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Abstract: We present a synthetic augmentation approach towards improving monocular face
presentation–attack–detection (PAD) robustness to real-world noise additions. Face PAD algorithms
secure authentication systems against spoofing attacks, such as pictures, videos, and 2D-inspired
masks. Best-in-class PAD methods typically use 3D imagery, but these can be expensive. To reduce
application cost, there is a growing field investigating monocular algorithms that detect facial ar-
tifacts. These approaches work well in laboratory conditions, but can be sensitive to the imaging
environment (e.g., sensor noise, dynamic lighting, etc.). The ideal solution for noise robustness is
training under all expected conditions; however, this is time consuming and expensive. Instead,
we propose that physics-informed noise-augmentations can pragmatically achieve robustness. Our
toolbox contains twelve sensor and lighting effect generators. We demonstrate that our toolbox
generates more robust PAD features than popular augmentation methods in noisy test-evaluations.
We also observe that the toolbox improves accuracy on clean test data, suggesting that it inherently
helps discern spoof artifacts from imaging artifacts. We validate this hypothesis through an ablation
study, where we remove liveliness pairs (e.g., live or spoof imagery only for participants) to identify
how much real data can be replaced with synthetic augmentations. We demonstrate that using these
noise augmentations allows us to achieve better test accuracy while only requiring 30% of participants
to be fully imaged under all conditions. These findings indicate that synthetic noise augmentations
are a great way to improve PAD, addressing noise robustness while simplifying data collection.

Keywords: face; PAD; monocular; augmentation; texture; noise

1. Introduction

One of the biggest challenges in robust face recognition (FR) is diverse data collection.
For a reliable user experience, algorithms need to be trained on the target demographics
across all application use-cases. This training is conducted on the entire (FR) pipeline:
face detection [1,2], face identification [3,4] and presentation–attack–detection (PAD) [5–7].
PAD, in particular, introduces data complexity due to the adversarial nature of attack
detection. The attacker’s goal is to identify a vulnerability in the algorithm, then expose
that to gain unauthorized authentication [5]. This inherently increases the data collection
needs proportionally to the number of realistic attack presentations—adding cost and
development time. Hence, we believe that addressing FR training complexity is a pragmatic
issue that needs to be addressed.

In this article, we focus on monocular PAD. State-of-the-art PAD methodologies
traditionally involve dedicated 3D sensing [8]. These approaches are robust to all but the
most sophisticated spoofing attacks, but necessarily introduce hardware costs. Conversely,
re-using an existing camera for FR enables companies to offer more functionality without
additional hardware costs. This is very appealing, where monocular FR is offered in
phones [9], airports [10], buildings [11], and even cars [12].
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Monocular PAD methods are often based on fine artifact detection methods [6,7,13].
Spoofing articles are rarely 100% perfect representations of the real face, where artifacts can
be observed in textural aberrations [14], facial “correctness” [15], and light reflectance [16].
These features work well in measured laboratory conditions but can be impacted by the
imaging environment. Common imaging noises, such as poor focus, under/over exposure
directly and lighting artifacts can disrupt fine artifact detectors. These noises can present in
everyday use, but are often under-represented in open-source FR datasets [6,17–19].

We visualize our PAD training, which is particularly complex in Figure 1. Here,
we represent a subset of the common collection use-cases, which need to be repeated
across demographic representatives. One can imagine how attack presentations can be
highly variant, and therefore require very sensitive detection algorithms. This can be
partially mitigated by picking the right imaging spectrum. Our figure juxtaposes the human
perspective (RGB camera) against the near-infrared, where it is obvious that the contrast
between live faces and spoofs increases due to differences in material reflectance [16].
Still, there are concerns with over-fitting. Imaging noise can overlap while artifacts are
introduced by the spoof presentations, introducing detection errors.

Figure 1. Presentation–attack–detection data collection visualization. Quality datasets include live
and spoof presentations over many scenarios, such as pose and distance. We show both the human
and near-infrared perspectives to illustrate how picking the right spectrum of light can help better
discern artifacts due to spoofing vs. imaging noise.

Data augmentation is a popular means to address data collection complexity. In
particular, geometric and contrast-based methods are rather popular. Images can be flipped,
rotated, zoomed, cropped, masked, and contrast-degraded to vary perspectives [20,21]. Our
evaluations show that these improve features, but are insufficient for sensor and lighting
noises. We address this with a toolbox of physics-informed noise generators, introducing
sensor and lighting artifacts. We validate the toolbox by first doing a noise-robustness
evaluation, benchmarking against popular augmentations on noisy images. Our findings
show that the toolbox not only generalizes the best on noisy data but actually improves
accuracy on clean data. We hypothesize that this is because including realistic noises in
training helps better discern spoofing artifacts from sensor or lighting artifacts. We verify
this hypothesis in an ablation study, demonstrating that we can use noise augmentations
as a means to simplify data collection. This is achieved without the need of complex 3D
modelling for traditional lighting simulations [22]. We summarize contributions as follows:

• Developing a physics-informed noise-augmentation toolbox with source-code: https:
//github.com/AHassani92/Face-Perception, accessed on 1 June 2023.

• Validation toolbox improves PAD noise robustness over popular augmentations;
• Validation toolbox can replace real PAD data by generating highly robust features.

We present the rest of the paper as follows: the literature survey is in Section 2, the
proposed augmentation methodology is in Section 3, the experiment design is in Section 4,
experiment results are in Section 5, and conclusions are in Section 6.

https://github.com/AHassani92/Face-Perception
https://github.com/AHassani92/Face-Perception
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2. Related Works

Face presentation–attack–detection (PAD) algorithms secure authentication systems
against spoofing attacks. Spoofing attacks are typically derived from an enrolled user’s
image (e.g., acquired from social media) and projected onto a facsimile. Typically, facsimiles
are pictures, videos, paper-masks, and fabric masks due to cost and construction complexity,
though they can also include 3D latex or silicone masks [5].

We start this literature survey by introducing the general PAD methods, starting with
depth and motion. Next, we review state-of-the-art fine artifact detection. These are the
most likely to be used today’s applications and are the emphasis of the survey. We discuss
them and the associated noise robustness, noting that image quality metrics can mitigate
the problem by filtering out imagery that will likely fail [23]. Next, we review the relevant
augmentation techniques. We lastly discuss these findings in the context of pragmatically
addressing noise robustness.

2.1. Presentation Attack Detection General Methodologies

We view depth sensing as the go-to PAD technology. Simple spoofs lack realistic
3D-geometry and are easily detectable with depth. These methods originate with stereo-
cameras [24], calculating the disparity between images. More modern approaches use
either time-of-flight lasers [25] or triangulated light emission [26], where structured light
triangulation improves depth precision to millimeters. Many of the best competition works
utilize these methods [13]; again, the issue is cost. For a PAD technology to achieve
mass-adoption, it should be compatible with existing imaging systems.

Alternatively, we observe that motion methods are also popular. These approaches
pursue temporal patterns in facial structure, where spoofs are often constrained [27]. The
simplest approach is typically blink-rate, tracking eye-landmarks [28]. Heart-rate detection
can also be employed to track blood flow pulsing across the face [29]. Periodic behavior is
measured across the forehead [29], often isolating the green-channel (due to hemoglobin
absorption) [30]. That said, these motion approaches have fundamental drawbacks. In
many cases, a video will defeat all of them [31]. Fabricated masks can also expose eye holes
or forehead patches (to present eye and/or heartbeat motion). It is also essential to note
that many methods are sensitive to scene movement, and can require at least 30 s of video
to achieve a stable signal [30].

2.2. Presentation Attack Detection Fine Artifact Methodologies

We find that monocular methods typically pursue attack instrument production arti-
facts [5]. Common examples are face-distortion and color-quantization during printing [32].
Furthermore, the spoof material and geometry may not interact with light in the same way
that as live faces. This can bias the distribution and therefore the perceived texture [32].

In principle, texture-artifact methods should be well-suited for PAD. Wen et al. demon-
strate that color distribution analysis can identify reproduction artifacts [33]. This work,
however, is proven out in static lighting conditions. Others have been unsuccessfully able
to reproduce the results with dynamic lighting (including our own lab [16]). Chingovska
et al. alternatively use a popular texture descriptor, the local-binary-pattern (LBP) [34],
noting it cannot discern liveliness for RGB cameras. We similarly concluded that LBP is
sensitive to visible light variance, but robustness can be notably improved when using the
illuminated near-infrared [16].

We note that deep-learning approaches can notably improve performance. Several
relevant competition winning algorithms are the central difference convolutional network
(CDCN), generalized spoof-cues network (GSCN) and dual-branch depth network (DBBN).
The CDCN employs a specialized layer (i.e., the central difference convolution) to more
precisely discern textural artifacts from noise, then infers a binary liveliness-map [14]. This
network won the CVPR 2020 facial anti-spoofing challenge [14]. The GSCN alternatively
generates a spoof “cue” map (i.e., what a spoof should look like) for comparison against
the input [15]. This network won first place on the FaceForensic deepfake challenge [15].
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Lastly, the DBBN employs meta-learning to correlate liveliness and depth-estimation
features [35]. This network has excellent cross-dataset generalization, and is validated by
TIFS [35]. All three of these are benchmarked in our prior work. While they do excellently in
competition data, they actually over-fit when introducing a high-variance spoofing dataset
(and are outperformed by a simple MobileNet binary classifier) [16]. This is the fundamental
challenge of PAD. When pursuing fine artifacts, there is potential for false-positives with
imaging noise. This highlights the need for a noise-robust feature space.

We observe that others propose that combining texture and motion can improve gen-
eralization, e.g., the best of both worlds. The simple approach is to sequentially aggregate
texture features, e.g., generating optical-flow maps from a sequence of LBP descriptors [36].
These approaches are limited, however, as they do not directly integrate temporal and
texture features. Spatio-temporal networks, alternatively, are designed exactly for this
purpose [37,38]. Spatio-temporal networks do in fact improve accuracy, but have the draw-
back of notable computational complexity. This re-iterates the concern with depth sensing:
mass-scale adoption. One potential compromise between accuracy and computation is
to employ simpler networks with a combination of image-quality assessment filters [23].
These filters can identify images not suitable for biometric authentication [23]. Note, how-
ever, that there is also the risk of undesirably denying service. For example, phones that
use selfie-cameras for FR do not work in low-light and require the user to authenticate with
alternative means [9].

2.3. Augmentation Methodologies

We pose a simple question: if popular monocular methods are sensitive to noise, can
we gain robustness through augmentations? Our survey shows there are a number of
popular augmentation strategies in the face recognition space. The simplest are geometric
transformations: image flipping, rotating and cropping, padding, etc. [20]. These techniques
are easy to implement and consistently demonstrate benefits. Some more sophisticated
approaches is to introduce synthetic variance, such as adjusting hairstyles, glasses and
pose [20]. These techniques are more useful when trying to address identification bias,
though they do not pertain to addressing sensor or environmental artifacts. This approach
is followed up by others who use employ full-synthetic rendering techniques to generate
specific demographic targets (e.g., gender, ethnicity, accessories) [39,40]. These approaches
can help fill in gaps in the collection space (again, useful for addressing identification bias)
but are not designed for system noise. Furthermore, fully synthetic training datasets do not
generalize as well as actual imagery [40].

We believe that an ideal solution is to instead synthetically augment actual imagery
with noise. Uchoa et al. propose simulating illumination effects by adjusting the brightness,
saturation and contrast of the images [41]. Crispell et al. alternatively present arguably
a powerful approach of projecting faces onto a 3D model, then synthetically adjust the
pose and illumination [22]. Moreno-Barea et al. more specifically target imaging noise,
and generate training data with variable noise [42]. Pervaiz similarly find that introducing
noise when training speech-recognition algorithms [43]. We believe these approaches show
there is promise in pursuing synthetic noise augmentations, and suggest opportunity in
pursuing sensor and environmental augmentations.

2.4. Addressing Noise Robustness in Pragmatic Fashion

Addressing noise robustness by collecting data under all expected conditions is expen-
sive and unrealistic. Instead, synthetic noise augmentations can be an ideal middle-ground.
Real-world authentication can involve a large variety of sensor and environmental effects,
where we have prior established that even state-of-the-art algorithms need a strong signal-
to-noise ratio [16]. Hence, we build off the works by Crispell, Moreno-Barea, and Pervaiz
and present a physics-informed noise-augmentation toolbox. We present the generators’
methodologies and validate their utility in training in the next sections.
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3. Physics-Informed Noise-Augmentations Methodology

We propose that face presentation–attack–detection (PAD) robustness can be improved
with physics-informed noise generators. Real-world scenarios can introduce noises that
affect image quality, degrading sharpness and contrast. We believe relevant scenarios can
be modeled through physics-informed generators, and are synthetically applied in lieu of
actual data collection. Recall from the related works section that that synthetically injecting
noise has shown promise in other applications, including speech recognition. We build off
this approach and introduce generators that pragmatically address imaging sensor and
environmental (lighting) noises. We select these because they are known to commonly
present and have well known physical effects.

We visualize the noise augmentation types in Figure 2. There are two fundamental
categories: sensor (designated by 1) and environmental (designated by 2). The goal is to use
physics-informed techniques to make semi-realistic augmentations. These augmentations
perturb the feature space in a relevant fashion, but are not necessarily photo-realistic.
Ideally, the augmentations would in fact be photo-realistic and perfectly capture lighting
effects. However, this traditionally requires precise 3D modelling [22]. Three-dimensional
modelling is often not available for monocular imaging (e.g., would require additional
depth imaging or simulation) and is computationally complex. This provides the benefits
of being cost effective and highly scalable.

Figure 2. Visualizing physics-informed noise-augmentations. Observe how the camera and environ-
mental noises are designed to perturb the algorithm in the same fashion that real-world noises do
without complexity of being photo-realistic.

3.1. Synthetic Noise Generators

We select these noises categories because of they are realistic to present in real-world
scenarios. For example, it is possible for images to corrupt in storage or memory, but these
are failures with the hardware that are independent of the software. All sensors, however,
are likely to have some noise caused by the sensor and auto-exposure algorithms. It is
inevitable that the sun will eventually introduce bright spots and shadows on the user’s
face. These noises are extremely difficult to filter out with hardware. Given their frequency
of occurrence, it seems logical to address algorithm robustness to them.

Furthermore, all of these noises are well understood from an optics perspective. There
are well known mathematical models that can be simulated with open-source computer
vision tools [44,45]. We detail the noise generators next, given the generators and the
methodology in Table 1. All source code can be accessed at the following github: https:
//github.com/AHassani92/Face-Perception, accessed on 1 June 2023.

https://github.com/AHassani92/Face-Perception
https://github.com/AHassani92/Face-Perception
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Table 1. Synthetic camera and environmental noise augmentation generators. This table enumerates
both the relevant types of noises and how they are being generated for evaluation. Camera noises are
indicated by 1. Environmental noises are indicated by 2.

Noise Generator

Camera blur 1 (poor focus) Gaussian Low Pass Filter

Dark noise 1 (random leakage) Gaussian Noise Generator

Shot noise 1 (random photo distribution) Poisson Noise Generator

Salt and pepper noise 1 (analog-to-digital error) Random 0 and 255 Generator

Under-exposure 1 (low contrast) Gamma Subtraction

Over-exposure 1 (saturation) Gamma Addition

Point-source 2 (point sources) Synthetic Bright Ellipse

Point-shadow 2 (shadows) Synthetic Dark Ellipse

Streaking-source 2 Synthetic Overhead Sun

Streaking-shadow 2 Synthetic Overhead Shadow

Piping-source 2 Synthetic Side Sun

Piping-shadow 2 Synthetic Side Shadow

3.1.1. Camera Noise: Blur

Camera focus is required to ensure a crisp facial-image. A lens being out of focus
consequently then results in blurry imagery [46]. This is simulated using a Gaussian
blurring kernel. This noise generator is implemented utilizing the Science-Kit Image
toolbox with the Gaussian filter tool [45].

3.1.2. Camera Noise: Dark-Current

Camera photo-receptors are imperfect, and can leak current even when no light is
supplied [47]. This effect is essentially randomly supplying pixel intensities, and can be
simulated using a Gaussian distribution. This noise generator is implemented utilizing the
Science-Kit Image toolbox with the Gaussian distribution tool [45].

3.1.3. Camera Noise: Shot

Light is really never perfectly uniform. The photons are often received in a stochastic
process, which is defined as shot noise [48]. This effect can be modelled by using a
Poisson process, effectively adding a “pepper” effect to the image. This noise generator is
implemented utilizing the Science-Kit Image toolbox with the Poisson tool [45].

3.1.4. Camera Noise: Salt and Pepper

Analog-to-digital conversion is a key part of translating photo-receptors into a image-
processing format. At times, this process can erroneously result in random saturation (white
pixels) or lost signal (black pixels) [49]. This noise generator is implemented utilizing the
Science-Kit Image toolbox with the salt and pepper tool [45].

3.1.5. Camera Noise: Under-Exposure

Cameras typically expose light until a basic set of contrast metrics are met [50]. These
metrics are often a simple count of white and black pixels, and as such the overall image
can be under-exposed if there are notable bright spots in the scene [50]. This causes the
exposure-time to become biased incorrectly to be too short, resulting in the face being very
dark (non-coincidentally also presenting dark-current noise). This effect can be modelled
by adjusting the gamma to be darker such that facial features start to disappear. This noise
generator is implemented utilizing the Science-Kit Image toolbox [45].
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3.1.6. Camera Noise: Over-Exposure

Over-exposure is the opposite problem of under-exposure. Due to dark spots in the
image, the overall exposure time is increased to be too high. This results in the face looking
saturated [50]. This effect can be modelled by adjusting the gamma to be brighter such
that facial features start to disappear. This noise generator is implemented utilizing the
Science-Kit Image toolbox [45].

3.1.7. Environment Noise: Point-Source

Point sources present in a point-like fashion on the face [51]. This results in the region
being particularly bright, often presenting shot noise (with non-source region consequently
under-exposed). This is simulated using a randomized ellipse using OpenCV v4.1 [44].
The region within the ellipse is then over-exposed and the region outside the ellipse is
under-exposed (using the generators proposed). The boundary between regions is blurred.

3.1.8. Environment Noise: Point-Shadow

Point shadows are the inverse of a point source [51]. This results in the shadow
region being particularly dark, often presenting dark-current noise (with the non-shadow
region consequently over-exposed). This is simulated using a randomized ellipse using
OpenCV [44]. The region within the ellipse is then under-exposed and the region outside
the ellipse is over-exposed (using the generators proposed). The boundary between regions
is blurred.

3.1.9. Environment Noise: Streaking-Source

In some cases, a specular source may present itself overhead the user. If they have an
obstruction, such as wearing a hat or the roof of a vehicle, anecdotal evidence shows that
this results in the bottom half of the face being illuminated by a bright streak (with the non-
streak region being consequently under-exposed). This is simulated using a randomized
streak using OpenCV [44]. The region within the streak is then over-exposed and the non-
streak region is under-exposed (using the generators proposed). This boundary is blurred.

3.1.10. Environment Noise: Streaking-Shadow

Opposite to a light-streak, the specular source may present below the camera. Anec-
dotally, this illuminates the face top-half with a bright streak (with the non-streak re-
gion consequently under-exposed). This is simulated using a randomized streak using
OpenCV [44]. The region within the streak is then over-exposed and the non-streak region
is under-exposed (using the generators proposed). This boundary is blurred.

3.1.11. Environment Noise: Piping Source

Alternatively, the specular source may present at an angle to the user. This can happen
when the user is facing north or south, and the sun is oriented to the east or west (depending
on time of day). Anecdotal evidence shows that this creates a bright, light-pipe across
the user’s face (with the non-pipe region consequently under-exposed). This is simulated
using a randomized pipe across the face using OpenCV [44]. The region within the pipe
is then over-exposed, and the non-pipe regions are under-exposed (using the generators
proposed). The boundary between regions is blurred.

3.1.12. Environment Noise: Piping Shadow

Lastly, a specular source can be obstructed by a large object that casts a piping shadow.
This can occur when the user is underneath a large structure, such as driving under a bridge.
Anecdotal evidence shows that this creates a dark, shadow pipe across the user’s face (with
the non-pipe region consequently over-exposed). This is simulated using a randomized
pipe across the face using OpenCV [44]. The region within the pipe is then under-exposed
and the non-pipe regions are over-exposed (using the generators proposed). The boundary
between regions is blurred.
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4. Presentation–Attack—Detection Experiment

Our experiment validates the utility noise-augmentations on real-world generaliza-
tion. In the past, we have collected liveliness data in controlled laboratory conditions to
demonstrate how near-infrared reflectance is a robust PAD feature [16]. Here, we expand
our PAD dataset to introduce realistic sensor and lighting noises that would intentionally
degrade the PAD features. We hypothesize that our augmentation toolbox will improve
robustness by inherently teaching the algorithm where image components are associated
with PAD and which are associated with noise. We begin this process by recapping the
original data collection, then describing the two conducted experiments.

4.1. Face Presentation–Attack—Detection Dataset

Our baseline evaluation dataset is a robust collection of different people and perspec-
tive variance. In the prior paper, we imaged a diverse array of 30 adults. We considered
gender (20 males and 10 females), ethnicity (6 groups) and age (6 groups). Each partic-
ipant performed a script, where they were coached to act out common behaviors that
vary in head-pose and distance to camera. Behavioral script examples included sitting
in a car, adjusting the mirrors, interacting with the infotainment system, and having
a conversation. Again, these were designed to be typical behaviors that introduce the
facial presentation variance.

They performed the behavioral script as a live person and while presenting four spoof-
instruments. Everything was repeated under three lighting conditions: laboratory-dark
(940 nm illumination only), laboratory-light (940 nm illumination with all lab lights turned
on) and diffuse outdoor sun (940 nm illumination with sunlight diffused by glass). We give
the collection scenarios in Table 2.

Table 2. Liveliness experiment data collection matrix. All participants perform all behavioral pre-
sentations, with the exception of sun-diffuse (all spoof with some live, indicated by *). Note that
participants are coached to make common place behaviors to generate the varying perspectives in a
natural fashion (vs. attempting specific distances and head-poses).

Presentation Lighting Position Yaw Pitch
(Meters) (deg) (deg)

Live (30) Lab-Dark, Lab-Lights, Sun * [0.5, 1.5] [−45, 45] [−15, 15]

Display-Replay (30) Lab-Dark, Lab-Lights, Sun * [0.5, 1.5] [−45, 45] [−15, 15]

Paper-Mask (30) Lab-Dark, Lab-Lights, Sun * [0.5, 1.5] [−45, 45] [−15, 15]

Spandex-Mask (30) Lab-Dark, Lab-Lights, Sun * [0.5, 1.5] [−45, 45] [−15, 15]

Face-Print Covid-Mask (30) Lab-Dark, Lab-Lights, Sun * [0.5, 1.5] [−45, 45] [−15, 15]

We show dataset face-crop samples in Figure 1. This visualizes how imaging a com-
plete matrix of scenarios is robust but complex. This generates approximately 80,000 unique
frames for PAD evaluation. Imaging is conducted with a 5 mega-pixel FLIR Blackfly
monochrome camera [52] employing a 940 nm filter with matching illumination. It is
inherently a very repetitive process; hence, part of the experimentation is to identify where
collection can be simplified in an ablative fashion. Note that the RGB samples in Figure 1
are only shown to visualize the human perspective. All experimentation (training and
testing) is conducted using the illuminated near-infrared data.

4.2. Noise Robustness Evaluation

We perform a pair of experiments to demonstrate that our augmentation toolbox
generates better features than other popular methods. For simplicity, we select the top
deep-learning algorithm (MobileNetV3 binary classifier) from our previous paper [16]. This
algorithm is known to be robust when acting on noise-controlled data. Our evaluation is
then conducted in two phases: first in a sensitivity analysis, then in a data ablation study.
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In all scenarios, we use 70% of the participants for training, 20% for validation and 10%
for testing. We pre-process all images with the Retina Face network [2], cropping the face
and then re-scaling to the appropriate deep-learning network input size. The standard PAD
evaluation metrics are used: average-classification-error-rate (ACER), non-presentation-
classification-error-rate (NPCER, essentially FRR) and attack-presentation-classification-
error-rate (APCER, essentially FAR). Also note that traditional consumer displays do not
emit in near-infrared [53]. This means the display-replay attacks are not present to the
near-infrared camera, a passive form of spoof rejection. These images without a detected
spoof-face are not reflected in the algorithm validation metrics.

4.3. Augmentations for Benchmarking

We introduce two popular augmentation techniques as evaluation controls. The first
is the geometric approach. This includes image translations, flips, rotations, randomizing
cropping and randomized padding [20]. The second is the brightness, saturation and
contrast (BSC) approach. The BSC is a wellknown toolbox that adjusts image properties
associated with brightness, saturation and contrast (hence the name) [41].

4.3.1. Exp. 1: PAD Algorithm Noise Sensitivity

Our first question is whether algorithms learn to differentiate liveliness features from
sensor and environmental noises. Recall that our PAD methodology is based on detecting
fine-artifacts in the imagery, and therefore is particularly sensitive to image artifacts.

We do this by generating a noisy dataset with the proposed augmentation toolbox. We
next evaluate five training approaches on the original dataset and the noise-augmented
dataset. These training conditions are as follows:

• Original dataset;
• Original dataset augmented with geometric methods [20];
• Original dataset augmented with brightness, saturation and contrast method [41];
• Original dataset augmented with proposed toolbox;
• Original dataset and original augmented with proposed toolbox.

4.3.2. Exp. 2: Noise-Augmentation as Data Replacement Ablation Study

We hypothesize that if noise-augmentations generate better features, this technique
can also be used to replace actual data collection. The prepared dataset is fully contrastive,
i.e., all participants perform all activities. This is robust, but very time consuming. Being
able to achieve similar classification accuracy with simplified collection would both reduce
time and cost associated.

We evaluate this by next ablating the training datasets. The test datasets are still
complete (i.e., fully-contrastive), where we now introduce new training subsets based on
liveliness-pairs. A liveliness pair is defined and these subsets are as follows:

• Fully-contrastive: all participants have both live and spoof imagery;
• Partially-contrastive: 30% of participants have both live and spoof imagery;
• Not-contrastive: no participants have both live and spoof imagery.

4.4. Research Limitations

Facial attack presentations constantly evolve based on the detection methods. Each
PAD method inherently will have vulnerabilities; it is only a question of the complexity of
the reproduction [5]. Hence, this experimentation is designed to capture relevant attacks
and imaging use-cases, but is by definition not all-inclusive. Furthermore, the test dataset is
also made of synthetic noises, which are semi-realistic but not real data. Ideally, we would
prefer to repeat the initial experiment with the same participants; they are not available.
Lastly, it is important to acknowledge that all of these scenarios are inherently constrained
because the data are fixed. This is a pragmatic approach, but a best practice would also
involve independent penetration testing.
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5. Experimentation Results

Our evaluation goal is to demonstrate the value of using noise-augmentations in
training. Here, we show that the selected PAD algorithm is by default sensitive to noise (as
expected), but becomes robust using the training augmentations. We also show that our
noise-augmentations help inherently find better features in a training data ablation study.
This suggests that noise augmentations can be used in lieu of actual data, simplifying the
collection process. We present these results with discussion next.

5.1. Exp. 1: PAD Algorithm Noise Sensitivity

Our first experiment is an augmentation sensitivity analysis. We do observe that
there is a general utility to augmentations. Training with both the geometric and BSC
augmentations improve classification error-rates on the original dataset, with the BSC being
incrementally better. Intuitively, this make sense. However, all three controls (original
data and two comparison augmentations) fail to generalize on sensor and environmental
noise presentations. This is clear from the ten-fold increase in error rates when testing on
noisy-data. We can robustly address this, however, by including noise-augmentations in
training. We provide these results in Table 3.

Table 3. Evaluating MobileNetV3 PAD algorithm noise sensitivity when using various training
augmentations. The original dataset alone is the baseline control and designated by the *. The first
comparison augmentation is geometric (designated by the 1). The second comparison augmentation
is BSC (designated by the 2). Our proposed approach generates the best results, where the best
combination is using original and noise-augmented training data (designated by the †).

Train Dataset Test Dataset ACER NPCER APCER

Original ∗
Original 0.9% 0.9% 0.9%
Proposed

Noises 13.7% 11.5% 16.0%

Geometric Augmented 1
Original 0.8% 0.7% 0.8%
Proposed

Noises 12.5% 12.1% 12.6%

BSC Augmented 2
Original 0.6% 0.7% 0.7%
Proposed

Noises 11.1% 9.7% 11.5%

Proposed Noises
Original 0.7% 0.4% 0.6%
Proposed

Noises 1.7% 0.5% 3.0%

Original and Proposed Noises †
Original 0.7% 0.7% 0.7%
Proposed

Noises 1.0% 0.6% 1.4%

Including the proposed noise-augmentations in the training dataset directly resolves
generalization on noisy data. This result is rather intuitive, and a simple validation that
including noise in training data is necessary for fine artifact detection PAD algorithms.
Perhaps more interesting, is we actually observe accuracy improvements on the original
data when training with noise augmentations. This occurs both when including noise-
augmented data with the original training dataset, and when training on noise-augmented
data alone. We hypothesize that this is because adding many noisy variants of each image
enables the algorithm to differentiate image-components associated with liveliness vs.
those with noise. This inherently does a better job optimizing the PAD features. This
suggests that noise-augmentations have value regardless of operational conditions.
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5.2. Exp. 2: Noise-Augmentations as Data Replacement

We hypothesize in Exp 1 that training with high-variance noise can inherently de-noise
PAD features. This is inspired from the noise-augmented training data actually generalizing
better on original data than training on original data alone. Here, we demonstrate that this
feature robustness can actually be used as a means to reduce data-collection complexity.
We provide these results in Table 4.

Table 4. Evaluating the use of proposed noise augmentations as data replacement. This table uses
the same MobileNetV3 PAD algorithm for a data ablation study, where the original fully contrastive
dataset is intentionally degraded. The first subset uses no participant-liveliness contrast (indicated
by the −−); i.e., each person only has either live or spoof imagery (not both). The second subset
uses partial participant-liveliness contrast (indicated by the −); i.e., 30% of the participants are
fully contrastive, but the remaining 70% have only live or spoof imagery. While the performance
is achieved using the propose augmentations on the fully contrastive data (given by the †), we
demonstrate that this technique enables partially contrastive data (given by the ‡) to outperform the
original (given by the *).

Train Dataset Test Dataset ACER NPCER APCER

No Participant-Liveliness Contrast

Original −− Original 13.2% 20.8% 5.7%
Original −− Proposed Noises 22.2% 20.0% 24.4%

Proposed Noises −− Original 13.6% 15.6% 11.5%
Proposed Noises −− Proposed Noises 6.4% 9.5% 3.4%

Clean and Proposed Noises −− Original 3.6% 4.0% 3.2%
Clean and Proposed Noises −− Proposed Noises 4.5% 2.8% 6.1%

Partial Participant-Liveliness Contrast

Original − Original 2.6% 1.2% 4.0%
Original − Proposed Noises 13.7% 11.5% 16.0%

Proposed Noises − Original 5.6% 6.3% 4.9%
Proposed Noises − Proposed Noises 5.1% 0.2% 10.0%

Original and Proposed Noises −‡ Original 0.8% 1.0% 0.6%
Original and Proposed Noises −‡ Proposed Noises 1.2% 1.2% 1.2%

Full Participant-Liveliness Contrast (Original)

Original ∗ Original 0.9% 0.9% 0.9%
Original ∗ Proposed Noises 13.7% 11.5% 16.0%

Proposed Noises Original 0.7% 0.4% 0.6%
Proposed Noises Proposed Noises 1.7% 0.5% 3.0%

Original and Proposed Noises † Original 0.7% 0.7% 0.7%
Original and Proposed Noises † Proposed Noises 1.0% 0.6% 1.4%

We demonstrate that partially contrastive data can achieve an arguably better perfor-
mance when using noise-augmentations. By default, there is a notable penalty for not using
fully contrastive data. Observe that the rows of partially contrastive and non-contrastive
training sets show notable drops in test accuracy. This is to be expected, as the datasets are
by design degraded. The addition of noise augmentations, however, improves performance
in all cases. Note that now using noise augmentations on partially contrastive data (the ‡
rows) actually outperforms the original dataset on original test data (the * rows). Further-
more, the performance is negligibly worse than the best condition of fully contrastive data
(the † rows).

This is a very useful finding. It demonstrates that noise augmentations enable simpli-
fying data-collection to be partially contrastive, with minimal risk to feature generalization.
To appreciate the value, consider the ramifications of addressing a newly discovered vul-
nerability. Each time a new attack is discovered, developers traditionally need to do a
comprehensive collection across many participants and scenarios with the new attack. With
this noise augmentation methodology, we can justify only doing a partially contrastive
update with the new attack and expect to achieve similar results.
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6. Discussion

We demonstrate in this paper that synthetic noise augmentations can improve real-
world presentation–attack–detection (PAD) robustness. We present a toolbox of twelve
noise augmentations that introduce sensor and environmental noise in a physics-informed
fashion. We then evaluate these noise augmentations against popular augmentation tech-
niques to determine which approach generates the best features. Our experimental results
demonstrate that our approach not only generalizes better on noisy-data, but can help
reduce data collection complexity.

First, we do a noise sensitivity analysis to benchmark the augmentation technique.
While the original training data with popular augmentations fail to generalize well on noisy
data, training with our proposed approach successfully retains robustness. Classification
accuracy actually improves even on clean data. This suggests that training with the noise-
augmentations in general results in better features. We believe that this is because the
noise-augmentations perturb the feature space in a highly variant yet realistic fashion, such
that the algorithm is inherently able to differentiate PAD features from noise.

Building on this observation, we hypothesize that noise augmentations can be used
as a replacement for real data. Collecting the full matrix of scenarios is ideal, but very
complex. To evaluate this, we perform an ablation study that removes liveliness pairs, e.g.,
participants may either have live or spoof data, but not both. This introduces two new de-
graded training datasets: partially contrastive and not contrastive. This second evaluation
shows that using partially contrastive data with noise augmentations can actually generate
better features (as measured on clean data) than training on the original dataset by itself.

This is a powerful finding. Generating better features in this approach suggests
PAD algorithms can be optimized by having some participants perform the complete
set of imaging procedures, then targeting specific scenarios with the others. This is not
only a cost-save but allows for quickly adapting as new attacks are discovered with a
partially contrastive update.

In conclusion, we believe that noise augmentations are a valuable tool for gaining
real-world robustness. Regardless of authentication technology, noise is ever-present. This
approach not only addresses noise robustness, but improves features on clean data and
reduces data-collection complexity. Next steps are centered around expanding the use of
noise. One proposal is to repeat this evaluation while imaging the actual participant in
noisy conditions. This improves the integrity of the test condition and better measures
feature generalization. This was originally intended, but not possible due to the original
collection participants not being available. Additionally, we propose that noise-presence
can be classified in a meta-learning paradigm. We have demonstrated in other works that
facial context can improve identification accuracy over pose [54]. Here, the idea would
be to classify what noises are present to better differentiate liveliness features from noise.
Lastly, we propose comparing the capability to contextualize noise in the meta-learning
network vs. vision transformers, which include attention layers by design.

7. Patents

This research has generated patent applications jointly filed between the Ford Motor
Company and the University of Michigan. If allowed, a patent number is provided; those
that are still in process are identified by case ID.

1. COUNTERFEIT IMAGE DETECTION (USPTO Case ID: 84238879US01). Convenience
security facial authentication using near-infrared camera specular reflectance. The
person is first identified; then, it is verified that their compensated specular reflectance
meets the liveliness-enrollment-similarity score.

2. COUNTERFEIT IMAGE DETECTION (USPTO Case ID: 84227552US01). It is a secure
facial-authentication capable of detecting complex 3D masks via co-registered CMOS
and thermal cameras. CMOS camera is used to detect and identify the face; liveli-
ness is determined using thermal analysis. The system is secure with very efficient
liveliness analysis.
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3. MATERIAL SPECTROSCOPY (USPTO Case ID: 84279449US01). Material source-
identification using combined RGB-IR spectroscopy analysis. RGB provides material
color context for near-infrared material-spectroscopy. This provides a naive Anti-
Spoofing approach (vs. specular-reflectance verification against enrollment).

4. MATERIAL SPECTROSCOPY (USPTO Case ID: 84279422US01). Facial optical-tethering
methods for material-spectroscopy liveliness-analysis. Facial distance and orientation
are determined using deterministic key-points or deep-learning.

5. MATERIAL SPECTROSCOPY (USPTO Case ID: 84279413US01). Facial environment-
compensation methods for material-spectroscopy liveliness-analysis. Sequenced light
toggling is used to detect the face with an illuminated frame and de-noise the back-
ground using a non-illuminated frame analysis.

6. MATERIAL SPECTROSCOPY (USPTO Case ID: 84279409US01). Facial segmentation
methods for material-spectroscopy liveliness-analysis. In particular, the emphasis
is placed upon segmenting “skin” pixels, either using deterministic key-points or
semantically using deep-learning.
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