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Abstract: Color face images are often transmitted over public channels, where they are vulnerable
to tampering attacks. To address this problem, the present paper introduces a novel scheme called
Authentication and Color Face Self-Recovery (AuCFSR) for ensuring the authenticity of color face
images and recovering the tampered areas in these images. AuCFSR uses a new two-dimensional
hyperchaotic system called two-dimensional modular sine-cosine map (2D MSCM) to embed au-
thentication and recovery data into the least significant bits of color image pixels. This produces
high-quality output images with high security level. When tampered color face image is detected,
AuCFSR executes two deep learning models: the CodeFormer model to enhance the visual quality of
the recovered color face image and the DeOldify model to improve the colorization of this image. Ex-
perimental results demonstrate that AuCFSR outperforms recent similar schemes in tamper detection
accuracy, security level, and visual quality of the recovered images.

Keywords: hyperchaotic systems; fragile watermarking; deep learning models; tamper detection;
self-recovery; color image authentication

1. Introduction

Nowadays, the communication of digital images between people has become both
fast and easy thanks to the use of modern communication channels. However, this com-
munication is not always reliable, as the communicated images can be subject to modifica-
tion/editing attacks during their transmission. These attacks can cause serious issues for
individuals and institutions when unauthorized persons manipulate images of sensitive
content, such as medical and military images. Indeed, for medical image, even a minimal
change in the image’s content can lead to an erroneous judgment from the doctor [1], which
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in turn can lead to harmful consequences on the patient’s health. As well, face images
can be subject to manipulation and tampering during their transmission through different
communication channels. There are many tools and software that can be easily used by
users, including non-professional ones, to manipulate facial images. The tampered face
images can then be misused for diffusing fake news and misinformation [2]. Fragile wa-
termarking is an excellent method that can be used to protect the authentication of digital
images communicated via the Internet. It is designed to be easily destroyed or corrupted
by any unauthorized modifications to the image, making it a good way to detect tampering.
Recent fragile watermarking schemes [3–6] not only detect the tampered areas with high
accuracy, but also recover damaged pixels of the tampered areas.

To accurately locate tampered image by fragile watermarking schemes, a watermark
is embedded into the host image. The watermark is a unique identifier that can be used
to identify the original image and detect tampering. The recovery data is also embedded
into the host image. The recovery data can be used to restore the original image if it has
been tampered with. Both the watermark and recovery data are usually embedded into the
least significant bits (LSBs) of the host image pixels. LSB-based watermarking is considered
efficient in terms of computational complexity and provides good imperceptibility, meaning
that the watermarked image is visually indistinguishable from the original image [3,7].

Fragile watermarking methods can be divided into two types: block-based and pixel-
based [8]. For pixel-based watermarking schemes, the watermark and the recovery data
are inserted into individual pixels of the host image [9]. While, for block-based water-
marking [3,4,8,10], the host image is subdivided into small-sized blocks (i.e., 2× 2 or 3× 3).
Then, the watermark bits and the recovery data are embedded into these blocks. In the
block-based watermarking, each block consists of a number of pixels. If only one pixel from
this block is tampered with while the others are not, all the block pixels are considered
as tampered data [9]. This problem leads to a lower accuracy in the tamper detection
rate. To overcome this problem, pixel-based watermarking schemes can be involved as
these schemes detect the tampered areas from the image pixels, which guarantees a high
accuracy rate of such schemes. Another problem related to the image authentication based
on fragile watermarking is the tampering coincidence problem [11]. This problem appears
when the recovery data is corrupted by attackers, which makes it impossible to retrieve
the content of the tampered areas [8]. However, this problem can be solved by using
image inpainting techniques, which aim to replace the tampered image areas with realistic
content [12]. Inpainting of images can be performed using various approaches as described
in [12–14]. Among the existing methods, the deep learning-based ones show very promis-
ing results [13]. Indeed these methods show high performances in recovering corrupted
data of small holes in low-resolution images, as well as regular structure shapes [14]. How-
ever, inpainting of complex shaped textures, large-sized irregular holes and high-resolution
images are the main hotspots that deserve special attention in image inpainting techniques
research [14,15]. To overcome this issue, the current paper introduces a new approach
for image inpainting in blind fragile image watermarking. This approach is a part of the
proposed AuCFSR scheme.

AuCFSR scheme initially embeds a binary watermark in the LSB of each RGB image
pixel. This watermark is produced based on the proposed 2D-MSCM, which shows an
excellent hyperchaotic behavior and superiority over other recent hyperchaotic maps. Next,
2D-MSCM is used to securely embed the recovery data into the two LSBs of each image
pixel. This recovery data is extracted from the MSBs of the cover image. Finally, the AuSFR
output image can be safely transmitted over a public communication channel.

To detect tampering areas and recover their contents, AuSFR performs the following
stages. The first consists in locating the tampered regions in the protected image. For this
task, the watermark bits are extracted from this image and compared to the original binary
chaotic watermark that is constructed by 2D-MSCM. After detecting the tampered regions,
they are removed (replaced with zero values) from the tampered image, which avoids the
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tampering coincidence problem. Then, 2D-MSCM is used to generate the recovery image
from the non-tampered image regions in order to fill in the cropped areas.

Considering that each RGB pixel in the recovery image is represented by 5 MSBs in
our scheme, while 19 bits of this pixel are missing. The reason for this limitation is the
proposed approach’s capacity to insert only 5/24 bits per pixel (bpp) of the recovery data.
To enhance the quality of the self-recovered image, the proposed AuSFR implements a
post-processing phase. In this phase, two deep learning models are utilized. The first
one, called CodeFormer [16], is a pre-trained face prediction network. The second model,
called DeOldify [17], is an open-source model used for automatic image colorization. Both
models contribute to improving the visual quality and color of the recovered image. To
demonstrate the validity of our scheme, it is applied to color face images, which contain
critical details (nose, eyes, etc.). Nevertheless, the framework presented in this paper
remains applicable to generic color images. The major contributions of this work can be
highlighted as follows:

• Introducing a new 2D hyperchaotic system called 2D-MSCM.
• Analyzing the chaotic behavior of 2D-MSCM and demonstrating its superiority over

similar maps.
• Introducing of a new approach for color face image authentication and self-recovery

(AuCFSR) based on 2D-MSCM chaotic system and deep learning models.
• AuCFSR incorporates the watermark and recovery data into 2-LSB of the cover image,

which ensures high visual quality of the AuCFSR output image.
• The suggested 2D-MSCM ensures the high security level of the proposed AuCFSR, as

its security keys are very sensitive to any variation by +/−10−15.
• AuCFSR is a pixel-based system, which guarantees a high precision in tampering

detection process.
• The use of deep learning models in the post-processing leads to improving the visual

quality of the recovered color face image.
• To the best of our knowledge, AuCFSR is the first authentication and self-recovery

scheme designed for color face images.

The rest of this work is organized as follows. The second section outlines the related
work. The third section presents the proposed 2D-MSCM and its analysis. The fourth
section presents a detailed description of the proposed AuSRCF scheme. The fifth sec-
tion presents simulations and comparative analyses that demonstrate the effectiveness of
our approach.

2. Related Work

This section presents a brief literature review of image tampering detection with self-
recovery schemes. The related works are summarized in Table 1, which includes the main
characteristics of the related work schemes. These characteristics include the development
domain of the application scheme (spatial, transformed, or hybrid), the data embedding
method (block-based/pixel-based), the data embedding locations in the input image pixels
with a depth of 8 bits, the input scheme image category (gray scale, color, etc.). Other
important features of the reported work are also presented, including the handling of the
image coincidence problem, the analysis of the security level, as well as the integration of
deep learning techniques.
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Table 1. Related work concerning image tampering detection and self-recovery schemes with
their characteristics.

Scheme’s
Reference

Spatial/
Transform

Domain

Block/Pixel-
Based

Embedding
Data Position
(8 Bit Deep)

Image
Category

Addressing
the Tamper

Coincidence
Problem

Analysis of
the Security

Level?

Use of Deep
Learning

Techniques?

Aminuddin
et al. [3] Spatial Block-based 2-LSB Color Yes No No

Aminuddin
et al. [4] Spatial Block-based 2-LSB Color Yes No No

Molina-Garcia
et al. [8] Spatial Block-based 2-LSB Color Yes No No

Tong et al. [18] Spatial Block-based 3-LSB Color No No No

Singh et al. [19] DCT
Transform Block-based 3-LSB Grayscale/Color Yes No No

Cao et al. [20] Spatial Block-based 2-LSB Grayscale Yes No No

Tai et al. [21] DWT
Transform Block-based 2-LSB Grayscale Yes Yes No

Fan et al. [22] Spatial Block-based 2-LSB Grayscale No No No

Bolourian
Haghighi
et al. [23]

LWT transform Block-based 2-LSB Grayscale/Color No No No

Li et al. [24] Spatial Block-based 2-LSB Grayscale No No No

Al-Otum
et al. [25]

Hybrid (spatial
and DWT
transform)

Block-based 2-LSB Color Yes No No

Su et al. [26] Spatial Block-based 2-LSB Medical
Grayscale Yes No No

Rezaei et al. [27] DCT
Transform Block-based 2-LSB Grayscale No No Yes

Proposed Spatial Pixel-based 2-LSB Color
Face image Yes Yes Yes

From Table 1, we can conclude that the majority of the presented schemes are imple-
mented in the spatial domain [3,4,8,18,20,22,26,27] in preference to the transform or the
hybrid domains [19,21,23,25,27]. Indeed, the spatial domain is preferable for designing
schemes of reduced complexity that can be easily implemented and quickly executed.
On the other hand, the transform domain is more appropriate for designing schemes of
good robustness to various attacks (filtering, noise, cropping, compression, etc.). These
properties are desirable for image copyright protection based on robust watermarking and
zero-watermarking schemes. In image tampering detection schemes, any small change in
the image pixels due to manipulations (filtering, compression, etc.) should be considered as
a tampered image. For this reason, the spatial domain is more suitable because the image
pixels are directly manipulated in the spatial domain via fragile watermarking schemes.

The literature review also shows that existing schemes divide the input image into
non-overlapping small-sized blocks and then conduct the image watermarking, tamper
detection and image recovery processes based on these blocks. The decomposition of the
input image into a set of blocks is generally carried out to reduce the complexity of the
algorithms and to carry out the image transformation. However, the subdivision of the
input image into blocks leads to visual blocking artifacts in the reconstruction of these blocs
in the transform domain [28]. Furthermore, if only one pixel in the block is tempered by
unauthorized persons, the other block pixels are considered as tampered one, resulting in a
significant false positive detection problem [3]. These issues should be considered when
designing new schemes authentication and self- recovery schemes.
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Table 1 also shows that the authentication and recovery data are often inserted into
the first 2 (or 3) LSBs of the image pixels or into the transformation coefficients. This
is evident because changing the pixels/coefficients LSBs results in a minor degradation
in the host image imperceptibly. Indeed, the average of the peak signal-to-noise ratio
(PSNR) criterion of the [3,4,20–23,25–27] schemes results in watermarked images with a
PSNR greater than 44 dB by changing the first 2 LSBs. However, by changing 3 LSBs
(or more) results in a decrease in the PSNR values of the output image, as in the case of
the schemes [18,19], which lead to achieve watermarked images with PSNR values less
than 40 dB via the modification of 3 LSBs. Also, the tampering coincidence problem is
often taken into account when designing recent schemes [4,25,26] as the recovered image
should not contain visual information from tampered areas. Furthermore, this problem
is aggravated when the tampered area is of high proportion [3,4]. This problem should
therefore be a focus in the conception of new tampering detection and recovery algorithms.
The literature review also shows that an important aspect, namely the security standard,
is even neglected or insufficiently addressed in existing schemes, which can make such
schemes vulnerable to cyber-attacks. Thus, when designing new schemes, the security
aspect should be one of the main concerns in image tampering detection and self-recovery.

The great development in deep learning techniques and the outstanding achievements
of these techniques in various fields lead researchers to consider the ways of how to effi-
ciently integrate these techniques in image tampering detection and self-recovery. Recently,
Rezaei et al. [27] have successfully integrated a deep learning model into image tampering
detection and self-recovery application. In the authors work, a CNN model, namely VGG-
16 network is used for generating the watermark bits for image authentication. Moreover,
a CNN-based End-to-End compression framework [29] is used to compress the recovery
data with possible improvements in the recovered image quality. However, the authors
scheme suffers from the problem of the relatively inaccurate detection of the tampered
areas, because this scheme is “block-based” with the size of each block is 16× 16, which
can lead to high false positive rate problem. In addition, the security scheme analysis is not
provided in this paper.

To overcome the limitations of existing image tamper detection and self-recovery
schemes, the present work proposes a new scheme for color face image tampering detection
and self-recovery, which exhibits the following advantages:

• The proposed scheme is pixel-based, which can provide high accuracy in detecting
the tampered areas. Therefore, an improvement in the tampering detection accuracy
is expected by using the proposed scheme.

• The proposed method integrates the watermark and recovery data into 2 LSBs of each
pixel. Therefore, our method ensures low degradation of the host image.

• Our scheme uses the pseudorandom property of the proposed 2D-MSCM to construct
the watermark data and to embed the latter with the recovery data into the input
image. In addition, the chaotic property of 2D-MSCM is exploited to overcome the
problem of tampering coincidence. To the best of our knowledge, this is the first
exploitation of chaotic systems in overcoming this problem.

• The proposed scheme involves a post-processing stage that relies on pre-trained
deep learning models for improving the recovered image quality. Therefore, an
improvement in the quality of the recovered image is expected via our scheme over
the latest state-of-the-art schemes.

• The performance of our system is illustrated by its application to the tampering
detection and self-recovery of color face images. To the best of our knowledge, this
is the first attempt to address such specific problem in the image authentication and
self-recovery application.

• The robustness of the provided scheme against brute force attacks and the sensitivity
of the security keys are investigated to prove its high level of security.
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3. Novel 2-D Discrete Hyperchaotic Map and Its Analysis

This section presents a novel 2D discrete hyperchaotic map called modular sine-cosine
map (2D-MSCM), which exhibits great dynamical characteristics and features. The states of
the proposed map govern the following mathematical model ( f2D-MSCM(ε, β, c)) described
in Equation (1).

f2D-MSCM(ε, β, c) =
{

x(n + 1) = [ε. sin(π(x(n) + y(n)). cos(c/x(n)) + β.x(n)]mod(1)
y(n + 1) = [ε. sin(π.x(n)). cos(c/y(n)) + β.y(n)]mod(1)

(1)

where, x(n), y(n) are the chaotic state variables of the map, ε, β, c are the control param-
eters, n is the iteration number, and mod(.) is the modulo operation symbol. For any
strong chaos-based cryptographic method, the chosen chaos should have stable perfor-
mance which is devoid of periodic regions, low chaotic degree, low complexity, uneven
coverage of state-space of its attractors. To performance of the proposed map is assessed
through Lyapunov exponents analysis, bifurcation behavior, and phase attractors. The
proposed map is also compared with two recently investigated 2-D discrete hyperchaotic
map such as 2D-SLIM ( f2D-SLIM(a, b)) [30], and 2D-HCM [31] ( f2D-HCM(r, h)). These two
selected 2D chaotic maps have shown their superiority against many other existing
two-dimensional discrete chaotic maps. The 2D-SLIM and HCM chaotic maps have the
following Equations (2) and (3), respectively.

f2D-SLIM(a, b) =
{

x(n + 1) = sin(b.y(n)). sin(50/x(n))
y(n + 1) = a.

(
1− 2.x2(n)

)
sin(50/y(n))

(2)

where (a, b) ∈ (0,+∞) represent the 2D-SLIM control parameters.

f2D-HCM(r, h) =
{

x(n + 1) = sin(h.π/sin(y(n)))
y(n + 1) = r. sin(π.x(n).y(n))

(3)

where r and h are the 2D-HCM control parameters.

3.1. Lyapunov Exponents

The Lyapunov exponent (LE) is a numerical metric employed to assess the level of
chaotic degree in a dynamic system. It is widely recognized as a means to describe the
divergence between two trajectories originating from infinitesimally close initial points [8].
The presence of a positive value for the Lyapunov exponent signifies the existence of chaos
between two trajectories, as it leads to exponential divergence of the trajectories over time,
regardless of their initial state. This characteristic of unpredictability results in a greater
exhibition of chaotic behavior in the system when the value of the Lyapunov exponent
is higher [32]. The Lyapunov exponent spectrums of the three 2D chaotic maps under
examination are shown in Figure 1 for their different control parameters. As seen in the
plots in Figure 1, all three chaotic maps have both exponents higher than zero, indicating
their hyperchaotic behavior. Figure 1d presents the LE behavior of the proposed map
for simultaneous variation in parameters β and c. However, as mentioned, higher value
of LE corresponds to the higher chaotic degree, higher sensitivity and complexity of the
map. The proposed hyperchaotic map has higher values of both LEs (shown in Figure 1a)
compared to the LEs of 2D-SLIM (shown in Figure 1a) and 2D-HCM(shown in Figure 1b)
maps for both control parameters. 2D-SLIM and 2D-HCMmaps have proven their better
credibility and performance over many chaotic maps of similar dimension. Readers are
advised to refer to Refs. [30,31]. Thus, the proposed hyperchaotic map exhibits better and
higher chaotic degree and sensitiveness than many recently investigated two-dimensional
chaotic maps.
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3.2. Bifurcation Behaviour

The method of bifurcation analysis is employed to measure the extent of chaotic
behavior in nonlinear dynamic systems versus specific system parameter. This analysis
depicts the sensitiveness of system to control parameters. A change in these parameters
can result in a transition from fixed to chaotic behavior, which is marked by increased



Sensors 2023, 23, 8957 8 of 35

randomness in the system outputs. This transition is referred to as a bifurcation. Bifurcation
diagrams are used to graphically depict the chaotic behavior of the system [32]. The
bifurcation analysis of the proposed hyperchaotic map for control parameters β and c
is simulated and behavior is shown in Figure 2. The similar behavior is observed for
higher values of both the parameters. Figure 2 evidently displays the non-existence of any
discontinuities or periodic windows for both state variables versus both the parameters.
Means, the proposed hyperchaotic map has pretty well bifurcation characteristics as needed
for strong chaotic systems.
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3.3. Phase Attractors

Figure 3 represents the phase diagram to provide an illustration of the coverage of the
chaotic attractor of the proposed map. It is crucial to analyze the chaotic attractor in order
to gain a comprehensive understanding of the dynamic behavior of chaotic maps [31]. The
complex and uniform coverage of complete state-space by the proposed 2D hyperchaotic
map indicates its strong and stable performance.
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The excellent chaotic behavior of the proposed 2D-MSCM makes it suitable for use in a
new chaos and deep learning-based scheme for face tampering detection and self-recovery.

4. Proposed Scheme for Color Face Image Authentication and Self-Recovery

Tampered images are often created using a combination of image editing techniques to
produce new and different images. The process of image tampering involves substituting
a content within a specific area of the original image with other new content [33]. Image
tampering can be performed by using different methods including the copy-move tampering
where a region of an original image is copied and pasted onto another region of the same
image [34]. Cut-and-paste image tampering where a region of an image is copied and then
pasted onto another image [35]. Image cropping is the process of removing unwanted parts
of an image, such as the background, facial features, or other objects [36]. Face swapping
is the process of replacing one face with another in an image or video. In recent years,
the popularity of face swapping has surged, primarily due to advancements in machine
learning algorithms [37]. Cyber attackers can use face swapping to trick identification or
authentication systems and gain unauthorized access [38].

The image tampering attacks discussed above can be applied to color facial images for
a variety of purposes, in particular malicious ones. In order to prevent color facial images
from being misused by tampering attacks, fragile image watermarking technique can be
employed. The latter is designed to detect any minor modification to the authenticated
image. This makes it ideal for detecting image tampering attacks [8,18,39].

In this section, a color face image authentication and self-recovery application is
introduced in to detect tampered color face images and reconstruct the tampered regions.
The proposed application consists of two consecutive phases. The first one is executed at
the transmitter side. This phase involves the use of 2D-MSCM for generating the color
watermarked image that contains the self-recovery data. Then, the latter is transmitted to
the receiver through an unsecured communication channel as the Internet. At the receiver
level, the second phase of the proposed application is executed. This phase consists initially
in detecting the tampered areas within the received image. Then, removing (cropping) the
detected tampered zones from the received image. Next, the recovery image is generated
by using a proposed algorithm. Finally, the recovery image is fused with the one containing
the cropped areas to generate the recovered image. It should be noted that the proposed
application requires the use of symmetrical security keys by both the sender and the
receiver. These keys represent the control parameters and the initial values of the 2D-
MSCM. Such keys can be transmitted through a reliable communication channel such as
the short messaging service (SMS). Therefore, our application can guarantee a high degree
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of privacy and security. Figure 4 shows the general flowchart of the proposed application
and its detailed phases are outlined in the next subsections.
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4.1. 2D-MSCM-Based Color Image Fragile Watermarking

In order to detect tampered zones within publicly shared images via the Internet, our
method consists in including a chaos-based digital signature (watermark) in the original
image before it is transmitted over the Internet. For this end, the steps presented in Figure 4
are followed, and detailed specifications of these steps are provided below.

Step 1: This step consists in generating a chaotic-based binary image for use as a secret
key to be embedded into the host image. For this, the proposed 2D-MSCM (Equation (1))
is used to produce two chaotic sequences noted X and Y each of size L = N ×M where
N ×M is the host image dimensions. Next, X and Y are binarized as follows:

Xb(i) =
{

0 for X(i) < Th1
1 for X(i) ≥ Th1

∣∣∣∣ i = 0, 1, . . . , L (4)

Yb(j) =
{

0 for Y(j) < Th2
1 for Y(j) ≥ Th2

∣∣∣∣ j = 0, 1, . . . , L (5)
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Here Th1 and Th2 represent the average values of X and Y sequences, respectively.
Step 2: Apply the bitwise exclusive OR operator (XOR) operator to Xb and Yb to

generate WB vector as follows:

WB = XOR(Xb, Yb) (6)

The resulting WB vector is then reshaped into 2D N ×M binary matrix, which repre-
sent the watermark image noted W.

Step 3: This step consists in splitting the input color image into three RGB channels.
Then, one of the latter (i.e., B channel) is selected for W image embedding.

Step 4: This step consists in substituting the last significant bit (LSB) of the selected
channel’s pixels by W image bits. Figure 5 shows an illustration of LSB-based color image
watermarking process and Algorithm 1 describes this process.

Algorithm 1. LSB-based color face image watermarking.

Inputs
W: Binary watermark of size N ×M generated by the proposed 2D chaotic map
I: Input color image of size N ×M× 3

Output WI: The watermarked color image

//Splitting the input I image into three color image channels
1. Get the red channel (R) of the input image (I)
2. Get the green channel (G) of the input image (I)
3. Get the blue channel (B) of the input image (I)
4. Set the first LSBs of B to W bits, which generates B* channel

//Generating the watermarked color image (WI)
5. WIN×M×1 = R
6. WIN×M×2 = G
7. WIN×M×3 = B*
8. Return WI
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It should be mentioned that the symbol “//” indicates a comment in the algorithms.

4.2. Self-Recovery Data Embedding

This phase consists in integrating secure data into the watermarked image (WI). These
data are useful to recovering the significant visual information of the watermarked image
from the tampered one. Figure 6 shows the proposed process for embedding the recovery
data. The key steps of this process are presented below.
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Step 1: This step consists in extracting the most significant two bits of the watermarked
image channels (R and G) to create two binary matrices each of size 2× N ×M denoted Rb
and Gb, respectively. Moreover, the MSB of B channel is extracted to produce Bb binary
matrix of size N ×M.

Step 2: This step is conducted to generate two chaotic sequences noted X and Y each of
size M (if M > N) by using the proposed 2D-MSCM model. Next, the produced sequences
coefficients are rounded to integer values as follows:

Xc(i) = bX(i)× Nc with i = 1, 2, . . . , N
Yc(j) = bY(j)×Mc with j = 1, 2, . . . , M

(7)

where b.c is the floor function.
Step 3: The objective of this step is to confuse the elements of Rb, Gb and Bb matrices

via Algorithm 2.

Algorithm 2. Proposed 2D-MSCM based confusion Algorithm.

Inputs:
Xc: Confusion vector of size 1× N generated based on 2D-MSCM
Yc: Confusion vector of size 1×M generated based on 2D-MSCM
I: 2D matrix of size N ×M

Output: CI: The confused version of I matrix

1. for i = 1 to N do
2. Get Xci value, which is the i-element in Xc vector

3.
I∗ i,M = CircShift (Ii,M , Xci)//where CircShift (Ii,M , Xci) is a left circular shifting function
operation, which shifts the elements of i-row in I matrix by Xci positions.

4. end for
5. for j = 1 to M do
6. Get Ycj value, which is the j-element in Yc vector

7.
I∗∗N,j = CircShift (I∗N,j, Yci)//where CircShift (I∗N,j, Yci) is a left circular shifting

operation, which shifts the elements of j-columnin in I∗ matrix by Yci positions.
8. end for
9. for i = 1 to N do

10. Get Xci value, which is the i-element in Xc vector
11. CIi,M = CircShift (I∗∗ i,M , Xci)
12. end for
13. Return CI
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Figure 7 shows Rb, Gb and Bb matrices extracted from “Face” image of size 1024× 1024
that is selected from real faces dataset [40]. This dataset that t is publicly available for
download contains a collection of 70,000 high-resolution facial images of people from
all over the world. The dataset was created by collecting images from the internet and
filtering them to remove duplicates and low-quality images. Then, Algorithm 2 is used
for scrambling these matrices, which produce the confused versions of the input matrices
labeled Rb*, Gb* and Bb*, respectively.
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Figure 7. (a) Color “Face” image of size 1024 × 1024 and the first row of (b–d) are Rb, Gb and Bb
recovery data obtained from the MSBs of R, G and B channels, respectively, while the second row is
their scrambled versions (Rb*, Gb* and Bb*) obtained by using Algorithm 2.

From Figure 7, it is observed that the suggested Algorithm 2 entirely masks the visual
information of the input image and randomly distributes its visual information whining
the whole image area. Therefore, the current stage is designed to strengthen the security
level of the proposed scheme and improve its robustness against cropping attacks. Indeed,
Figure 8 shows the “Face” image R-channel, which is cropped with different occlusion rates.
Then, the reverse operation of the confusion (see Step 3 of Algorithm 5) is applied to the
cropped-confused image. This figure shows that the visual information of the entire face
remains accessible despite the serious degradation of the confused image by the cropping
attack. This important chaos-based property will be exploited in our work to inpainting
the tampered face image after removing the tampered regions.
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Step 4: This step consists in inserting Rb*, Gb* and Bb* matrices into the LSBs of the
watermarked image (WI) channels by using the procedure described in Algorithm 3.

Algorithm 3. Proposed Algorithm for the recovery data embedding into the LSBs of the watermarked
image channels.

Inputs:
Rb*, Gb*, and Bb*: three binary matrices of size N ×M× 2, N ×M× 2 and N ×M, respectively
WI: Watermarked color image of size N ×M× 3

Output: WI*: Watermarked color image with embedded self-recovery data

//Splitting WI image into three color image channels
1. Get the red channel (RW) of WI image
2. Get the green channel (GW) of WI image
3. Get the blue channel (BW) of WI image
4. Get the first layer, noted R1, of the Rb* matrix
5. Get the second layer, noted R2, of the Rb* matrix
6. Get the first layer, noted G1, of the Gb* matrix
7. Get the second layer, noted G2, of the Gb* matrix
8. Set the 1-LSBs of the RW pixels to R1 bits
9. Set the 2-LSBs of the RW pixels to R2 bits, which generates RW* channel

10. Set the 1-LSBs of the GW pixels to G1 bits
11. Set the 2-LSBs of the GW pixels to G2 bits, which generates GW* channel
12. Set the 2-LSBs of the BW pixels to Bb* bits, which generates BW* channel

//Generating the watermarked color image with the self-recovery data (WI*)
13. WI*N×M×1 = RW*
14. WI*N×M×2 = GW*
15. WI*N×M×3 = BW*
16. Return WI*

Once Algorithm 3 is executed, the host image can be safely transmitted to a receiver
through an insecure communication network.

4.3. Blind Detection of the Tampered Areas

The present phase is performed at the receiver side for blindly checking the authenti-
cation of the received image and accurately localizing the tampered zones in this image.
The next steps are designed for this purpose.

Step 1: In this step, W binary watermark is reproduced by identical manner to that
outlined in Step 1 of Section 4.1. It should be noted that at this stage, the receiver must use
a symmetric security key to the one used by the transmitter for correctly generate W image.

Step 2: The aim of this step is to accurately localize the tampered regions within the
received image by executing the proposed Algorithm 4.

Algorithm 4. Proposed algorithm for localizing the tampered areas within the received image.

Inputs:
W: Binary watermark of size N ×M generated via the proposed 2D-MSCM.
RI: Received color image of size N ×M× 3

Outputs:
TZ: Binary matrix that represents the tampered regions (pixel positions) within the RI image
TZ_NOT: The logical NOT of TZ matrix

//Splitting WI image into three color image channels
1. Get the red channel (R) of RI image
2. Get the green channel (G) of RI image
3. Get the blue channel (B) of RI image
4. Get the first LSB values of B channel and then save these values in WI* matrix.

5.
T = XOR(WI*,W)//where the symbol “XOR” denotes the Bit-wise XOR operation between
two binary inputs

6.
TZ = IMCLOSE(T,3)//where IMCLOSE(TZ,3) function [41] performs the morphological
closing with radius of 3 pixels on T binary image.

7.
TZ_NOT = NOT(TZ)//where NOT (TZ) operator performs the logical NOT of TZ
logical input

8. Return TZ, TZ_NOT
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4.4. Cropping the Detected Tampred Zones Withing The Received Image

This phase consists in removing the tampered regions for avoid the tamper coincidence
problem and then substituting these regions by using the recovery data. To this end, the
next steps are involved.

Step 1: This step consists in eliminating the detected tampered regions from the
received image as follows:

RI_crop = RI.∗TZ_NOT (8)

where “.∗” represents the Hadamard product (element–wise multiplication), TZ_NOT is
the logical NOT of TZ binary matrix (see Algorithm 4) and RI_crop represents the RI image
after cropping (zeroing) the tampered zones.

4.5. Self-Recovery Image Generation

This phase is implemented to generate the self-recovery image that will used for
replacing the cropped zones in RI_crop image. To achieve this goal, the next steps
are executed.

Step 1: Use Algorithms 5 and 6 for generating the self-recovery image of size N ×M× 3.

Algorithm 5. Proposed algorithm for generating the self-recovery image.

Inputs:

RI_Crop: Received image of size N ×M× 3 with cropped tampered zones
TZ: The logical matrix of the tampered zones
Xc: Confusion vector of size 1× N
Yc: Confusion vector of size 1×M

Output: SRI: Generated self-recovery image of size N ×M× 3

1. Get the red channel (R) of RI_Crop image
2. Get the green channel (G) of RI_Crop image
3. Get the blue channel (B) o of RI_Crop image
4. Get the first LSB values of R channel and then save these values in R_c1 matrix
5. Get the second LSB values of R channel and then save these values in R_c2 matrix
6. Get the first LSB values of G channel and then save these values in G_c1 matrix
7. Get the second LSB values of G channel and then save these values in G_c2 matrix
8. Get the second LSB values of B channel and then save these values in B_c2 matrix.

9.
Perform the inverse confusion process for R_c1 matrix using Inv_confusion function described
in Algorithm 6 to get R1 matrix

10.
Perform the inverse confusion process for R_c2 matrix using Inv_confusion function to get
R2 matrix

11.
Perform the inverse confusion process for G_c1 matrix using Inv_confusion function to get
G1 matrix

12.
Perform the inverse confusion process for G_c2 matrix using Inv_confusion function to get
G2 matrix

13.
Perform the inverse confusion process for B_c2 matrix using Inv_confusion function to get
B2 matrix
//The following steps are implemented for generating the self-recovery image

14. SRI_R1 = R1.*TZ//where the symbol “.*” represents the Hadamard product operation
15. SRI_R2 = R2.*TZ
16. SRI_G1 = G1.*TZ
17. SRI_G2 = G2.*TZ
18. SRI_B2 = G2.*TZ
19. Create an N ×M× 3 matrix, noted SRI, of zero values represented on 8 bits
20. Set the 7-MSBs of the first SRI layer to SRI_R1 binary matrix
21. Set the 8-MSBs of the first SRI layer to SRI_R2 binary matrix
22. Set the 7-MSBs of the second SRI layer to SRI_G1 binary matrix
23. Set the 8-MSBs of the second SRI layer to SRI_G2 binary matrix
24. Set the 8-MSBs of the third SRI layer to SRI_B2 binary matrix
25. Return SRI
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Algorithm 6. Proposed inverse confusion algorithm (Inv_Confusion) based on 2D-MSCM.

Inputs:
Xc: Confusion vector of size 1× N generated based on 2D-MSCM
Yc: Confusion vector of size 1×M generated based on 2D-MSCM
CI:Confused 2D matrix of size N ×M

Output: I: The inverse confused version of CI matrix

1. for i = 1 to N do
2. Get Xci value, which is the i-element in Xc vector
3. CI*i,M= CircShift (CIi,M , −Xci)
4. end for
5. for j = 1 to M do
6. Get Ycj value, which is the j-element in Yc vector
7. CI**N,j = CircShift (CI*N,j,−Ycj)
8. end for
9. for i = 1 to N do

10. Get Xci value, which is the i-element in Xc vector
11. Ii,M = CircShift (CI**i,M ,−Xci)
12. end for
13. Return I

Step 2: This step consists in producing the recovered image (Rec) as follows:

Rec = RI_Crop + SRI (9)

where RI_Crop represents the RI after cropping the tampered zones and SRI is the self-
recovered image. It should be noted that each RGB pixel in the SRI image is generated
from only 5 bits, while 19 bits of this RGB pixel still missing (Figure 6). Therefore, a post-
processing phase is necessary to improve the quality of Rec image. It is also noteworthy
that Algorithms 5 and 6 are considered as inpainting tools in our framework, as they allow
filling the cropped areas in Rec image.

4.6. Deep Learning-Based Post-Processing of the Recovered Image

The current phase is designed to improve the visual quality of the recovered image
(Rec). To this end, two consecutive post-processing steps are undertaken. The first one,
consists in filling the zero-valued pixels in Rec image. To this end, zero values are replaced
by neighboring Rec image values. The second step involves the use of a pre-trained deep
learning models, which are used to refine and improve the visual quality of Rec image.

For improving the visual quality of the recovered image, it goes through a post-
processing stage where deep learning models are deployed. Indeed, the pretrained Code-
Former [16] model is initially used with its default parameters [42] to improve the visual
quality of the recovered image. This model was originally designed for blind restoration
of natural face images from heavily degraded ones. To improve the colorization of the
output image of CodeFormer model, we use the DeOldify [17] model. This model is an
open source fully automatic colorization method created by Jason Antic. The full code of
this model is available in [17]. It is an End-to-End CNN-based model that yields impressive
image and video colorization results. It is important to note that the proposed scheme
currently uses the default parameters of the involved deep learning models. However, in
the future, more focus can be devoted to optimizing the model parameters to improve the
proposed scheme performance.

Figure 9 shows the deep learning-based post-processing phase involved in our scheme.
This phase image is accomplished as follows:
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Step 1: Use the CodeFormer model to improve the visual quality of Rec image. Then,
the output image labeled Rec1 image is used as input of DeOldify model for improving the
colorization of the facial image. Finally, the output image of DeOldify is labeled Rec2.

Step 2: This step consists of cropping the ROI zones, which represent the enhanced
self-recovery image as follows:

Rec_crop = Rec2 .∗TZ (10)

Step 3: In this step, the final recovered image, denoted by Rec_Final, is generated by
merging Rec_crop with RI_crop images as follows:

Rec_Final = Rec_crop + RI_crop (11)

After outlining the functionality of the proposed application, the following section
presents the simulation results achieved by using this application.

5. Simulation Results

This section includes the simulation findings that demonstrate the good performance
of the method. To this end, this section focuses on demonstrating four main aspects related
to the proposed scheme, namely (i) the imperceptibility of the input image after including
the watermark and self-recovery data, (ii) the accuracy of detecting the tampered areas,
(iii) the security level, and (iv) the quality of the self-recovered image. The experiments are
performed using Matlab software implemented on a personal laptop with RAM of 16 GB
and CPU 2.1 GHz.
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5.1. Evaluation of Imperceptibility Performance

The proposed scheme involves embedding the watermark and the self-recovery data
into the input image that leads to certain degradation of this image. Since the proposed
scheme inserts the watermark and the self-recovery data into the 2 LSBs of the input image
channels, it is considered as fragile watermarking scheme. Such schemes typically ensure a
good quality of the watermarked image. To verify this assumption, the present analysis
is conducted.

To quantify the effect of the watermark and the recovery data embedding on the
quality of the host image, PSNR and SSIM (structural similarity index) are used. These
criteria are defined below.

PSNR = 10 log10
P2

1
NM

N−1
∑

x=0

M−1
∑

y=0
[I(x, y)− IW(x, y)]

(12)

where P is the peak value of the host image I(x,y) and IW(x,y) is the resulting image after
embedding the watermark and self-recovery data.

SSIM =
(2µ f µ f ′ + c1)(2σf , f ′ + c2)

(µ2
f + µ2

f ′ + c1)(σ
2
f + σ2

f ′ + c2)
(13)

where σf , f ′ is the covariance between the cover image and its modified version, (µ f , σ2
f ) are

mean and variance of the cover image, respectively, and (µ f ′ , σ2
f ′ ) are those of the modified

image, and (c1, c2) are constant values added to prevent division by zeros.
The mean squared error (MSE) is a common metric used to quantify the difference

between the pixel values of the original image and its modified version. It is calculated
as follows:

MSE =
1

NM

N−1

∑
x=0

M−1

∑
y=0

[
I(x, y)− I′(x, y)

]
(14)

where I is the original image of size N ×M and I′ its modified version.
It should be noted that the degree of degradation in the pixel values between the origi-

nal image and it tampered version can be quantified by using common metrics including
the MSE, PSNR and SSIM [3,43,44].

For performing the current test, we use a set of color face images of size 1024× 1024,
which are randomly selected from [40] dataset. Then, a binary watermark (W) of size
1024× 1024 is generated based on 2D-MSCM where the parameters of the latter are set
to (e, c, b, X0, Y0) = (100, 5, 5, 0.7654, 0.3456). The recovery data are then constructed from
each image and integrated into the host images using the proposed method. Figure 10
shows test images with W image generated by 2D-MSCM. Figure 3 shows the test images
with the corresponding PSNR and SSIM values after incorporating the watermark image
and the recovery data.

The test results provided in Figure 11 show that the embedding of the watermark and
the recovery data slightly reduces the visual quality of the host images. In fact, we can
notice that the values of PSNR and SSIM remain higher than 44 dB and 0.99, respectively, for
all the test images. Therefore, the proposed method provides good performance in terms
of imperceptibility property. This result can be interpreted by the fact that our method
incorporates the data into two LSBs of each pixel, which lead to low degradation of the
input image’s visual quality.
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Figure 11. (a–h) Test images following the embedding of the watermark and the recovery data with
the corresponding PSNR and SSIM values.

5.2. Evaluation of Tampering Detection Rate Performance

This section contains a set of experiments that test the accuracy of the proposed scheme
in detecting the tampered regions within the watermarked image. To evaluate the accuracy
of proposed method for tampering detection, the following criteria are used:

Accuracy =
TP + TN

TP + TN + FP + FN
(15)
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Recall =
TP

TP + FN
(16)

Precision =
TP

TP + FP
(17)

where TP is the true positive value, which indicates the number of the correctly detected
pixels within the tampered zone. FN is the false negative; i.e., the number of undetected
pixels within the tampered area. FP represents the number of the pixels that are incorrectly
detected in the non-altered zone. TN represents the true negative; i.e., is the number of
undetected pixels within the un-tampered area.

To perform the present analysis, the watermarked images shown in Figure 12 are used.
Next, the latter are manipulated by different types of tampering attacks, namely: irregular
shape cropping with different rates, copy-move, and face swab attack. The cropping attack
consists in removing certain areas of an input image. The removed areas are then replaced
by 255 grayscale value. The copy-move attack consists in copying a part of the image
and duplicating the copied part in another location of the same image. The face swap
attack involves replacing the face in an image with another face imported from another
image. Clearly, this attack type is one of the most serious attacks, which can lead to harmful
consequences for victims of such attack. The image cropping and copy-move attacks are
performed with the “Paint” tool of the Windows Operating System (WOS). This tool is
widely used by WOS users for manipulating the digital images. The face substitution attack
is performed via the deep learning-based [45] platform. Matlab software is then used to
copy the face region from the output image of [45] platform into the watermarked image.
For each tampered image, the tampered area is labelled as the ground truth. For each
tampered image, the tampered area is labeled as ground truth. Then, the proposed method
is used to detect the tampered areas within the tampered image. Finally, the criteria given
by Equations (15)–(17) are used for evaluating the performance of our method.

Sensors 2023, 23, x FOR PEER REVIEW 22 of 38 
 

 

 

(a) 

      

(b) 

      

PSNR 36.1345 37.1234 35.3321 34.3321 37.0079 32.6679 

(c) 

      

(d) 

      

Accuracy 0.9998 0.9998 0.9998 0.9998 0.9997 0.9996 

Recall 0.9966 0.9906 0.9919 0.9948 0.9857 0.9971 

Precision 0.9997 0.9993 0.9997 0.9996 0.9997 0.9962 

Figure 12. (a) Watermarked test images of size 1024 × 1024. (b) Images attacked by cropping with 

the corresponding PSNR values. (c) Ground truth binary masks. (d) Detected tampered zones with 

the corresponding accuracy, recall and precision values. 

(a) 

      

(b) 

      

PSNR 38.4456 37.1006 41.0034 36.0098 37.0079 38.9876 

(c) 

      

(d) 

      

Accuracy 0.9999 0.9995 0.9997 0.9995 0.9997 0.9998 

Recall 0.9952 0.9949 0.9817 0.9816 0.9867 0.9926 

Precision 0.9996 0.9895 0.9843 0.9816 0.9968 0.9985 

Figure 12. (a) Watermarked test images of size 1024 × 1024. (b) Images attacked by cropping with
the corresponding PSNR values. (c) Ground truth binary masks. (d) Detected tampered zones with
the corresponding accuracy, recall and precision values.



Sensors 2023, 23, 8957 21 of 35

Figure 12 illustrates the performance of our method in detecting the deleted areas of
irregular geometry. The test results indicate the high efficiency of our method in detecting
the tampered areas with accuracy, precision and recall higher than 99%. This high perfor-
mance can be explained by the fact that our method is designed to detect the tampering
in each pixel of the authenticated image. In addition, Figure 13 show that our method
is able to detect tampered regions by copy-move attack with high accuracy, greater than
99%, which provides a clear indication of the effectiveness of our method in detecting the
copied-moved regions, which are extremely difficult to be sensed by the human vision
system. Furthermore, the results presented in Figure 14 indicate that the proposed scheme
can detect the swapped faces with more than 99% of accuracy. Meanwhile, when using
the human vision system, it is very difficult, if not almost impossible, to detect the fake
faces. It is therefore advisable to integrate the proposed technology into camera-based
smart devices in order to avoid face-swapping attacks that can negatively affect the privacy
of victims.
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Figure 13. (a) Watermarked test images of size 1024 × 1024. (b) Copy-move attacked images with the
corresponding PSNR values. (c) Ground truth binary masks. (d) Detected tampered zones with the
corresponding accuracy, recall and precision values.
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5.3. Evaluation of Image Recovery Performance

The suggested method not only detects the tampered areas in color images with high
accuracy, but also recovers the original information of the tampered regions. For this end,
the current section is devoted to evaluating the performance of our method in recovering the
original data of the tampered areas, especially those of significant proportions. To perform
the current analysis, the watermarked images (Figure 15a) are attacked by removing regions
of these images by of various proportions as shown in Figure 15b, which causes a strong
degradation of the facial shape. After detecting the tampered areas, our method is used
to recover the lost data of such areas. Figure 15c shows the recovered images through our
method before applying the deep-learning based post-processing. This figure indicates
that the proposed method can recover the important visual pattern of the deleted areas
from the face image. This is a clear indication of the effectiveness of the proposed method.
However, the visual quality of the recovered image remains unsatisfactory. By using the
CodeFormer model (Figure 15d), we can notice that the quality of all the recovered images is
improved. This result indicates that the incorporation of this deep-learning model provides
a significant benefit in improving the quality of the recovered images. To further improve
the colorization of the recovered images, DeOldify model is used. From Figure 15e, it can
be seen that the use of this model further improves the quality of the recovered image
by enhancing the face image colorization. From the current analysis, it is clear that the
use of deep-learning models significantly improves the quality of the recovered images.
Accordingly, further investigation is needed in future work to test and compare other
deep-learning models in image tampering detection and self-recovery.
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Figure 15. (a) Watermarked test images of size 1024 × 1024. (b) Attacked images by face removing
with the corresponding cropping proportions and PSNR values. (c) Recovered images by the proposed
method before the post-processing. (d,e) Recovered images after applying the CodeFormer and
DeOldify models, respectively, with the corresponding MSE, PSNR and SSIM values.

In the next test, the performance of our method is tested to recover original images
from attacked ones via swap-face attack of high proportions. The results illustrated in
Figure 16 show the similarity between the recovered images and the original images is
acceptable (SSIM > 0.82), even if the tampering rates of the exchanged faces are important
(>48%). Therefore, our method can be considered as a useful application for detecting and
restoring tampered areas within the significantly distorted images.
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Figure 16. (a) Watermarked test images of size 1024 × 1024. (b) Attacked images by face with the
corresponding PSNR values. (c) Ground truth binary masks. (d) Detected tampered zones with the
corresponding accuracy, recall and precision values.

In the next test, we randomly selected 5000 color face images from the dataset [46] to
further validate the performance of our scheme. The dataset [46] consists of 52,000 PNG
images of faces at 512 × 512 resolution. The images cover a wide range of ages, ethnicities,
and image backgrounds, as well as accessories such as eyeglasses, sunglasses, and hats.
The images were collected from Flickr and automatically aligned and cropped. Figure 17
shows a set of color face images used in the present test.



Sensors 2023, 23, 8957 25 of 35

Sensors 2023, 23, x FOR PEER REVIEW 26 of 38 
 

 

 

     

     

     

Figure 17. Set of color face images with resolution 512 × 512 selected from the dataset [46]. 

In the current test, the selected images are subjected to various attacks mentioned in 

Table 2. The performed attacks are controlled to affect the color faces by a proportion of 

up to 25%. Next, the proposed method is used to recover the face image from the attacked 

ones, and the average of the PSNR values corresponding to all recovered images is re-

ported in Table 2. A set of the original test images, their attacked versions, and recovered 

ones are presented in Figure 18. It should be mentioned that the images in the dataset [46] 

do not belong to the test images used in the training phase of the proposed scheme. 

The results in Figure 18 and Table 3 show that the PSNR values of recovered images 

decrease as the attacked surface area increases. However, the quality of recovered images 

remains good (PSNR > 26). These results confirm that our method is valid for ensuring the 

authenticity of color face images belonging to different races. 

  

Figure 17. Set of color face images with resolution 512 × 512 selected from the dataset [46].

In the current test, the selected images are subjected to various attacks mentioned in
Table 2. The performed attacks are controlled to affect the color faces by a proportion of
up to 25%. Next, the proposed method is used to recover the face image from the attacked
ones, and the average of the PSNR values corresponding to all recovered images is reported
in Table 2. A set of the original test images, their attacked versions, and recovered ones are
presented in Figure 18. It should be mentioned that the images in the dataset [46] do not
belong to the test images used in the training phase of the proposed scheme.

Table 2. Average PSNR values of 5000 recovered color face images from the dataset [46] by using the
proposed scheme.

Attacks
Proportion of Attacked Image Area

5% 10% 15% 20% 25%

Cropping 42.0127 39.3090 36.3278 32.1698 28.1234

Copy-move 43.1398 40.811 35.7809 33.0643 27.1678

Face swapping 42.5678 38.9865 35.1245 31.2236 28.5567

Object addition 43.4567 38.1289 35.4887 32.0097 26.1309

The results in Figure 18 and Table 3 show that the PSNR values of recovered images
decrease as the attacked surface area increases. However, the quality of recovered images
remains good (PSNR > 26). These results confirm that our method is valid for ensuring the
authenticity of color face images belonging to different races.
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Figure 18. (a) Watermarked test images. (b) Attacked images by various attacks with different
proportions and PSNR values. (c) Detected tampered zones. (d) Recovered color face images by our
method with the corresponding PSNR values.

Table 3. Comparison in terms of average accuracy values of the compared schemes in detecting
tampered areas by copy-move attack.

Scheme
Proportions of Copied-Moved Areas

10% 20% 40% 60% 80%

Sc
he

m
es

Proposed 0.9988 0.9983 0.9978 0.9977 0.9976

Aminuddin et al. [3] 0.9852 0.9806 0.9736 0.9719 0.9702

Aminuddin et al. [4] 0.9852 0.9806 0.9736 0.9719 0.9702

Molina-Garcia et al. [8] 0.9516 0.9632 0.9502 0.9703 0.9695

Al-Otum et al. [25] 0.9420 0.9302 0.9455 0.9560 0.9400

Noise can be produced when transmitting images over communication channels. This
noise can be caused by the physical characteristics of the channel, such as the distance
between the transmitter and receiver and the bandwidth of the channel [47]. In the follow-
ing test, the proposed method is evaluated against two types of noise: “Salt-and-pepper”
and “Gaussian”, with different densities. Figure 13 shows the results of the current test,
which show that our proposed scheme can accurately detect the tampered regions in the
watermarked-noised image by salt-and-pepper noise with densities up to 0.06. The recov-
ered images in Figure 19 also have acceptable quality (PSNR > 28). Therefore, our method
can be considered robust against salt-and-pepper noise. However, if the watermarked
image is attacked by Gaussian noise, our method cannot detect the tampered regions
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and therefore cannot recover the color face image. Thus, the proposed method is not
robust to Gaussian noise. This limitation presents an interesting research opportunity for
future work.
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Figure 19. (a) Watermarked test images of size 512 × 512. (b) Attacked-watermarked images by
“Salt-and-pepper” and “Gaussian” noise with various densities. (c) Noised-cropped images with
the corresponding PSNR values. (d) Detected tampered zones with the corresponding accuracy, and
(e) the recovered color face images by our method and their PSNR values.

Salt-and-pepper noise is a type of noise that causes random pixels in a color image to
be set to either 0 or 255 values. This type of noise is often caused by bit errors in digital
transmission. Gaussian noise, on the other hand, is a type of noise that is characterized
by a normal distribution and affects all the image pixels. It is often caused by random
fluctuations in the environment, such as thermal noise. Therefore, the current test results
can be explained by the fact that the proposed method is robust to salt-and-pepper noise
because it is able to identify and remove these pixels from the color face image. However, it
is not robust to Gaussian noise because it is unable to distinguish between Gaussian noise
values and the original image pixel values. Note that the nearly blank image in the last
column of row (d) in Figure 19 indicates that almost all pixels (>99%) in the Gaussian noised
image are considered tampered and are therefore replaced by 1 s in the corresponding
binary mask image. Also, the nearly blank image in the last column of row (e) in Figure 19
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indicates that the recovered color face image pixels are not correctly retrieved and are
therefore replaced by 255 s, resulting in a nearly blank image.

It is important to mention that our method inserts the watermark and recovery data
into the least significant 2 bits (LSBs) of each color face image pixel. The watermark data is
embedded in the 1 LSB of one secret image channel, which makes it difficult for malicious
attacks to forge or remove the watermark without removing the least significant bit of the
entire color face image. To make the proposed method more robust against watermark data
deletion attacks, the watermark data can be inserted into one of the 2 -LSBs of a secret color
face image channel, so that deleting the watermark data is expected when deleting all the
2-LSBs of the three-color image channels. Additionally, the proposed system can be adapted
to use multiple chaotic watermarks, so that if one watermark set is corrupted or lost, the
others can still be used. In addition, the proposed system incorporates a pseudo-randomly
distributed chaotic watermark (Algorithm 1) throughout the image area, making it difficult
to falsify or remove the watermark without seriously damaging the watermarked color
face image.

To make our scheme more robust against malicious attempts to forge or remove the
recovery data, we can use multiple sets of redundant recovery data embedded in the 3-LSBs
of the image channels. This would make it more difficult for an attacker to remove all of the
recovery data without seriously damaging the watermarked color face image. However,
embedding the recovery data in the 3—LSBs of the watermarked image channels can reduce
the image quality by introducing noise-like artifacts. This is especially noticeable in areas of
the image with a lot of detail. In future work, more attention should be paid to developing
methods that can achieve good watermarked image quality while incorporating a large
amount of recovery data.

It is important to mention that the proposed scheme is of low robustness to lossy
compression attacks. This is because it embeds the watermark and recovery data in the
2-LSBs of the image. The latter are the least important bits of an image, and they are often
discarded by lossy compression algorithms [48] in order to reduce the size of the image.
To overcome this limitation, a lossless image compression algorithm can be used before
transmitting the watermarked color face image. Lossless compression algorithms do not
remove any data from the image, so the watermark and recovery data would be preserved.

The previous discussion shows that the proposed scheme is a promising approach to
guaranteeing the authenticity and integrity of color face images. To further demonstrate
the security performance of the proposed scheme, the following evaluation is presented.

5.4. Evaluation of Security Performance

This section presents the experiment finding that demonstrate the security perfor-
mance of the suggested method. For this purpose, two critical aspects related to the security
requirements are investigated, namely the key space and the sensitivity of the proposed
scheme to its security keys.

5.4.1. Key Space Analysis

In this subsection, the key space of our scheme is calculated to show the ability of this
scheme to withstand brute force attacks. The proposed scheme security key is composed of
two parts: the first one is used during the watermark generation phase, and the second
one is created when embedding the recovery data. In each phase, the initial values and
the control parameters of 2D-MSCM are used as components of the security key denoted
KEY = {{Key1}, {Key2}} = {{ε, β, c, x0, y0}, {ε∗, β∗, c∗, x0

∗, y0
∗}} that consists of 10 real

numbers. Given the limited precision of the computer to the order of 10−15, the KEY space
becomes approximately

(
1015)10

= 10150 ' 2494. This size far exceeds the recommended
minimum size of 2100 [49]. Therefore, the proposed system is capable of withstanding brute
force attacks of modern computers.
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5.4.2. Key Sensitivity Analysis

The present analysis evaluates the sensitivity of our scheme to the used security keys.
For this, in the watermarking phase, the security key marked Key1 = {ε, β, c, x0, y0} =
{100, 5, 5, 0.7654, 0.3456} is used in the suggested method to generate the binary watermark
that is embedded into the test images shown in Figure 20a. Then, the watermarked images
are attacked by various attacks (Figure 20b). Subsequently, the proposed method is used
to detect the attacked areas within the watermarked image in two scenarios. The first
one consists in the use of the correct security key (Key1) during the tampering detection
phase (Figure 20d), and the scenario involves using an incorrect security key obtained
through the modification of only one element of Key1 by a variation of the order ±10−15

(Figure 20e). Finally, the proposed method is employed to locate the tampered areas using
the correct security key and the wrong one, respectively. Note that the white color in
Figure 20e indicates that the proposed scheme is highly sensitive to any slight variations in
the security key, and therefore any tampered zone in the input image is localized.
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(d,e) Detected tampered zones with the corresponding accuracy when using the correct security key
and incorrect one, respectively.
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The results of the current tests are shown in Figure 21. This figure illustrates on
the one hand that when the correct security key is used, the tampered areas are de-
tected with high accuracy (>99%). On the other hand, when an incorrect security key
is employed, our scheme is unable to detect the tampered areas since its detection ac-
curacy is close to 0%. These outcomes are a clear indication regarding the high sensi-
tivity of our system to its security keys, which proves the safety level and reliability
of the suggested scheme. To support this finding, the test shown in Figure 21 is per-
formed. In this test, the watermarked images are subjected to tampering attacks. Then,
in the image recovery phase, we use both the correct security key, denoted Key2 with
Key2 = {ε∗, β∗, c∗, x0

∗, y0
∗} = {100, 5, 5, 0.7654, 0.3456} and incorrect keys. The results of

the current test analysis indicate that using the correct security Key2 effectively recovers the
original information of the tainted areas (PSNR > 27). In contrast, when a single parameter
of Key2 is slightly changed by ±10−15 during the data recovery process, the suggested
scheme is unable to recover any useful information of the tampered zones. Therefore, the
use of the proposed system guarantees a high level of security.
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Note that the blank binary mask images in row (e) of Figure 20 indicate that almost
all pixels (>99%) in the attacked watermarked images are considered tampered and are
therefore replaced by 1 s in the corresponding mask images.

5.5. Comparison with Similar Work

This section evaluate the performance of our scheme and in comparison recent color
images tamper detection and self-recovery schemes presented in [3,4,8,25]. To perform this
comparison, 100 test images (Figure 22) are arbitrarily selected from the dataset [40]. These
images are then subjected to irregular cropping form attack with various proportions up to
50% (Table 2). Next, the compared schemes are used to detect the tampered areas in the
test images. Finally, the average value of the precision metric is computed for each method
and reported in Table 2. The results presented in this table demonstrate the superiority
of our scheme over the compared ones for the detection of tampered zones with irregular
shapes. This superiority can be is explained by the fact that our method is pixel-based,
contrary the other schemes are block-based. The latter increase the rate of the false positive,
which leads to decreased accuracy of the such schemes, especially in irregularly shaped
tampering detection.
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Figure 22. Set from the test images selected from the dataset [40] and used in the comparative analysis.

To further demonstrate the high-precision of the proposed method in detecting the
image tampering, the test images are attacked by copy-and-move attacks with various
proportions of the irregular copied-moved zones. Then, the compared schemes are used
for detecting the tampering. The average precision values achieved for each scheme are
given in Table 3. The latter indicates that the proposed scheme outperforms the compared
schemes, supporting the superiority of the proposed scheme over the state-of-the-art
schemes in terms of precision of tampering detection.

The present comparative analysis also focuses on the quality of the recovered image via
the compared schemes. For this purpose, the test color face images are attacked by various
attacks that are listed in Table 4. Then, the compared schemes are executed for recovering
the original content of the test images. Next, the average PSNR value is calculated for
each scheme in each attack and is listed in Table 4. From this table, we can notice that the
proposed scheme achieves higher quality of the recovered color face images compared to
the other schemes for all attack types. This superiority can be explained by the fact that
the proposed method involves the use of pre-trained deep learning models in the post-
processing phase. This phase is undertaken to achieve better quality and more accurate
colorization of the recovered face images.
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Table 4. Comparison in terms of average PSNR values corresponding to the self-recovered images by
the compared schemes.

Attacks
Schemes

Proposed Aminuddin et al. [3] Aminuddin et al. [4] Molina-Garcia et al. [8] Al-Otum et al. [25]

Cropping (rate of 25%) 28.3616 24.9063 25.1633 23.1613 21.3685

Cropping (rate of 50%) 23.0625 21.1696 21.635 20.1632 18.7452

Copy-move (rate of 25%) 27.3611 24.1696 25.1698 23.6354 22.1696

Copy-move (rate of 50%) 23.5063 21.1596 21.0056 20.1785 19.6321

Face swapping (rate 25%) 26.8852 24.0258 24.9820 22.9621 20.1633

Face swapping (rate 50%) 22.9630 20.9523 20.9816 20.1632 18.6592

Object addition (20% rate) 32.1622 29.1652 30.1487 27.1632 26.1233

Object addition (40% rate) 29.6305 27.0029 27.1598 25.1436 24.1678

In the next comparison, the key features of the proposed scheme are compared to a
competing ones, which are presented in [3,4,8,25]. The comparison results are listed in
Table 5. The latter indicates that the proposed scheme is pixel-based for watermark and
recovery data embedding, which explains its superior accuracy in detecting tampered
zones, as shown in Table 5. The proposed scheme also has a large key space of about
2494, which makes it robust against brute-force attacks by using modern computers. By
contrast, the competing schemes do not provide information about their key space, which
can make them vulnerable to brute-force attacks. Note that the “-” in Table 5 indicates that
the information is not available in the original research article. Table 5 also indicates that
our scheme uses pre-trained deep learning models to improve the quality of the recovered
color face image, while the compared schemes do not, which explain the superiority of our
scheme in comparison the compared ones in terms of the visual quality of the recovered
color face images. Furthermore, the proposed scheme and the one presented by Al-Otum
et al. [25] are both robust to salt-and-pepper noise. However, these schemes are not robust
to Gaussian noise. This limitation needs further research to be overcome in future work.

Table 5. Comparison between the main features of the proposed scheme and similar ones.

Scheme Features
Schemes

Proposed Aminuddin
et al. [3]

Aminuddin
et al. [4]

Molina-Garcia
et al. [8]

Al-Otum
et al. [25]

Watermarking method
(block-based/Pixel-based) Pixel-based Block-based Block-based Block-based Block-based

Key space 2494 - - - -

Use of deep learning models? Yes No No No No

Data embedding domain Spatial Spatial Spatial Spatial Hybrid

Salt-and-pepper noise
robustness? Yes - - - Yes

Gaussian noise robustness? No - - - No

Average runtime for
watermarking and recovery

data embedding
1.0512 3.2346 2.1754 4.6580 5.9561

Average runtime for tamper
detection and data recovery 15.7416 9.1644 10.3498 10.1230 12.1678
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Table 5 shows the average execution time in seconds for watermarking and recovery
data embedding phase as well as for tamper detection and data recovery process. For this
purpose, 2000 test images are arbitrarily selected from the datasets [40,46]. The selected
images are then resized to 512 × 512 and attacked by irregular cropping attack with
proportion up to 30%. Next, the average time of each phase is computed in seconds and
then reported in Table 5. Based on the runtime comparison, our scheme outperforms the
competing ones in watermark and recovery data insertion. This superiority is explained
by the fact that AuCFSR incorporates watermark and recovery data in the spatial domain
using low-complexity algorithms. However, our scheme is slower than the compared
schemes at recollecting color face data. This drawback is explained by the fact that it runs
two deep learning models: CodeFormer and DeOldify. This considerably increases the
overall time taken to recover the altered data. This is an open problem for future research.

6. Conclusions

In this paper, we have presented a new two-dimensional chaotic system called 2D-
MSCM. The rich chaotic behavior of this map is highlighted and its superiority over recent
excellent 2D chaotic maps is also proven. Then, based on the suggested 2D-MSCM and deep
learning models, a new scheme called AuCFSR for color face image tampering detection
and self-recovery is introduced based on the proposed chaotic map and deep learning
models. The MSCM 2D is used both to ensure the high level of security of the scheme
provided and for the watermarking of fragile images. The obtained result demonstrated the
good performance of the proposed scheme to obtain a high-quality color face image after
watermark and recovery data integration. Moreover, AuCFSR has proven its high accuracy
in detecting altered areas in the color face image and recovering altered areas through
the use of pre-trained deep learning models. The comparative results provided a clear
indication on the superiority of our scheme over recent ones in terms of tampering detection
precision, security level and quality of the recovered color face images. In future work,
the suggested scheme will be implemented in the transformation domain to compare its
performance with the spatial ones. Moreover, other deep learning models will be invested
and compared with those used in this work for selecting the best ones in the application of
color image face tampering detection and self-recovery.
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