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* Correspondence: berrenur.saylam@bogazici.edu.tr

Abstract: Wearable devices have become ubiquitous, collecting rich temporal data that offers valuable
insights into human activities, health monitoring, and behavior analysis. Leveraging these data,
researchers have developed innovative approaches to classify and predict time-based patterns and
events in human life. Time-based techniques allow the capture of intricate temporal dependencies,
which is the nature of the data coming from wearable devices. This paper focuses on predicting
well-being factors, such as stress, anxiety, and positive and negative affect, on the Tesserae dataset
collected from office workers. We examine the performance of different methodologies, including
deep-learning architectures, LSTM, ensemble techniques, Random Forest (RF), and XGBoost, and
compare their performances for time-based and non-time-based versions. In time-based versions, we
investigate the effect of previous records of well-being factors on the upcoming ones. The overall
results show that time-based LSTM performs the best among conventional (non-time-based) RF,
XGBoost, and LSTM. The performance even increases when we consider a more extended previous
period, in this case, 3 past-days rather than 1 past-day to predict the next day. Furthermore, we
explore the corresponding biomarkers for each well-being factor using feature ranking. The obtained
rankings are compatible with the psychological literature. In this work, we validated them based on
device measurements rather than subjective survey responses.

Keywords: deep learning; LSTM; regression; ensemble learning; random forest; XGBoost; wearable
devices; well-being; digital health; pervasive health; digital biomarkers

1. Introduction

Wearables, such as smartwatches, fitness trackers, and biosensors, have gained popu-
larity due to their ability to continuously monitor various physiological signals and capture
temporal patterns in real-time. This wealth of temporal data provides valuable insights
into human activities, health monitoring, and behavior analysis and opens up new pos-
sibilities for personalized, context-aware applications that can continuously monitor and
classify temporal patterns to support various domains, including healthcare, fitness, and
productivity enhancement.

Human well-being monitoring and prediction [1] is one of the example application
areas focusing on an individual’s overall state of physical, mental, and social health,
reflecting their sense of contentment, happiness, and fulfilment in life. World Health
Organization (WHO) defines a well-being index (WHO-5) [2] with 5 factors based on the
answers given to the following questions: ‘I have felt cheerful and in a good spirit’, ‘Calm
and relaxed’, ‘Active and vigorous’, ‘Woke up fresh and rested’, ‘Daily life interests me’.
The answers range from ‘All of the time’ to ‘At no time’ with six possible inputs.

In recent years, there has been a growing interest in leveraging wearable devices to
monitor and predict individuals’ well-being and mental health in the literature [3–6]. This
trend has emerged as a response to the increasing awareness of the importance of mental
health in modern society and the growing data size collected by wearables. Traditional
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machine-learning algorithms, such as logistic regression, decision trees, and ensemble
methods, have been extensively utilized in classifying or predicting well-being using data
collected from wearables and questionaries. However, the time aspect of the temporal data,
in other words, how previous data impact future well-being levels, is often overlooked in
related studies. Wearables offer a unique opportunity to collect longitudinal data, enabling a
deeper understanding of how stress, anxiety, and emotional states fluctuate over time [7,8].
Time-based prediction techniques, when combined with wearable devices, can offer a
unique opportunity to capture and analyze temporal patterns. This integrated approach
can provide valuable insights into individuals’ emotional states over time, facilitating early
detection and timely interventions for improved mental well-being.

In addition, deep-learning architectures have emerged as powerful tools for time-
based prediction problems. Recurrent Neural Networks (RNNs) and convolutional neural
networks (CNNs) have gained attraction in well-being research [9–14]. RNNs, particularly
LSTM variants, have demonstrated their ability to capture long-term dependencies and tem-
poral dynamics in well-being-related data, while CNNs extract hierarchical features from
wearable sensor data, enabling more accurate prediction. Furthermore, the combination of
deep-learning architectures with wearable devices has led to the development of hybrid
models that leverage both wearable sensor data and contextual information. These models
incorporate multimodal inputs, such as physiological signals, accelerometer/activity data,
and contextual features like time of day, location, social interactions, and self-reported
mood states. By fusing multiple data sources that may impact an individual’s well-being
levels, the model’s performance can be improved.

As well as deep-learning algorithms, ensemble methods are also powerful tools.
Ensemble models combine multiple base classifiers to make predictions, leveraging the
strengths of different models and reducing the impact of individual model weaknesses.
Techniques like Bagging, Boosting, and Random Forests have been successfully employed
in time-based classification tasks, yielding improved performance and robustness.

In this study, specifically, we focus on workplace well-being prediction using the
Tesserae dataset [15], which was collected over an extended period from office workers.
The primary objective is to predict the stress, anxiety, and positive and negative affect
levels by analyzing the impact of past measurements on their well-being. There is also
the sleep factor in the definition of the well-being index based on the WHO-5 well-being
questionnaire [2]. Although the sleep response was recorded in the dataset, once we applied
the same preprocessing steps to compare each target value’s results fairly, we were left
with a limited amount of data due to the lack of intersection in missing values in parameter
space and target value, i.e., sleep which is collected three to four times in a week even
though they are classified in daily surveys. Thus, we could not include this fifth factor in
the study.

Given the fact that the dataset is a time stream, we conducted experiments using pre-
diction algorithms, namely Random Forest (RF), XGBoost as example ensemble algorithms,
and LSTM as an example deep-learning algorithm, in their conventional versions as well
as in time-based versions. Time-based versions use the concept of time lags to consider
the time aspect of the data. In order to create the time-based versions, each data point
is associated with previous time steps (i.e., days) to incorporate historical information.
We aimed to observe the impact of previous, such as daily, weekly, and longer periods,
well-being factors on the upcoming ones. We focus on the following research questions
(RQ) in our study:

• RQ1: What are the underlying factors (biomarkers) of well-being for workers consid-
ering four main parameters: stress, anxiety, positive and negative affect?

• RQ2: Are these biomarkers compatible with conventional psychological studies?
• RQ3: Do time-based versions of the conventional algorithms help to improve predic-

tion performances?
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The rest of the paper is organized as follows: Section 2 explores the literature related
to wearables and well-being monitoring. In Section 3, we explain the details of the dataset,
the data construction step for our analysis, the data preprocessing step before analysis, and
details of the target values, i.e., stress, anxiety, positive and negative affect. In Section 4,
we provide the obtained results with feature ranking, modality ranking, and performance
details with an interpretation, discussion, and comparison to the related studies, and we
finish with Section 5 as a conclusion.

2. Related Work

Well-being, a multidimensional concept encompassing various facets of emotional
and psychological health, has become a focal point of research [1,5,16–18] and early health
intervention by continuous monitoring [19,20]. Within the spectrum of well-being, stress,
anxiety, positive affect, and negative affect play pivotal roles in determining an individual’s
mental and emotional state [21,22]. Stress and anxiety can significantly impact one’s overall
well-being, and understanding and managing these factors are essential for promoting
mental health [21,23,24].

Studies have explored the integration of wearable sensors, such as heart rate monitors,
electrodermal activity sensors, accelerometers, and even Bluetooth beacons, to capture
physiological and behavioral signals associated with stress and emotional well-being [25,26].
These sensors provide non-intrusive and continuous data streams that offer insights into
individuals’ emotional experiences and their positive and negative affect.

Nevertheless, the most studied factor is the stress in the literature [27–33]. In recent
years, stress prediction and assessment have witnessed a surge in innovative research
aimed at harnessing diverse data sources and cutting-edge machine-learning techniques.
These efforts have collectively contributed to a deeper understanding of stress patterns
across different contexts and data modalities, paving the way for more effective stress
management strategies.

Investigating the feasibility of stress prediction based on behavioral data, researchers
have delved into smartphone activity as a potential stress indicator [28]. Leveraging
machine-learning algorithms, this study dissects smartphone behaviors to uncover stress-
indicative patterns, therefore contributing to a deeper understanding of stress dynamics in
the digital age. By focusing on digital behavior, the study presents a unique perspective
on stress prediction, emphasizing the significance of smartphone interactions in capturing
stress-related cues.

Wearable technology emerges as another avenue for stress prediction. Employing
physiological sensors, studies have endeavored to predict and visualize work-related stress
through wearable sensing [29]. Heart rate and skin conductance are monitored to develop
models that provide real-time insights into stress levels, thus empowering individuals and
organizations with tools for effective stress management. By focusing on physiological
markers, this research offers a unique approach to stress prediction, emphasizing the
importance of wearable technology in monitoring and mitigating stress.

Moreover, the analysis of physiological signals has yielded significant strides in stress
detection under real-life conditions [30]. By scrutinizing heart rate variability and electro-
dermal activity, researchers provide valuable insights into physiological stress markers,
enhancing our understanding of stress dynamics in natural environments. This study’s
focus on physiological markers in real-life settings offers a nuanced perspective on stress
detection, providing insights into stress responses beyond controlled environments.

Mobile sensing has also paved the way for predicting stressful life events by analyzing
sensor data such as location and physical activity [31]. This novel approach enhances our
comprehension of stress-inducing contexts and contributes to users’ overall well-being by
identifying potential stress triggers. This approach shifts the focus from immediate stress
levels to predicting stress-inducing situations, highlighting the potential of preemptive
interventions.
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Intriguingly, multimodal approaches have been explored by combining speech and
wearable sensor data for stress detection [32]. By integrating speech features and physio-
logical signals, researchers have showcased the potential of using multiple data sources to
achieve more accurate stress prediction models. The study’s emphasis on combining speech
and physiological data offers a comprehensive approach to stress detection, leveraging
multiple modalities to enhance prediction outcomes.

Comprehensive stress and sleep prediction strategies have incorporated physiological
signals and smartphone data [33,34]. The fusion of heart rate variability, accelerometer data,
and self-reported stress levels yields enhanced accuracy, demonstrating the potential of
amalgamating diverse data sources for holistic stress assessment. This research stands out
for its comprehensive integration of physiological signals and smartphone data, offering
a multifaceted perspective on stress prediction [33]. In [34], the approach of combining
wearables and phone sensors enables more accurate sleep detection by leveraging the
benefits of both streams: combining wearable movement detection with mobile phone
technology usage detection is employed. They showed that the combination of phone
activity and wearables might produce better models of self-reported sleep than either
stream alone on the Tesserae dataset.

There are also recent studies focusing on monitoring and predicting stress levels in
the workplace. In a recent study [27], researchers developed a mobile app to collect a
comprehensive dataset from 30 workers over 8 weeks. The app prompted users to complete
a questionnaire three times daily, assessing stress, sleep quality, work abandonment, energy
levels, and mood states. Unlike other studies, this research did not involve recording sensor,
speech, or camera data. Instead, the focus was solely on the self-reported questionnaire
responses.

One intriguing avenue of exploration is the utilization of surrounding stress-related
data for predicting individual stress levels. Researchers have introduced a groundbreaking
approach that capitalizes on personal and social stress-related data to achieve remarkable
prediction accuracy [33]. It unveils the contagious nature of stress, shedding light on how
one’s focus can influence those around them. Unlike traditional stress prediction methods,
which primarily rely on individual data, this study sheds light on the influence of surround-
ing stress, emphasizing the interconnectedness of stress levels within a social context at the
workplace. In our study, by considering all measurements coming from different places, we
are inherently dealing with surroundings by considering all measurements coming from
different people. In this aspect, we may say that we are focusing on the well-being of the
workplace rather than the individuals. In addition, their model approach encounters the
time-based aspect of the dataset, likewise our study. However, in addition to stress, we
explore other factors of well-being and extract the biomarkers of these factors utilizing an
extensive dataset.

These studies underscore the richness and variety of approaches in stress prediction re-
search. By leveraging different data modalities, advanced analytics, and machine-learning
techniques, researchers aim to predict stress levels accurately and provide valuable in-
sights into the intricate interplay of stress dynamics across workplaces, digital platforms,
educational settings, and daily life. The cumulative efforts in this field contribute to a
more profound comprehension of stress patterns and offer potential avenues for effective
stress management and well-being enhancement. Building upon previous research in stress
and well-being prediction utilizing wearable, mobile, ambient, and machine-learning tech-
nologies [32,33], our paper aims to address the challenges and potential areas for further
investigation.

In this study, we deal with temporal patterns and dependencies within the data
using methods such as RF, XGBoost, and LSTM. Based on past data, these algorithms can
effectively predict stress levels, anxiety states, and variations in positive and negative affect.
Importantly, these algorithms’ lagged (time-based) versions, incorporating various time
windows, have shown promise in capturing nuanced temporal trends.
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We have three main questions in Section 1. To the best of our knowledge, none of the
well-being studies considered these four factors simultaneously. Furthermore, there is no
time-based method application using the current dataset. Considering the intrinsic aspect
of data collection and the nature of the states, we show that temporal dependencies have an
effect. Even though RF was reported to be the most performing algorithm [32,35,36] in this
dataset’s scope, we are also exploring the performance with XGBoost and LSTM alongside
RF. In addition, in our previous study [36], we extracted highly related biomarkers only
for the classification of the stress variable. In this study, we expand by adding three more
well-being factors in a prediction context rather than classification.

Ultimately, this research aims to advance the field of time-based classification, particu-
larly in the context of workplace well-being prediction. By addressing challenges, exploring
novel methodologies, and leveraging wearable technology, we strive to contribute to de-
veloping intelligent systems that can effectively analyze and interpret temporal data for
personalized applications in the workplace.

3. Background and Methodology for Well-Being Prediction
3.1. Motivation

Time-based approaches can be used in well-being detection and management by
leveraging physiological and contextual data collected over time. The data streams provide
rich information that can be leveraged to develop accurate and personalized stress, anxiety,
and mood prediction models.

Considering the mentioned research questions in Section 1, we aim to answer the effect
of time-based algorithms compared to their conventional versions and extract the related
biomarkers (RQ1 and RQ3). In prediction tasks, the data format can significantly impact
the modeling approach and the insights gained. Two primary data formats, time-based
and conventional predictions, offer distinct characteristics and utility.

Time-series data are organized chronologically, where each observation is tied to a
specific timestamp. This format introduces a crucial temporal dimension, capturing how
the studied phenomenon evolves. Notable characteristics include the temporal sequencing
of data points, time lags and dependencies necessitating feature selection, and the option
to aggregate data over different time intervals. These features allow for modeling temporal
patterns and dependencies, making time-based prediction particularly valuable in scenarios
where understanding how variables change over time is essential, such as stock price
forecasting, weather prediction, or user behavior analysis.

Conversely, the usual prediction data format lacks an inherent temporal component,
treating each observation as independent and disregarding the order of data points. Key
characteristics include the independence of observations, a focus on feature engineering
that primarily considers static attributes, and the use of cross-sectional analysis, which
provides a snapshot of the data at a particular time. This format is for scenarios where
the sequence of observations is irrelevant or temporal aspects hold no significance in the
predictive modeling process. It is often employed in areas like classification tasks and static
attribute-based predictions.

3.2. Definitions of the Utilized Well-Being Factors

In this study, we are concentrating on four core factors of well-being: stress, anxiety,
and positive and negative affect. To be more concrete about the background of these factors,
we provide descriptions in the following:

3.2.1. Stress

Stress is a psychological and physiological response to challenging situations or per-
ceived threats. It often includes feelings of tension, pressure, or unease and can manifest
as both mental and physical symptoms. Stress is a natural response to various life events,
but excessive or chronic stress can have negative effects on one’s mental and physical well-
being. As stress is a complex response, it can be influenced by a wide range of factors such
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as environmental (work, living conditions), psycho-social (life events, everyday challenges,
lack of social relationships), biological (genetics, physical health, neurobiology), psycho-
logical (personality traits such as perfectionism, cognitive factors, resilience), lifestyle
(diet and nutrition, physical activity, sleep patterns, substance use) and cultural-societal
(beliefs-expectations, discrimination, social Inequality) factors.

3.2.2. Anxiety

Anxiety is a persistent state of excessive worry, fear, or apprehension about future
events or situations. It is characterized by heightened alertness and a sense of unease. Anx-
iety can be a normal response to stressors, but when it becomes overwhelming, intrusive,
or impairs daily functioning, it may indicate an anxiety disorder. Anxiety disorders include
various conditions, such as generalized anxiety disorder, social anxiety disorder, and panic
disorder.

3.2.3. Positive Affect

Positive affect refers to the experience of positive emotions, such as joy, happiness,
enthusiasm, and contentment. Understanding and measuring positive affect is essential
for assessing well-being and mental health. It represents the spectrum of pleasant feelings
and moods that individuals may encounter in their daily lives. Positive affect is pivotal
in enhancing one’s emotional state, contributing to an overall sense of happiness, and
promoting psychological resilience.

3.2.4. Negative Affect

Negative affect refers to the experience of negative emotions, such as sadness, anger,
fear, and disgust. It encompasses a range of distressing feelings and emotional states that
can impact one’s mood and overall well-being. Understanding and measuring negative
affect is essential for assessing emotional health and psychological distress. Negative affect
can be a normal response to adverse events, but persistent or severe negative affect may
indicate underlying emotional or mental health issues.

In modern society, concerns surrounding stress and anxiety have gained prominence,
impacting individuals’ well-being, productivity, and overall quality of life. Detecting and
managing these conditions have become increasingly crucial, leading to a growing interest
in utilizing time-based classification techniques in conjunction with wearable devices.

3.3. Dataset

Tesserae Dataset “https://tesserae.nd.edu/ (accessed on 31 October 2023)” [15] is used
in this work. It is gathered to track office workers’ psychological and physical qualities over
a year to determine their performance at work. It includes information from 757 individuals.
Both a smartphone and a Garmin watch are utilized to gather data.

An activity tracking app was used to collect data from the phones. Throughout the
investigation, each participant had a Garmin watch. Its battery life is five to seven days.
Additionally, Bluetooth beacons have been utilized to gather details about the location,
including home or work. They also gathered verbal data from social networking sites like
Facebook and LinkedIn, which were inaccessible to us, as a supplement to the non-verbal
measurements made by the equipment.

The data-collection campaign has been approved as a research project by the University
of Notre Dame, and participants have been asked to sign a consent form. The participants
were given a variety of questionnaires to complete to gather real-world data. These
questionnaires include stress, exercise, sleep, mood, IQ, and job performance. Participants
completed all the survey questions for each kind at the start of the trial. It is mentioned that
it takes around an hour to complete. Additionally, there are daily survey questions that
provide an overview of each measurement type, where the used well-being factors within
the scope of this study are indicated with a star sign. The overall score of each questionnaire
corresponds to one column in the daily survey scores file. Thus, filling it every day only

https://tesserae.nd.edu/
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takes a few minutes. In addition, they gathered data with a questionnaire and a follow-up
survey. They were inaccessible to us, however. As a result, the questionnaires are divided
into the following four sections: initial ground truth, daily surveys, exit surveys, and
follow-up surveys. The exit battery and the follow-up survey were not provided to us, yet
their parameter space has been given in detail in [36]. We identify the utilized ground-truth
questionnaires in the scope of this study in Table 1 with a star. As we already found
that personality parameters increase the recognition performance, and they were found
as the most important parameters for our target variables [36], we included them in our
parameter space. The rest of the surveys are utilized for the target variables, as shown in
Table 1: PANAS for positive and negative affect, omnibus anxiety question for anxiety, and
omnibus stress question for stress. The detailed versions of the contents of these surveys
are presented in [36]. Although these data are gathered over a year, it is stated that only
56 days of daily survey data are collected “https://osf.io/yvw2f/wiki/EMAs/ (accessed
on 31 October 2023)”. Thus, in the scope of this study, as we are dealing with data coming
from surveys for the target variables, we are actually working on almost two months of
duration of data.

Table 1. Details of the daily questionnaires (* correspond to the ones used in this study).

Questionnaires Content

Daily Surveys

Big Five Inventory (BFI) *:
Extraversion, Agreeableness, Conscientiousness, Neuroticism, Openness,

Positive and Negative Affect Schedule (PANAS) *,
Omnibus Anxiety Question *,

MITRE Omnibus Stress Question *,
MITRE Physical Activity Assessment

MITRE Sleep Assessment

3.4. Data Preprocessing

We conducted our analysis on a daily basis. We have features coming from the user’s
activity, stress, sleep, heart rate (HR) via a Garmin watch, and phone activity via phone
agents, location via Bluetooth beacons.

Even though the data were collected from 757 participants, only 727 participants’ data
were available in the shared dataset. Furthermore, although it is stated that 56 days of the
daily survey is collected, we observed 61 daily survey answers from some participants. The
dataset was provided in separate files. To construct our dataset, we merged the required
files according to ParticipantID and Timestamp. We obtained daily wearable data as input
and ground-truth data as a target for each well-being factor for each participant. We
considered the data from participants that only have ground-truth responses, i.e., responses
to the daily surveys. After constructing the data file, we have 36,294 instances from all
participants. In the final version of the data, we have 269 columns where 15 of them
are the ground truth. Here, 15 columns coming from the ground truth are: survey name,
stress, anxiety, sleep, positive affect, negative affect, extraversion, agreeableness, conscientiousness,
neuroticism, openness, total phone activity duration, survey sent time, survey start time, survey
finish time. We removed the unnecessary columns in our analysis timezone change, local time,
survey name, survey sent datetime, survey start datetime, survey end datetime related to name,
start, and end date of surveys before running factor-specific algorithms. Furthermore,
we excluded other well-being factor columns while concentrating on a specific one. For
example, in the case of stress, we removed anxiety, pos affect, neg affect.

We already reported the importance of personality attributes in stress classification in
our previous work [36] and employed these parameters in our input space. These param-
eters include extraversion, agreeableness, conscientiousness, neuroticism, and openness.
Specifically, in this dataset, these personality values are collected approximately 4–5 times
during the period that we are concentrating on, i.e., two months. The selection of input
columns and the construction of the final dataset is explained extensively in the “Dataset

https://osf.io/yvw2f/wiki/EMAs/


Sensors 2023, 23, 8987 8 of 19

Construction Section of [36]” and a descriptive table (Table 3) is presented in that study.
However, to be more clear about the features which have been used in the scope of the
study, we list their names as follows: ParticipantID, Timestamp, act in vehicle ep0, act in vehicle
ep1, act in vehicle ep2, act in vehicle ep3, act in vehicle ep4, act on bike ep0, act on bike ep1, act on
bike ep2, act on bike ep3, act on bike ep4, act running ep0, act running ep1, act running ep2, act
running ep3, act running ep4, act unknown ep0, act unknown ep1, act unknown ep2, act unknown
ep3, act unknown ep4, act walking ep0, act walking ep1, act walking ep2, act walking ep3, act
walking ep4, active kilocalories, active secs, active time seconds, activity stress seconds, adjusted bed
time, adjusted sleep duration, adjusted wakeup time, agreeableness, ave cloudcover, ave daytime
cloudcover, ave daytime feelslikef, ave daytime heatidxf, ave daytime humidity, ave daytime pressure,
ave daytime tempf, ave daytime visibility, ave daytime windchillf, ave daytime windgustmph, ave
daytime windspeedmph, ave feelslikef, ave heatidxf, ave hr, ave humidity, ave pressure, ave stress,
ave tempf, ave visibility, ave windchillf, ave windgustmph, ave windspeedmph, average hr, average
stress level, bbidp median, calories active hrs, caloriesdp median, conscientiousness, date, distance
in meters, duration in seconds, extraversion, floors climbed, garmin calories max, garmin calories
mean, garmin calories median, garmin calories min, garmin calories std, garmin steps max, garmin
steps mean, garmin steps median, garmin steps min, garmin steps std, gimbal active hrs, gimbal
ep0, gimbal ep1, gimbal ep2, gimbal ep3, gimbal ep4, gimbaldp median, high stress duration seconds,
highly active secs, hr active hrs, hrdp median, locdp median, low stress duration seconds, max
cloudcover, max daytime cloudcover, max daytime feelslikef, max daytime heatidxf, max daytime
humidity, max daytime pressure, max daytime tempf, max daytime visibility, max daytime wind-
chillf, max daytime windgustmph, max daytime windspeedmph, max feelslikef, max heatidxf, max
hr HR, max hr actSleepDailyStress, max humidity, max pressure, max stress, max stress level, max
tempf, max visibility, max windchillf, max windgustmph, max windspeedmph, median hr, median
stress, medium stress duration seconds, mildest daytime weathercode, mildest daytime weatherdesc,
mildest weathercode, mildest weatherdesc, min cloudcover, min daytime cloudcover, min daytime
feelslikef, min daytime heatidxf, min daytime humidity, min daytime pressure, min daytime tempf,
min daytime visibility, min daytime windchillf, min daytime windgustmph, min daytime wind-
speedmph, min feelslikef, min heart rate, min heatidxf, min hr, min humidity, min pressure, min
stress, min tempf, min visibility, min windchillf, min windgustmph, min windspeedmph, mode
daytime weathercode, mode daytime weatherdesc, mode hr, mode stress, mode weathercode, mode
weatherdesc, moderate intensity duration seconds, neg affect, neuroticism, num samples, num
samples actSleepDaily, num samples stress, openness, quality activity, quality bbi, quality calories,
quality gimbal, quality hr, quality steps, range hr, range stress, rest stress duration seconds, resting
hr, severest daytime weathercode, severest daytime weatherdesc, severest weathercode, severest
weatherdesc, steps, steps active hrs, stepsdp median, stress duration seconds, total activity secs,
total daytime precipmm, total pa d, total precipmm, total snowcm, unique act count, unique gim
count, unlock duration ep0, unlock duration ep1, unlock duration ep2, unlock duration ep3, unlock
duration ep4, unlock num ep0, unlock num ep1, unlock num ep2, unlock num ep3, unlock num
ep4, vigorous intensity duration seconds. For more details and descriptions, please visit the
project’s website “https://osf.io/yvw2f/wiki/EMAs/ (accessed on 31 October 2023)”.

We examined missing values among the independent, i.e., input, variables. Some
attributes were never collected from some participants. Thus, an imputation could not
be applied to these attributes. Among them, if there is a lack of many participants’ data,
their removal by row leads to a high decrease in our dataset. Instead, we deleted those
columns. These are act (activity) still, light mean, garmin hr (heart rate) min, garmin hr max,
garmin hr median, garmin hr mean, garmin hr std, ave (average) hr at work, ave hr at desk, ave hr
at desk, ave hr not at work, call in num (number), call in duration, call out num, call out duration,
call miss num, and their derivatives according to time episodes. However, when we have
data columns with missing values at the person level, we compute them by applying the
mean operation for each participant. Even after this operation, there were some missing
values due to the lack of column values at a person level. We had to remove them row
by row, resulting in the removal of around 5000 rows (from 36,284 to 31,772). During this
process, we observed that missing values at the person level for one parameter were highly

https://osf.io/yvw2f/wiki/EMAs/
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correlated with the presence of missing values for other parameters as well. In addition,
we applied data scaling using a scale mapper.

We proceeded with the same preprocessing steps for each target factor and achieved
the same parameter space. In the end, we have 194 columns with input and target parame-
ters and around 31,700 rows due to changes in missing values in the target column. More
precisely, it is 31,772 for stress, 31,731 for anxiety, 31,703 for positive affect, and 31,702 for
negative affect. To give an idea about the dataset, we present some columns with their
corresponding values and participant ID in Table 2 for the positive affect target variable.

Table 2. A snapshot of the data for positive affect.

ID Timestamp Active
Secs . . . Resting

Hr Steps Stress Duration
Seconds . . . Positive

Affect

4188a14d4edd8eb1cac1a146d9f88aee 21 February 2018 2417 . . . 57.0 6634 34,560.0 . . . 14

4188a14d4edd8eb1cac1a146d9f88aee 22 February 2018 2557 . . . 55.0 6008 21,960.0 . . . 14

4188a14d4edd8eb1cac1a146d9f88aee 23 February 2018 5849 . . . 55.0 9008 26,880.0 . . . 15

. . . . . . . . . . . . . . . . . . . . . . . . . . .

4188a14d4edd8eb1cac1a146d9f88aee 27 April 2018 3595 . . . 72.0 4837 12,240.0 . . . 15

. . . . . . . . . . . . . . . . . . . . . . . .

c30291318f6d680bd65666c183f6bb5e 11 January 2018 4988 . . . 57.0 10,550 19,020.0 . . . 11

. . . . . . . . . . . . . . . . . . . . . . . . . . .

c30291318f6d680bd65666c183f6bb5e 13 March 2018 5109 . . . 50.0 11,002 46,140.0 . . . 9

3.5. Creation of Lagged (Time-Based) Dataset

Time-based prediction techniques combined with deep-learning architectures, ensem-
ble techniques, and multimodal data fusion are powerful methods for temporal data. By
leveraging wearables and exploring synergies with emerging technologies, the field of
time-based classification is poised to make further strides in accurately analyzing and
interpreting temporal data.

When dealing with time-series data in healthcare, it is essential to consider temporal
dependencies and trends. The traditional version of the indicated algorithms (RF, XGBoost)
may not capture these aspects effectively, as it does not inherently account for the sequential
nature of time-series data. This is why we created lagged versions of the dataset. Also,
even though LSTM considers the time aspect inherently, its lagged version, often referred
to as Time-Lagged LSTM, extends the capabilities of traditional LSTMs by explicitly in-
corporating lagged features into the model. They excel at capturing complex temporal
relationships and can provide valuable insights for time-series analysis in healthcare.

A lagged version introduces the concept of time lags to consider the time aspect
in the data. It involves the creation of lagged versions of the features, where each data
point is associated with previous time steps to incorporate historical information. This
approach can significantly enhance the predictive performance, especially when dealing
with time-series data. The model better understands how data evolves over time, making
it a valuable tool for time-sensitive healthcare applications.

To explain this concept, consider an employee with a certain level of well-being (W)
in terms of stress, anxiety, positive and negative affect separately (either one of them
depending on the scenario) during a certain period t are the following:

W(t) = [wt−n, wt−(n−1), . . . , wt−1, wt] (1)

where Wt represents the well-being parameter value W over a period t, on a range of 1 to 5
for stress and anxiety, 5 to 25 for positive and negative affect. wt−n, wt−(n−1), . . . , wt−1, wt
are the individual measurements of the well-being parameter W at different time points
within the time window. Therefore, wt−n ∈ [1, . . . , 5] or [5, . . . , 25] depending on the
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scenario of well-being, and n is the size of the time window, indicating the number of past
measurements considered in the measurements of well-being parameters. In this study,
we employed 1, 3, 7, 15, 30 as look-back (n) sizes to consider daily, weekly, fortnightly, and
monthly results. Additionally, we wanted to observe the change between daily and weekly
performance, so we also employed a 3 day look-back roughly to state half of the week.
We could have considered longer periods, such as yearly and seasonal periods. However,
as we have only 56 days of data, these approaches are not applicable due to the dataset
constraints.

3.6. Prediction Algorithms
3.6.1. Random Forest

RF is an ensemble learning method that combines multiple decision trees to make more
accurate predictions or classifications. It is particularly effective for various tasks, including
regression and classification. It works by creating a multitude of decision trees during
training. Each tree is constructed based on a random subset of the dataset (bootstrapping),
and at each node, a random subset of features is considered. This randomness helps in
reducing overfitting and improving generalization. During prediction, each tree provides
an output (class label or numerical value), and the final prediction is determined by
averaging (for regression) or taking a majority vote (for classification) of these individual
tree outputs.

3.6.2. XGBoost

XGBoost, short for Extreme Gradient Boosting, is another robust machine-learning
algorithm commonly used in various domains, including healthcare. Again, it is an
ensemble learning technique that combines the predictions of multiple decision trees to
achieve high predictive accuracy. XGBoost is known for its efficiency, scalability, and ability
to handle various data types, making it a popular choice for predictive modeling tasks.

In the healthcare domain, XGBoost can be used for disease diagnosis, patient risk
stratification, and medical image analysis. It excels in capturing complex patterns and
relationships within healthcare data.

3.6.3. Long Short-Term Memory

LSTM is a recurrent neural network (RNN) architecture that handles sequential data. It
is well-suited for time-series analysis, natural language processing, and other applications.
LSTMs are known for their ability to capture long-range dependencies in sequences while
avoiding the vanishing gradient problem, which can hinder the training of traditional
RNNs. LSTM models can be used in healthcare for patient monitoring, disease prediction,
medical image analysis, and more. They excel in scenarios where the order and temporal
relationships between data points are critical.

4. Performance of Well-Being Factors Prediction
4.1. Implementation Details

We employed traditional RF, XGBoost, LSTM, and their lagged versions as predic-
tion/regression models. We used the Random Forest (RF) algorithm in our analyses
because it is an ensemble method and performs better among the other used methods in
the literature in this domain [4], XGBoost as it is indicated to perform better compared to
deep-learning techniques and even better once combined with deep-learning compared
to alone version [37], and LSTM as it considers time aspects of data inherently. We also
have their lagged versions for 1, 3, 7, 15, 30 days look-back to consider the contribution of
past data points and 1, 3, 7 days lookup to understand up to how many days we can reach
reasonable errors and which one’s performance is better.

To be fair, in comparisons, as the parameter space is 99% is similar (in Section 3.4, the
total number of instances per target value was given), and only the target column changes
for each scenario specific to different well-being targets. We employed the same prepro-
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cessing steps for the dataset and hyper-parameter values for the applied algorithms. After
hyper-parameter optimization, we found that in scikit-learn n estimators 1000, criterion
gini, min sample split 2, min samples leaf 1, max features sqrt combination reveal the best
performance for RF, 50 layered LSTM with epochs 50, batch size 72, adam optimizer with
learning rate 0.001, hyperbolic tangent as an activation function and MAE as a loss function,
and for XGBoost colsample bytree 0.8482, gamma 4.34, max depth 3, min child weight 7.0,
reg alpha 107.0, reg lambda 0.8336, n estimators 20.

We employed 80% and 20% train and test dataset sizes, respectively, as in [36]. How-
ever, in this study, we also considered a person’s ID information for splitting even though
it is not personalized yet. When we split the dataset sharply to obtain 80% and 20%, it
corresponded to splitting one person’s data, some parts in the training set and some in the
test. To solve this issue, we assigned 443 person’s data in the training set and 100 person’s
data in the test set to reach roughly 80% and 20% splitting. In the context of neural networks,
it is a common practice to have three different sets: train, test, and validation. Here, we did
not employ a three-set division. The decision to exclude a separate test set was motivated
by two key factors. First, training was stopped when no improvement between epochs
was observed. This practice aligns with the common approach to halt training when the
validation metric ceases to improve, indicating potential diminishing returns and the risk
of overfitting. Second, the availability of a large and diverse dataset played a significant
role in this decision. A substantial dataset can mitigate overfitting risks by providing a
robust measure of the model’s generalization capability without the need for a dedicated
test set, which was not observed during our experiments.

The experiments are performed on macOS, a 2.7 GHz quad-core Intel Core i7 processor
with 16 GB of 2133 MHz LPDDR3 SDRAM using the Google Colab platform and Python
3.10 scripts.

4.2. Biomarkers of Well-Being Factors

Before examining the performance of time-based versus non-time-based predictions,
we extracted the most effective parameters, i.e., biomarkers, on the target well-being
factors. We employed Random Forest for feature importance. For each target variable,
top 20 features are presented in Figure 1; corresponding subfigures are as follows: for
stress (a), for anxiety (b), for positive affect (c) and negative affect (d). As these explain
the health-related components, in the literature, they are called digital biomarkers [38]. By
doing this, we aim to answer RQ1, mentioned in Section 1. In our previous study [36],
concentrating on a stress classification task, we have already found that stress has two
overwhelming biomarkers: anxiety and negative affection. This was also the case in this
prediction study. As these two factors are also our target variables in the scope of this work,
we excluded the other examined factors while targeting one from the set of well-being
factors. That is why they are not listed in the most important biomarkers lists.

Similar to the results presented in the stress classification study in [36], the person-
ality factors, which are extraversion, agreeableness, conscientiousness, neuroticism, and
openness, are all found among the most important factors, almost always in the top 5 again
(Figure 1) in this study, for all target variables in a separate manner for a regression problem.
As well as the personality attributes, we notice that some others, such as sleep-related
parameters, including bedtime and wakeup time, are the common attributes in all factors.
Similarly, the number of stress samples, highly active seconds, and activity stress seconds
are also common parameters. In addition, phone unlock duration, which comes from phone
activity, is common in three target factors, i.e., stress, anxiety, and negative affect.

As we are dealing with multiple types of inputs, i.e., biomarkers, coming from different
modalities, i.e., measurements from different devices (phone, smartwatch) and personality
surveys, we wanted to understand the importance of the modalities for future studies to
decide on what types of data should be collected to predict the well-being factors. The
modalities are phone activity, personality surveys, and the ones coming from the Garmin
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watch: sleep, stress, daily (this includes a summary of daily recordings, such as distance in
meters), activity, and heart rate.

(a) (b)

(c) (d)

Figure 1. The most important features per target (a) Stress (b) Anxiety (c) Positive Affect (d) Negative
Affect.

We rank the biomarkers according to their corresponding modality set. Since we
have extracted the most important 20 features, rankings are from 20 to 1, 20 as the most
important one. We sum the rankings of the biomarkers when computing the importance
of the modality they belong to. For example, bedtime, sleep duration, and wakeup time
biomarkers are under the sleep modality from the watch. If these were found among the
most important 20 features, we sum their ranking values for the sleep modality.

In Figure 2, we provide the rankings of the biomarkers according to their modalities
from the phone, the wearable watch (Garmin), and surveys (personality). We observed
a similar ranking as personality, phone activity, sleep, daily activity for each target factor.
The rest of the rankings are as follows activity for stress; activity, heart rate for anxiety;
heart rate, stress, activity for positive affect; activity, stress, heart rate for negative affect
(Figure 2). Even though we are dealing with a regression problem in this study, we observe
a similar modality ranking as stress classification with resolved class imbalance cases [36].
In addition, this ranking is the same for each target variable, which shows the transitivity
of these modalities across targets.

As well as wearable and phone devices’ various measurements to relate to the psychol-
ogy literature in answering our second research question (RQ2), we focus on the parameters
coming from sleep, stress, heart rate, and activity modalities. Please note that contrary to
target variables from daily survey data, these parameters come from the device measure-
ments. This is why we encounter stress sample numbers among the important features
for stress targets. Observing these parameters on the parameter space validates device
measurements with the subjective values.
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Figure 2. Modality rankings.

It is observed that sleep and activity occur commonly among all target important
variables. In the literature, it is stated that there is a strong relationship between sleep
and stress [39–41], sleep and anxiety [23,42,43], sleep and mood (positive and negative
affect) [44]. In addition, it is found that sleep patterns are among the most important
health-related factors [45]. Our study also validates these results (Figure 2) by having sleep
in the upper ranking of importance compared to activity, stress, and heart rate for each one
of the target variables.

In [24,46], researchers found that there is a relation between physical activity, anxiety,
and stress. It is stated that with the increase of physical activity levels, there is less
subsequent stress and negative affect, as well as more positive affect [47]. In our results,
activity-related parameters are found towards the end of the importance rankings in
Figure 1, yet the results shown are the most important among the whole parameter space.
Thus, again, the results aligned with the psychological literature.

Interestingly, most of the stress-related factors were found to be important for positive
and negative affect. In [48,49], it is reported that perceived stress level is associated with
positive and negative affects’ reactivity to current events while trait anxiety moderated
reactivity of agitation. Also, it is stated that the intensity and duration are important for
their relationship. This finding also overlaps with our findings.

In conclusion, with this study, we provide the most important physiological parame-
ters that align with the existing studies in the literature from the psychological perspective.

4.3. Conventional vs. Time-Based Prediction Performances

In well-being, four key factors available in this dataset provide insights into an indi-
vidual’s psychological state. Stress and anxiety, rated on a scale from 1 to 5, encompass
the emotional responses to challenges and worries. Stress levels indicate the intensity of
pressures and challenges experienced, while anxiety reflects the degree of unease and fear.
On the positive side, positive affect, rated from 5 to 25, measures the abundance of positive
emotions, indicating the extent of happiness and enthusiasm. Conversely, negative affect,
also rated from 5 to 25, gauges the presence of negative emotions, portraying the degree of
distress and unhappiness. These measures collectively offer a comprehensive view of an
individual’s emotional state and overall well-being, from coping with stress and anxiety to
experiencing positive and negative emotions.

As stated earlier, we are using RF, XGBoost, and LSTM algorithms and their lagged
variations in this study. This section will refer to them as conventional and time-based
versions to facilitate the understanding. The performances of the algorithms are measured
in terms of mean absolute error (MAE) to be able to account for negative errors properly.
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The reason behind the choice of MAE comes from the observation of the model’s under-
prediction, as one may observe in Figure 3. Thus, no sign difference suits the usage of
MAE as an error metric. The X-axis in Figure 3 represents the index ranging from 0 to 249,
corresponding to the data points in the lagged dataset. Since the dataset is constructed
with consideration for the time aspect, these indexes are also related to time.

(a) (b)

(c) (d)

Figure 3. Forecast visuals with XGBoost 7 days prior (a) Stress (b) Anxiety (c) Positive Affect
(d) Negative Affect.

The results are presented in Table 3. When we look at the results of the conventional
versions of the algorithms, we see that RF and XGBoost results are closer, but LSTM is
better since it captures the time aspect in the data intriguingly. On the other hand, we
observed that XGBoost performs far better in terms of running time compared to RF. RF
is a versatile algorithm often used in predictive modeling tasks. We used RF to predict
outcomes based on historical data. However, RF may not capture temporal dependencies
and patterns as effectively as time-based models. It performed reasonably well but did not
outperform other models in capturing time-related factors. LSTM is a deep-learning model
designed for sequential data. We applied LSTM to capture intricate time dependencies,
which can be highly effective for time-series forecasting.

In lagged (time-based) versions of data, we considered different time windows (1 day,
3 days, 7 days, 15 days, and 30 days look-back) and allowed for lookahead predictions
(1 day, 3 days, and 7 days lookup) involved incorporating historical data. However, in
order not to present an overwhelming table, we provided only some combinations of
look-back and lookup parameter space.

When we compare conventional and time-based versions, we observe a clear improve-
ment in the performances with the time-based version regardless of the algorithm. The
best-performing configuration for time-based versions belongs to LSTM. Particularly, the
3-day look-back and 1-day lookup likely excelled because the combination effectively cap-
tures recent trends while considering the influence of the previous days. This configuration
balanced short-term adaptability with longer-term patterns, providing the most accurate
results for almost all target variables. We observed better results with a 15-day look-back
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only for the stress target. We interpret it as the intriguing aspect of the data; it may represent
the stressful period of work while collecting the dataset. However, we are not fully sure
about this since we do not have ground-truth recordings for this issue, or in other words,
the daily lives of the participants.

Table 3. Prediction performances in terms of MAE (best results are shown as bold).

Type Method Stress Anxiety Positive Affect Negative Affect

Conventional
Random Forest (RF) 0.6702 0.6508 3.2955 2.2088

XGBoost 0.6910 0.6316 3.4269 1.7874
LSTM 0.6443 0.6445 3.2325 1.5121

Time-Based

RF (1 day look back-1 day lookup) 0.5922 0.4700 2.4881 1.4999
XGBoost (1 day look back-1 day lookup) 0.6319 0.4745 2.4947 1.4304

LSTM (1 day look back-1 day lookup) 0.5377 0.3897 2.5075 1.3841
RF (3 days look back-1 day lookup) 0.5907 0.4628 2.2741 1.3118

XGBoost (3 days look back-1 day lookup) 0.5952 0.4653 2.1851 1.2466
LSTM (3 days look back-1 day lookup) 0.5394 0.3729 2.1387 1.0574

RF (7 days look back-1 day lookup) 0.5808 0.4575 2.3130 1.2717
XGBoost (7 days look back-1 day lookup) 0.5791 0.4527 2.2623 1.0866

LSTM (7 days look back-1 day lookup) 0.5111 0.3846 2.1923 1.0522
XGBoost (15 days look back-1 day lookup) 0.6327 0.5736 2.4947 1.2982

LSTM (15 days look back-1 day lookup) 0.4718 0.4752 2.3795 1.3159
XGBoost (30 days look back-1 day lookup) 0.6518 0.6025 2.1583 1.3630

LSTM (30 days look back-1 day lookup) 0.5004 0.4804 2.3929 1.4011

RF (3 days look back-3 days lookup) 0.5950 0.5239 2.5205 1.3992
XGBoost (3 days look back-3 days lookup) 0.6078 0.5356 2.3898 1.3983

LSTM (3 days look back-3 days lookup) 0.5547 0.4600 2.3425 1.2564
RF (7 days look back-3 days lookup) 0.6324 0.5605 2.6482 1.4781

XGBoost (7 days look back-3 days lookup) 0.6122 0.5386 2.5328 1.4341
LSTM (7 days look back-3 days lookup) 0.5480 0.4805 2.6318 1.2277

XGBoost (15 days look back-3 days lookup) 0.6371 0.5754 2.3931 1.5495
LSTM (15 days look back-3 days lookup) 0.5470 0.4931 2.6475 1.3904

XGBoost (30 days look back-3 days lookup) 0.6542 0.6067 2.4716 1.6104
LSTM (30 days look back-3 days lookup) 0.5576 0.5046 2.8832 1.3621

XGBoost (7 days look back-7 days lookup) 0.6203 0.5450 2.5584 1.4378
LSTM (7 days look back-7 days lookup) 0.5947 0.5023 2.6342 1.3411

XGBoost (15 days look back-7 days lookup) 0.6396 0.5846 2.5653 1.5649
LSTM (15 days look back-7 days lookup) 0.6018 0.5322 2.8423 1.5316

XGBoost (30 days look back-7 days lookup) 0.6548 0.6125 2.5487 1.6158
LSTM (30 days look back-7 days lookup) 0.5802 0.5106 2.9486 1.4353

Even though LSTM was found to be the best-performing one, its results are very close
to XGBoost, and its results are even better in some cases (e.g., 15 look-back-1 lookup).
However, XGBoost’s execution time is shorter than LSTMs in all cases. Furthermore, the
data ranges for positive and negative affect are different and wider compared to stress and
anxiety. We observe higher error values for them.

To the best of our knowledge, this is the first study that employs different well-being
factors at the same time and also focuses on their time-based results in the scope of a
prediction problem. Nevertheless, to compare our findings with the literature where time-
based techniques were utilized in other well-being datasets [33], we see that they employed
daily and weekly resolutions. They employed different models such as LogR, DT, and ADA
on different kinds of features, yet they also concluded an increase in performances from
daily to weekly transition. More precisely, for the stress prediction study case, they achieved
a nearly 59% and 56% F-score on their data and the StudentLife dataset correspondingly.
These performances increased to 72% with their data and 61% in the case of StudentLife.
In another study [35], where the same dataset is used, the authors focused on creating a
benchmark for predictive analysis by integrating several aspects of an individual’s physical
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and psychological behavior, psychological states and traits, and job performance. They
employed High Order Networks to include the time aspect of the data while combining
the modalities. Although our study deals exclusively with well-being factors, this study
may also provide insights into higher-level components. Additionally, in [36], we focused
solely on the stress variable and applied conventional techniques. However, as we were
dealing with a classification problem in that study, it would not be appropriate to compare
its results with the regression results found in the scope of this study.

To show the differences between predictions (forecasts) and ground-truth target values,
we present detailed prediction visualization for XGBoost for 7 days look-back predictions
in detail in Figure 3 for stress, anxiety, positive affect, and negative affect. In these figures,
the commonly observed pattern is that the predicted values are lower than the original
values. Thus, models under-predict the values, but the patterns are being captured.

In conclusion, we found that time-based versions of the applied algorithms perform
better than conventional ones in this study’s scope, which answers our third question (RQ3).
The best-performing one is LSTM, with a 3-day look-back and a 1-day lookup for almost
all target variables.

Please note that the results presented in our study are based on predictions made
using a test set that includes data from individual participants. However, it is important to
clarify that our analysis and research objectives are primarily focused on deriving aggregate
or collective insights rather than providing personalized predictions. The distinction lies
in the way we interpret and utilize the results. Although our test set does consist of data
from individuals, our primary aim is to derive overarching patterns and trends in the data
that can be applied at a higher level. In essence, we are looking for trends or behaviors
that are consistent across different people rather than focusing on precise individual-level
predictions. This approach enables us to draw broader conclusions about the dataset
as a whole and assess the model’s effectiveness in capturing general trends in the data.
Although individual-level predictions are indeed valuable in further contexts, our current
study is designed to contribute insights into collective behaviors and trends related to the
predictive task at hand.

5. Conclusions

We focused on the prediction of well-being factors, namely stress, anxiety, and positive
and negative affect, using the Tesserae dataset collected from office workers. We answered
three research questions related to digital biomarkers affecting these factors (RQ1), their
alignment with the conventional psychology literature (RQ2), and time-based performances
of applied methods (RQ3).

We found similar modality rankings for each target variable. Even though we are
working on prediction problems rather than classification, these findings align with the
one-factor stress classification results after imputing missing values [36].

In addition, we validated our findings by examining the conventional psychology
literature where there is no wearable device usage. We found that device-measured modal-
ities aligned with the paper-based studies. Furthermore, we found that we achieve better
prediction performances when we consider the time aspect of the data. In particular, LSTM
performs the best compared to other ensemble algorithms.

Our study’s findings reveal the potential for these models to play a significant role in
various practical applications. These include early interventions and support to monitor
and address periods of heightened stress and anxiety. Moreover, these models could facili-
tate continuous mental health monitoring through wearable devices, offering individuals
valuable insights into their well-being. In workplace settings, integrating these models
into well-being programs can help manage stress and anxiety levels among employees,
contributing to healthier and more productive work environments. At a broader level, our
models offer data-driven insights that can inform public health initiatives, educational
programs, and policy decisions geared toward addressing mental health challenges. How-
ever, it is crucial to emphasize that implementing these models in real-world scenarios
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requires thorough validation, ethical considerations, and careful integration. Additionally,
a more in-depth discussion on the limitations, challenges, and ethical aspects of apply-
ing predictive models to mental health prediction would be a valuable complement to
our study.

There are also limitations of this study that we want to enhance in further studies.
We are constantly working on the available data points by excluding missing ones. Since
this amount is vast, their imputation might help to improve precision and may lead to
better performances. Also, even though we considered person-based splitting during the
train-test split, we did not consider a personalized approach during the analysis. In the
future, we are planning to integrate the personalization aspect into the analysis.
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