorf et al. [109] 2009
Film pressure sensor matrix:

Conformat (Tekscan Inc.,
Boston, MA, USA)

Classification:
Unsupervised learning with
database of data prototypes

Classification accuracy:
91% - Sitting ergonomics:

Sitting postures

Tsutsui et al. [97] 2023

Single-point film
pressure sensors:
2 FSR-402-short

sensors(Interlink Electronics,
Inc., Shenzhen, China)

Analytic classification Classification accuracy:
75% - Gait analysis:

Gait activities

Wu et al. [94] 2022

Single-point film
pressure sensors:
Flexible pressure

measurement units

Classification

Classification accuracy:
4 regions: 80%
8 regions: 84%

FCM model: 95%

Data pre-processing:
Fuzzy C-Means Clustering

Feature extraction:
4 regions
8 regions

FCM model

Sports science:
Detection of gait phases in ice

and snow sports

Yin et al. [59] 2021

Single-point film
pressure sensors:

Two FSR pressure sensors
(LOSON LSH-10)

Classification:
Simulated-annealing-algorithm-
based support vector machine

(SA-SVM), support vector
machine (SVM)

Classification accuracy:
SA-SVM: 94.8% ± 0.75%

SVM: 89.24% ± 2.17%

Data pre-processing:
Butterworth low-pass filter (cut-off

frequency: 10 Hz)
Feature extraction:
mRMR algorithm

Gait analysis:
Locomotion pattern recognition
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Author Year Input Data Source Estimation Algorithm Estimation Performance Data Pre-Processing/
Feature Extraction Application Scenarios

Yousefi et al. [64] 2011 Film pressure sensor matrix Classification:
K-nearest neighbor (kNN)

Classification accuracy:
kNN-ICA: 94.3%
kNN-PCA: 97.7%

Data pre-processing:
Filtering and

histogram equalization

Health care:
Patient monitoring

Zemp et al. * [60] 2016

Single-point film
pressure sensors:

FSR 406, (43.69 mm square
sensor, thickness: 0.45 mm;
Interlink Electronics, Inc.,

Shenzhen, China)

Classification:
Support vector machine (SVM),
multinomial regression (MNR),
boosting, neural network (NN),

random forest (RF), and
a combination of boosting

Classification accuracy:
SVM: 82.7%
MNR: 87.8%

Boosting: 90.4%
NN: 90.4%
RF: 90.9%

Combination: boosting NN, RF:
90.8%

Feature extraction:
Median of a one-second duration

Sitting ergonomics:
Classification of sitting postures

Zhang et al. [65] 2022

Single-point film
pressure sensors:

Flexiforce sensor A301 (Tekscan,
Inc., Boston, MA, USA)

MEMS Sensor MPU9250

Classification:
Established extreme learning

machine (ELM),
K-nearest neighbor (kNN)

Classification accuracy:
ELM (energy feature): 97.4%
ELM (energy entropy feature):

96.6%
kNN (energy feature): 95.4%

kNN (energy entropy feature):
95.0%

Feature extraction:
(1) Wavelet packet energy features
(2) Wavelet packet energy entropy

features

Gait analysis:
Gait pattern recognition

Zhao et al. [34] 2021

Film pressure sensor matrix:
2 XSensor pressure mats (Model

PX100:48.48.02, XSensor,
Calgary, AB, Canada)

Classification:
Random forest (RF) and deep

learning (DL)

Classification accuracy:
RF (F1): 52.2%
RF (F2): 80.5%

DL: 42.9%

Feature extraction:
F1: absolute sensor values

F2: sensor values relative to the
beginning of the task

Automotive design:
Driver’s seat position design

Zhao et al. * [74] 2021

Film pressure sensor matrix:
2 Xsensor pressure mats (Model

PX100:48.48.02, (XSensor,
Calgary, AB, Canada)

Classification:
Random forest (RF) support

vector machine (SVM),
multilayer perceptron (MLP),

naïve bayes (NB), and k-nearest
neighbor (kNN)

Classification accuracy:
RF: 86%
NB: 76%

SVM: 70%
MLP: 74%
k-NN: 78%

Feature extraction:
Body pressure distribution

(BPD)-based feature extraction
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Table 6. Summary of relevant studies for DHM-based human posture estimation and the analysis of
the used input data sources, digital human model, optimization criterium, and application scenarios
(* marks the extra added reports, after the structured literature review).

Author Year Input Data Source Digital Human Model Optimization
Criterium

Application
Scenario

Barman et al. [82] 2022 Virtual force vectors:
Load of a box

Dynamic human model:
2D three-compartment controller

fatigue model, 10 DOF

Optimization of
joint fatigue

Industrial ergonomics:
Lifting task

Choi et al. [76] 2020

Load cell:
6-axis force–torque sensor

(nano25, ATI, Apex,
NC, USA)

Dynamic human model:
3D human model

Optimization of
joint torques

Sports science:
Estimating swing

movements in golfing

Clever et al. [93] 2018

Virtual pressure
matrix:

Virtual smart sensor
mattress

Human body shape model
Sleep research:

Estimation of human
sleeping posture

Davoudabadi et al. [79] 2015 Virtual force vectors:
Load of a dumbbell

Musculoskeletal human model:
Anybody modelling system
(AnyBody Technology A/S,

Aalorg, Denmark)

Minimization of
muscle effort

Sports science:
Snatch weightlifting

Davoudabadi et al. * [110] 2016
Virtual force vectors:
Load to the human
hand–arm system

Musculoskeletal human model:
Anybody modelling system
(AnyBody Technology A/S,

Aalorg, Denmark)

Minimization of
muscle effort

Sports science:
Using a sailing winch

Howard et al. [98] 2011 Film pressure sensor matrix
Dynamic human model

3D human model
Optimization of

joint torques

Sitting ergonomics:
Optimization of wheel

chair design

Kwon et al. [85] 2017 Virtual force vectors:
Personal body load

Dynamic human model:
Generator of body (GEBOD)

and SantosTM (SantosHuman
Inc., Coralville, IA, USA)

Minimization of
discomfort function and

energy cost

Gait analysis:
Estimation of joint angle

and gait movements

Liu et al. [84] 2009 Virtual force vectors:
External load on hands

Dynamic human model:
Software SNOPT

and SantosTM (SantosHuman
Inc., Coralville, IA, US)

Optimization of
joint torques

Product design:
Posture estimation with
dynamic human model

for external loads

Lu et al. [89] 2011 Virtual force vectors

Human body shape model:
University of Michigan

Three-Dimensional Static
Strength Prediction Program

(3DSSPP)

Industrial ergonomics

Mao et al. [99] 2021
Virtual pressure

matrix
Human body shape model:
User avatar (self-designed)

Sitting ergonomics:
Estimation of different

sitting postures on
different chair designs

Marler et al. [77] 2011 Virtual force vectors:
Load of a box

Dynamic human model:
Software SNOPT

and SantosTM (SantosHuman
Inc., Coralville, IA, USA)

Minimization of
maximum joint torques

Industrial ergonomics:
Analysis of box

lifting tasks

Nakajima et al. [80] 2022
Virtual force vectors:

Contact forces for
handling a box

Musculoskeletal human model:
Self-designed musculoskeletal

hand model

Minimization of
muscle effort

Industrial ergonomics:
Evaluation of product

design and for
manual tasks

Potash et al. [86] 2022 Virtual force vectors:
Human body shape model:

JACK (Siemens Industry
Software Inc., Plano, TX, USA)

Industrial ergonomics:
Work space

optimization

Rahmati et al. [78] 2014 Virtual force vectors:
Load of a dumbbell

Dynamic human model:
3D human model

Optimization of joint
torques

Sport science:
Snatch weightlifting

techniques

Ramdani et al. [81] 2006 Virtual force vectors
Dynamic human model:

Four-bar linkage human model
Hypothesis of

quasi-static equilibrium Health care

Rothaug et al. [88] 2000 Virtual force vectors
Human body shape model:
RAMSIS (Human Solutions

GmbH, Kaiserslautern, Germany)
Automotive design

Salahi et al. [111] 2016 Virtual force vectors
Dynamic human model:

3D human model
Optimization of joint

torques
Fundamental ergonomics

research
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Table 6. Cont.

Author Year Input Data Source Digital Human Model Optimization
Criterium

Application
Scenario

Seitz et al. [87] 2005 Virtual force vectors
Human body shape model:
RAMSIS (Human Solutions

GmbH, Kaiserslautern, Germany)
Automotive design

Van Geffen et al. [100] 2009

Load cells:
Two multi-axis load cells

(ATI mini 45, ATI
Industrial Automation,

NYC, USA)

Dynamic human model
3D human model

Sitting ergonomics:
Estimation of different

sitting postures on
different chair design

Wirsching et al. * [90] 2012
Virtual force vectors:
Interaction force on
hand–arm system

Human body shape model:
RAMSIS (Human Solutions

GmbH, Kaiserslautern, Germany)

Automotive design:
Evaluation of distances

in cockpit design

Yang et al. [42] 2006
Virtual force vectors:

Contact forces for
handling objects

Dynamic human model:
Self-designed

dynamic hand model

Minimization of joint
displacement

Fundamental
ergonomics research:
Dynamic model for

hand posture estimation

Zhang et al. [37] 2021 Load cells Dynamic human model
Sports science:
Riding a bike

Zou et al. [101] 2011 Virtual force vectors:
Human body mass Dynamic human model

Sitting ergonomics:
Estimation of different

sitting postures

5. Discussion

As motivated in the beginning, the research on human posture estimation based on
interaction forces is characterized by a high level of interdisciplinarity extending from
computer science and sensor development to product design, ergonomics and health care.
This interdisciplinarity challenges researchers to obtain an easy overview from the literature
of the existing methods and models and the boundary conditions for their application. To
close this knowledge gap and support the utilization of the methods of human posture
estimation based on interaction forces, the research questions of this systematic literature
review are divided into two:

1. Extracting the used input data sources and estimation methods from the literature.
2. Evaluating the types of application scenarios and previous expert knowledge used in

the reviewed studies.

The first aspect can be answered through a data analysis of the review’s results, as
illustrated by the Sankey diagram in Figure 8. Summarizing the results, the main methods
for human posture estimation are classification algorithms when ML-based methods are
used and inverse kinematic analyses of simple dynamic models when DHM-based methods
are used.

Classification algorithms mainly use input data from thin-film pressure sensors, which
offer advantages such as flexibility and seamless integration into existing products. On
the other hand, DHM methods use virtual force vectors, which require a comprehensive
understanding of the use case. Nevertheless, the final results should be validated by
an experimental study. Such validation is conducted in the studies by Davoudabadi
Farahani et al. [79] and Mao et al. [99].

The second aspect of the research questions cannot be answered only by an analysis
of the review data. A specific interpretation of the application scenarios is necessary.
Additionally, the histogram is helpful for understanding the necessary previous expert
knowledge. The main findings of our systematic literature review are illustrated in Table 7
and discussed in the following to support researchers in selecting the best methods and
input data sources for their application.

With the advent of AI research and standard ML algorithms for common applications
of data processing, ML algorithms are also used for force-based human posture estimation.
The principles of the ML-based methods can be understood as a virtual sensor [112]. They
use data from hardware sensors, mostly force or pressure sensors, and apply previously
trained ML models to estimate human posture. These algorithms provide established
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frameworks, efficient computations and well-documented methodologies, making them
suitable for a wide range of applications. Many studies in the literature compare the
efficiency and resulting quality of different ML algorithms for classification. Due to the
divergent conditions in the studies, in an evaluation, the best algorithm for human posture
estimation based on interaction forces is not obvious. The most often used algorithms are
CNN, kNN, SVM, RF, and NB algorithms. Data processing using ML algorithms does
not require specific knowledge about the physiology of the human body. Although more
advanced techniques and algorithms are being developed, the use of standard algorithms
remains a practical choice due to their ease of implementation, computational efficiency and
performance. When using ML algorithms, the training data are obtained from hardware
sensors, which record data during experimental studies similar to the situations in which
human posture should be estimated. This required more effort for the adaptation of these
methods to a new application than in the simulation environment of a DHM. Due to the
need for sensor data as the input for the ML algorithms, research on hardware sensors
and their integration into everyday products becomes increasingly important. It also
demonstrates a chance to apply ML-based methods for automated utilization in sensor-
integrated products. In the current state of research, the majority of published studies
focus on classification algorithms with relatively simple class definitions. These are mostly
various movement activities or specific phases of a gait cycle. However, there are few works
that use ML algorithms to continuously estimate one or more human joint angles. Further
research is needed on this topic to provide an established procedure for the utilization of
regression algorithms for human posture estimation based on interaction forces.

The use of DHMs began in the early 2000s and forms the baseline for FPE [88]. Most
often, muscle activation and joint forces are computed to analyze the physical stress of a
human subject. Reversing this idea, DHM-based posture estimation optimizes physical
stress by adjusting human posture. The valid application of these DHM-based methods
requires specific expert know-how about the physiology of the human body in the form of
a DHM and comprehensive knowledge about boundary conditions and external influences
on humans for the specific use cases. As a result, only experts who are very familiar with
DHMs can use them properly. These experts come from the fields of ergonomics and
medical research. Simulation-based posture estimation offers several advantages, including
its applicability to non-physical existing scenarios and the ease of adapting human model
properties or external influences. Also, these methods eliminate the need for conducting
physical experiments, resulting in faster and more cost-effective processes. However, an
online posture estimation is not known to exist in the literature so far. Due to the highly
required expertise for the utilization of DHMs and the expert knowledge needed for their
application, an online estimation process and product integration are not expected soon.

As mentioned in the methods for the review process, a challenge we encountered
was the lack of consistent terminology used in the research community for human posture
estimation based on interaction forces. To address this issue, we clustered different syn-
onymous keywords for the search string. Nevertheless, not all papers involving human
posture estimation based on interaction forces can be covered by this literature research. In
particular, studies using DHMs are difficult to find without searching for the specific DHM
method names, although some were added manually based on the authors’ knowledge. We
prioritized the dominating keywords “posture” and “estimation” for the terminology of
the review paper. To gain a more comprehensive understanding, it is helpful to search for
similar review papers, e.g., on motion capture in general [9] or the various specifications
and applications of DHMs [75]. In this way, it is possible to find publications using alterna-
tive terminologies. However, methods for force-based human posture estimation are not
the focus of these papers. Thus, it is left to the reader to compare the different methods and
evaluate their suitability by themselves.
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Table 7. Summary and qualitative ranking of the main estimation methods and main input data
sources for force-based human posture estimation identified in the structured literature review.

Estimation
Methods

ML-Based Methods DHM-Based Methods
Image

Recognition Classification Regression
Dynamic Human

Model
Human Body Shape Model Musculo-Skeletal

Human Model

Input Data
Sources Load Cells

Single-Point Film
Pressure Sensors

Film Pressure
Sensor Matrix

Virtual
Force Vectors

Required expert
knowledge for

using the methods

Sensors 2023, 23, x FOR PEER REVIEW 26 of 34 
 

 

Yang et al. [42] 2006 
Virtual force vectors: 

Contact forces for han-
dling objects 

Dynamic human model: 
Self-designed dynamic 

hand model  

Minimization of 
joint displace-

ment 

Fundamental ergo-
nomics research: 

Dynamic model for 
hand posture estima-

tion 

Zhang et al. [37] 2021 Load cells Dynamic human model  Sports science: 
Riding a bike 

Zou et al. [101] 2011 
Virtual force vectors: 
Human body mass Dynamic human model  

Sitting ergonomics: 
Estimation of differ-
ent sitting postures  

Classification algorithms mainly use input data from thin-film pressure sensors, 
which offer advantages such as flexibility and seamless integration into existing products. 
On the other hand, DHM methods use virtual force vectors, which require a comprehen-
sive understanding of the use case. Nevertheless, the final results should be validated by 
an experimental study. Such validation is conducted in the studies by Davoudabadi Fara-
hani et al. [79] and Mao et al. [99]. 

The second aspect of the research questions cannot be answered only by an analysis 
of the review data. A specific interpretation of the application scenarios is necessary. Ad-
ditionally, the histogram is helpful for understanding the necessary previous expert 
knowledge. The main findings of our systematic literature review are illustrated in Table 
7 and discussed in the following to support researchers in selecting the best methods and 
input data sources for their application. 

Table 7. Summary and qualitative ranking of the main estimation methods and main input data 
sources for force-based human posture estimation identified in the structured literature review. 

Estimation  
Methods 

ML-Based Methods DHM-Based Methods 

Image Recog-
nition  

Classification Regression Dynamic Hu-
man Model 

Human Body 
Shape Model 

Musculo-Skele-
tal Human 

Model 
Input Data  

Sources Load Cells Single-Point Film 
Pressure Sensors 

Film Pressure  
Sensor Matrix 

Virtual  
Force Vectors 

Required expert 
knowledge for  

using the methods 
 

Necessary knowledge 
about the application  

 
Effort for  

adaptation to a  
new application  

Detail level of  
output posture 

 

Potential for  
automatization 

 

Potential for  
sensor integration 

 

Necessary knowledge
about the application

Sensors 2023, 23, x FOR PEER REVIEW 26 of 34 
 

 

Yang et al. [42] 2006 
Virtual force vectors: 

Contact forces for han-
dling objects 

Dynamic human model: 
Self-designed dynamic 

hand model  

Minimization of 
joint displace-

ment 

Fundamental ergo-
nomics research: 

Dynamic model for 
hand posture estima-

tion 

Zhang et al. [37] 2021 Load cells Dynamic human model  Sports science: 
Riding a bike 

Zou et al. [101] 2011 
Virtual force vectors: 
Human body mass Dynamic human model  

Sitting ergonomics: 
Estimation of differ-
ent sitting postures  

Classification algorithms mainly use input data from thin-film pressure sensors, 
which offer advantages such as flexibility and seamless integration into existing products. 
On the other hand, DHM methods use virtual force vectors, which require a comprehen-
sive understanding of the use case. Nevertheless, the final results should be validated by 
an experimental study. Such validation is conducted in the studies by Davoudabadi Fara-
hani et al. [79] and Mao et al. [99]. 

The second aspect of the research questions cannot be answered only by an analysis 
of the review data. A specific interpretation of the application scenarios is necessary. Ad-
ditionally, the histogram is helpful for understanding the necessary previous expert 
knowledge. The main findings of our systematic literature review are illustrated in Table 
7 and discussed in the following to support researchers in selecting the best methods and 
input data sources for their application. 

Table 7. Summary and qualitative ranking of the main estimation methods and main input data 
sources for force-based human posture estimation identified in the structured literature review. 

Estimation  
Methods 

ML-Based Methods DHM-Based Methods 

Image Recog-
nition  

Classification Regression Dynamic Hu-
man Model 

Human Body 
Shape Model 

Musculo-Skele-
tal Human 

Model 
Input Data  

Sources Load Cells Single-Point Film 
Pressure Sensors 

Film Pressure  
Sensor Matrix 

Virtual  
Force Vectors 

Required expert 
knowledge for  

using the methods 
 

Necessary knowledge 
about the application  

 
Effort for  

adaptation to a  
new application  

Detail level of  
output posture 

 

Potential for  
automatization 

 

Potential for  
sensor integration 

 

Effort for
adaptation to a
new application

Sensors 2023, 23, x FOR PEER REVIEW 26 of 34 
 

 

Yang et al. [42] 2006 
Virtual force vectors: 

Contact forces for han-
dling objects 

Dynamic human model: 
Self-designed dynamic 

hand model  

Minimization of 
joint displace-

ment 

Fundamental ergo-
nomics research: 

Dynamic model for 
hand posture estima-

tion 

Zhang et al. [37] 2021 Load cells Dynamic human model  Sports science: 
Riding a bike 

Zou et al. [101] 2011 
Virtual force vectors: 
Human body mass Dynamic human model  

Sitting ergonomics: 
Estimation of differ-
ent sitting postures  

Classification algorithms mainly use input data from thin-film pressure sensors, 
which offer advantages such as flexibility and seamless integration into existing products. 
On the other hand, DHM methods use virtual force vectors, which require a comprehen-
sive understanding of the use case. Nevertheless, the final results should be validated by 
an experimental study. Such validation is conducted in the studies by Davoudabadi Fara-
hani et al. [79] and Mao et al. [99]. 

The second aspect of the research questions cannot be answered only by an analysis 
of the review data. A specific interpretation of the application scenarios is necessary. Ad-
ditionally, the histogram is helpful for understanding the necessary previous expert 
knowledge. The main findings of our systematic literature review are illustrated in Table 
7 and discussed in the following to support researchers in selecting the best methods and 
input data sources for their application. 

Table 7. Summary and qualitative ranking of the main estimation methods and main input data 
sources for force-based human posture estimation identified in the structured literature review. 

Estimation  
Methods 

ML-Based Methods DHM-Based Methods 

Image Recog-
nition  

Classification Regression Dynamic Hu-
man Model 

Human Body 
Shape Model 

Musculo-Skele-
tal Human 

Model 
Input Data  

Sources Load Cells Single-Point Film 
Pressure Sensors 

Film Pressure  
Sensor Matrix 

Virtual  
Force Vectors 

Required expert 
knowledge for  

using the methods 
 

Necessary knowledge 
about the application  

 
Effort for  

adaptation to a  
new application  

Detail level of  
output posture 

 

Potential for  
automatization 

 

Potential for  
sensor integration 

 

Detail level of
output posture

Sensors 2023, 23, x FOR PEER REVIEW 26 of 34 
 

 

Yang et al. [42] 2006 
Virtual force vectors: 

Contact forces for han-
dling objects 

Dynamic human model: 
Self-designed dynamic 

hand model  

Minimization of 
joint displace-

ment 

Fundamental ergo-
nomics research: 

Dynamic model for 
hand posture estima-

tion 

Zhang et al. [37] 2021 Load cells Dynamic human model  Sports science: 
Riding a bike 

Zou et al. [101] 2011 
Virtual force vectors: 
Human body mass Dynamic human model  

Sitting ergonomics: 
Estimation of differ-
ent sitting postures  

Classification algorithms mainly use input data from thin-film pressure sensors, 
which offer advantages such as flexibility and seamless integration into existing products. 
On the other hand, DHM methods use virtual force vectors, which require a comprehen-
sive understanding of the use case. Nevertheless, the final results should be validated by 
an experimental study. Such validation is conducted in the studies by Davoudabadi Fara-
hani et al. [79] and Mao et al. [99]. 

The second aspect of the research questions cannot be answered only by an analysis 
of the review data. A specific interpretation of the application scenarios is necessary. Ad-
ditionally, the histogram is helpful for understanding the necessary previous expert 
knowledge. The main findings of our systematic literature review are illustrated in Table 
7 and discussed in the following to support researchers in selecting the best methods and 
input data sources for their application. 

Table 7. Summary and qualitative ranking of the main estimation methods and main input data 
sources for force-based human posture estimation identified in the structured literature review. 

Estimation  
Methods 

ML-Based Methods DHM-Based Methods 

Image Recog-
nition  

Classification Regression Dynamic Hu-
man Model 

Human Body 
Shape Model 

Musculo-Skele-
tal Human 

Model 
Input Data  

Sources Load Cells Single-Point Film 
Pressure Sensors 

Film Pressure  
Sensor Matrix 

Virtual  
Force Vectors 

Required expert 
knowledge for  

using the methods 
 

Necessary knowledge 
about the application  

 
Effort for  

adaptation to a  
new application  

Detail level of  
output posture 

 

Potential for  
automatization 

 

Potential for  
sensor integration 

 

Potential for
automatization

Sensors 2023, 23, x FOR PEER REVIEW 26 of 34 
 

 

Yang et al. [42] 2006 
Virtual force vectors: 

Contact forces for han-
dling objects 

Dynamic human model: 
Self-designed dynamic 

hand model  

Minimization of 
joint displace-

ment 

Fundamental ergo-
nomics research: 

Dynamic model for 
hand posture estima-

tion 

Zhang et al. [37] 2021 Load cells Dynamic human model  Sports science: 
Riding a bike 

Zou et al. [101] 2011 
Virtual force vectors: 
Human body mass Dynamic human model  

Sitting ergonomics: 
Estimation of differ-
ent sitting postures  

Classification algorithms mainly use input data from thin-film pressure sensors, 
which offer advantages such as flexibility and seamless integration into existing products. 
On the other hand, DHM methods use virtual force vectors, which require a comprehen-
sive understanding of the use case. Nevertheless, the final results should be validated by 
an experimental study. Such validation is conducted in the studies by Davoudabadi Fara-
hani et al. [79] and Mao et al. [99]. 

The second aspect of the research questions cannot be answered only by an analysis 
of the review data. A specific interpretation of the application scenarios is necessary. Ad-
ditionally, the histogram is helpful for understanding the necessary previous expert 
knowledge. The main findings of our systematic literature review are illustrated in Table 
7 and discussed in the following to support researchers in selecting the best methods and 
input data sources for their application. 

Table 7. Summary and qualitative ranking of the main estimation methods and main input data 
sources for force-based human posture estimation identified in the structured literature review. 

Estimation  
Methods 

ML-Based Methods DHM-Based Methods 

Image Recog-
nition  

Classification Regression Dynamic Hu-
man Model 

Human Body 
Shape Model 

Musculo-Skele-
tal Human 

Model 
Input Data  

Sources Load Cells Single-Point Film 
Pressure Sensors 

Film Pressure  
Sensor Matrix 

Virtual  
Force Vectors 

Required expert 
knowledge for  

using the methods 
 

Necessary knowledge 
about the application  

 
Effort for  

adaptation to a  
new application  

Detail level of  
output posture 

 

Potential for  
automatization 

 

Potential for  
sensor integration 

 

Potential for
sensor integration

Sensors 2023, 23, x FOR PEER REVIEW 26 of 34 
 

 

Yang et al. [42] 2006 
Virtual force vectors: 

Contact forces for han-
dling objects 

Dynamic human model: 
Self-designed dynamic 

hand model  

Minimization of 
joint displace-

ment 

Fundamental ergo-
nomics research: 

Dynamic model for 
hand posture estima-

tion 

Zhang et al. [37] 2021 Load cells Dynamic human model  Sports science: 
Riding a bike 

Zou et al. [101] 2011 
Virtual force vectors: 
Human body mass Dynamic human model  

Sitting ergonomics: 
Estimation of differ-
ent sitting postures  

Classification algorithms mainly use input data from thin-film pressure sensors, 
which offer advantages such as flexibility and seamless integration into existing products. 
On the other hand, DHM methods use virtual force vectors, which require a comprehen-
sive understanding of the use case. Nevertheless, the final results should be validated by 
an experimental study. Such validation is conducted in the studies by Davoudabadi Fara-
hani et al. [79] and Mao et al. [99]. 

The second aspect of the research questions cannot be answered only by an analysis 
of the review data. A specific interpretation of the application scenarios is necessary. Ad-
ditionally, the histogram is helpful for understanding the necessary previous expert 
knowledge. The main findings of our systematic literature review are illustrated in Table 
7 and discussed in the following to support researchers in selecting the best methods and 
input data sources for their application. 

Table 7. Summary and qualitative ranking of the main estimation methods and main input data 
sources for force-based human posture estimation identified in the structured literature review. 

Estimation  
Methods 

ML-Based Methods DHM-Based Methods 

Image Recog-
nition  

Classification Regression Dynamic Hu-
man Model 

Human Body 
Shape Model 

Musculo-Skele-
tal Human 

Model 
Input Data  

Sources Load Cells Single-Point Film 
Pressure Sensors 

Film Pressure  
Sensor Matrix 

Virtual  
Force Vectors 

Required expert 
knowledge for  

using the methods 
 

Necessary knowledge 
about the application  

 
Effort for  

adaptation to a  
new application  

Detail level of  
output posture 

 

Potential for  
automatization 

 

Potential for  
sensor integration 

 

The ranking criteria are the required expert knowledge for using the methods, the necessary knowledge about
the application context and the effort for adaptation to a new application as requirements for the utilization
of the methods. Furthermore, the detail level of the output posture, the potential for automatization and
the potential for sensor integration are the ranking criteria that describe the advantages of the methods and
sensors in an application. The potential for automatization is describing the standardization of the application
process—comparable to a manufactory process—and is significant for a mass application of smart products. The
bar graphs illustrate the intensity (light = low, dark = high) for each criterion. The methods and sources most
often used in the studies are underlined.

Due to this inconsistent use of terminology, there is no suitable search string that
identifies all known papers on studies of FPE. Therefore, we decided to include the papers
we were aware of from previous searches in the results. While this approach differs from
a classical structured literature review, we chose it in order to get closer to a complete
overview of the published methods.

6. Conclusions

This systematic literature review, according to PRISMA 2020 [30], provides an overview
of the relevant estimation methods, dominated by classification algorithms and the posture
optimization of digital dynamic human models. As a guideline for the existing methods,
the required expertise and information on the application context are extracted from the
reviewed studies. The data used for the posture estimation come from experimental studies
using thin flexible film pressure sensors, and in virtual simulations, from force vectors. The
required expertise for the utilization of a method and the know-how about the application
context tend to increase the resultant benefits, as illustrated in Table 7. DMH-based methods
can be performed in virtual simulations without relying on experimental studies, but they
require a more specific understanding to build and apply the models specific to the use case.
On the other hand, conventional ML methods can be used to estimate activity classes or
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human posture when sufficient experimental training data are available, with less need for
expert knowledge. As part of the ongoing research in this area, it is worth noting that the
review has highlighted the remarkable performance achieved by classification algorithms.
However, the inherent limitation of classifying a predefined set of postures has become
apparent. To bridge the gap and achieve results on par with established methods such
as camera-based posture estimation and IMU sensors, the use of regression algorithms
becomes imperative. Interestingly, a small number of studies have ventured into this area,
investigating joint angles in gait analysis and upper body alignment during sitting. These
initial forays offer a promising glimpse into the potential of regression algorithms in pos-
ture assessment. However, it is clear that more extensive research is needed to thoroughly
explore and validate the utility of such approaches.

Furthermore, an evaluation of the application scenarios and previous expert knowl-
edge was conducted based on the results of the review to further assist researchers in
the selection of the best estimation methods and input data sources for their application.
The evaluation of the application context showed that ML-based methods consistently
perform well in tasks such as sleep and sitting position recognition, as well as gait analysis.
However, DHMs are preferred for manual tasks. There is a noticeable gap in research
regarding the potential suitability of ML-based applications for posture assessment in
manual tasks. Further research in this area is warranted to explore its feasibility. The review
also has some limitations, including the non-standardized terminology of the keywords
and the inclusion of studies focusing on activity recognition, which may not necessarily
count towards posture estimation.
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