
Citation: Leng, J.; Chen, X.; Zhao, J.;

Wang, C.; Zhu, J.; Yan, Y.; Zhao, J.; Shi,

W.; Zhu, Z.; Jiang, X.; et al. A Light

Vehicle License-Plate-Recognition

System Based on Hybrid Edge–Cloud

Computing. Sensors 2023, 23, 8913.

https://doi.org/10.3390/s23218913

Academic Editors: Javier Prieto and

Ramón J. Durán Barroso

Received: 23 August 2023

Revised: 6 October 2023

Accepted: 10 October 2023

Published: 2 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors
Article

A Light Vehicle License-Plate-Recognition System Based on
Hybrid Edge–Cloud Computing
Jiancai Leng 1, Xinyi Chen 1, Jinzhao Zhao 1, Chongfeng Wang 1, Jianqun Zhu 1, Yihao Yan 1, Jiaqi Zhao 1,
Weiyou Shi 1, Zhaoxin Zhu 1 , Xiuquan Jiang 1, Yitai Lou 1, Chao Feng 1, Qingbo Yang 2,* and Fangzhou Xu 1,*

1 International School of Optoelectronic Engineering, Qilu University of Technology
(Shandong Academy of Sciences), 3501 Daxue Road, Changqing District, Jinan 250300, China;
jiancaileng@qlu.edu.cn (J.L.); cxy3796@163.com (X.C.); z15105429165@163.com (J.Z.);
w806237081_666@163.com (C.W.); zhujianqun0127@163.com (J.Z.); yanyy202108@163.com (Y.Y.);
18668909463@163.com (J.Z.); 1205187303swy@gmail.com (W.S.); zhuzhaoxin3709@163.com (Z.Z.);
jiangxiuquan6711@gmail.com (X.J.); 13062000810@163.com (Y.L.); cfeng@qlu.edu.cn (C.F.)

2 School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences),
3501 Daxue Road, Changqing District, Jinan 250300, China

* Correspondence: yqb@qlu.edu.cn (Q.Y.); xfz@qlu.edu.cn (F.X.)

Abstract: With the world moving towards low-carbon and environmentally friendly development,
the rapid growth of new-energy vehicles is evident. The utilization of deep-learning-based license-
plate-recognition (LPR) algorithms has become widespread. However, existing LPR systems have
difficulty achieving timely, effective, and energy-saving recognition due to their inherent limitations
such as high latency and energy consumption. An innovative Edge–LPR system that leverages
edge computing and lightweight network models is proposed in this paper. With the help of this
technology, the excessive reliance on the computational capacity and the uneven implementation of
resources of cloud computing can be successfully mitigated. The system is specifically a simple LPR.
Channel pruning was used to reconstruct the backbone layer, reduce the network model parameters,
and effectively reduce the GPU resource consumption. By utilizing the computing resources of the
Intel second-generation computing stick, the network models were deployed on edge gateways to
detect license plates directly. The reliability and effectiveness of the Edge–LPR system were validated
through the experimental analysis of the CCPD standard dataset and real-time monitoring dataset
from charging stations. The experimental results from the CCPD common dataset demonstrated
that the network’s total number of parameters was only 0.606 MB, with an impressive accuracy rate
of 97%.

Keywords: license plate recognition; model compression; edge computing; cloud computing

1. Introduction

With the rapid popularization and development of smart cities, real-time license plate
detection is an important application in smart transportation. Today, the amount of data
brought by large-scale IoT devices has surged, and this phenomenon has resulted in tradi-
tional centralized cloud server data processing facing problems such as high bandwidth,
high latency, and low privacy. The accuracy and timeliness of license plate recognition
(LPR) based on deep learning (DL) algorithms can meet the recognition tasks in many
real-world scenarios. However, standalone versions of DL platforms have limitations, in
particular with the increase of the data volume and data dimension [1]. To meet the com-
puting demands of DL, a common approach is to utilize cloud computing. However, a large
amount of data is uploaded to the cloud server, which can lead to risks such as network
congestion or delay and brings more challenges to the user’s service quality and actual
experience. Cloud computing models are widely used in intelligent monitoring systems to
process various types of video and image data. However, they encounter bottlenecks in

Sensors 2023, 23, 8913. https://doi.org/10.3390/s23218913 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23218913
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9485-2199
https://orcid.org/0000-0001-7660-1206
https://doi.org/10.3390/s23218913
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23218913?type=check_update&version=1

Sensors 2023, 23, 8913 2 of 22

the actual LPR, mainly including (1) challenges in achieving ideal performance for vehicle
and LPR real-time systems; (2) an elevated resource occupancy rate, with an inadequate
availability of channel resources; (3) the transmission of video and image data possibly
resulting in a significant increase in energy consumption. Edge computing (EC) presents a
viable solution to address the nonuniform distribution of computational resources across
individual edge nodes [2]. Intelligent monitoring systems employ edge-layer processing to
achieve reduced latency and facilitate equipment miniaturization, which greatly reduce
the required power consumption. In the future of 5G, a significant application scenario
will be license plate identification systems based on EC. Edge computing allows data to be
processed locally on edge servers close to the data source, and the network delay of data
transmission is reduced, which is suitable for real-time data-processing scenarios. However,
the current related research still has certain shortcomings in realizing real-time license plate
recognition on edge devices. On the one hand, few studies have considered implementing
real-time LPR applications on edge devices with limited computing power. On the other
hand, complex vehicle recognition models are deployed on these resource-constrained
edge devices. This situation can incur higher computational costs. When the task volume
is large, large network delays will occur, resulting in tasks not being able to be processed
in time.

Due to the rapid development of artificial intelligence (AI) technology, the computa-
tional power and complexity demanded by visual processing algorithms have significantly
increased. This poses a serious challenge to current computer vision (CV) systems. The
popular object-detection (OD) algorithms in DL include two-stage detection algorithms,
which rely on anchor boxes, and one-stage detection algorithms, which also rely on anchor
boxes [3]. The You Only Look Once (YOLO) series of OD algorithms is the most represen-
tative among these. The YOLO algorithm was proposed by Redmon [4], which divides
images into grids and transforms the OD problem into a regression problem. For strength-
ened detection accuracy, as well as rapid detection network execution, the YOLOv7 neural
network employs two-stage cascaded networks on machinery that performs superbly. The
YOLOv7 method can achieve a balance between the recognition and determination of
the speed and accuracy using graphics processing units (GPUs), such as those on typical
traditional servers or PCs [5,6]. If algorithmic inference is performed on the edge gateway,
the original network structure of YOLOv7 needs to be lightweight and compressed through
advanced methods such as pruning, quantization, and distillation.

Complex license-plate-recognition systems generate large amounts of video images,
and collecting and labeling all samples is difficult and time-consuming. The semisupervised
learning (SSL) method is a popular machine learning paradigm and is an effective way
to train large numbers of unlabeled and small numbers of labeled samples [7]. When the
tag data are scarce, it can automatically use a small amount of ready-made tag data for
pattern recognition, and the learning performance improves. The semiautomatic method
of labeling license plate images was used in this paper, and a small amount of ready-made
labeled data was used for pattern recognition to improve the learning performance [8].

The SSL-based EC model and lightweight LPR system are proposed in this paper,
called Edge–LPR. The network structure of YOLOv7 is a redesigned and lightweight
model [4], which is better suited for deployment on an edge gateway system. To address
diverse real-time OD scenarios within the context of LPR systems, the training model was
directly deployed on the edge gateway [9], and the LPR was directly performed on the edge
gateway. In times of idleness, the data are automatically transferred to the cloud-based
device. The device assumes the responsibility of filtering and categorizing freshly obtained
data at the edge gateway and subsequently transmitting the data to revise the weights and
model parameters [10].

The following are this paper’s key contributions:
(1) The semisupervised learning (SSL) method was used for semiautomatic license

plate labeling. Manually labeling license plate data is a time-consuming and labor-intensive
task. Therefore, the SSL method was introduced into the license-plate-recognition (LPR)

Sensors 2023, 23, 8913 3 of 22

process, and a small amount of labeled license plate data were used to directly generate
labels for a large amount of unlabeled license plate data. Our method improved the
efficiency of LPR.

(2) New and efficient Edge–LPR system: First, based on the YOLOv7 framework,
an attention mechanism was introduced into the C3 module to enhance the perception
ability and accuracy of the underlying network. At the same time, the head of YOLOv7
was improved, and the Level 3 detection was upgraded to Level 4 detection, which uses
the fusion of features at each layer to identify targets of different sizes and improves the
accuracy of small target detection. Finally, channel pruning was used to reconstruct the
backbone layer, reduce the network model parameters, and effectively reduce the GPU
resource consumption.

(3) A more efficient edge–cloud hybrid recognition system: Traditional cloud com-
puting and hybrid edge cloud computing solutions were compared and evaluated. The
training procedure of the proposed model can run on cloud workstations with strong com-
puting capabilities. The training model can obtain new weight files. In the edge computing
gateways, the update weight files are used to complete the edge recognition. The real-time
computing and inference are performed on the edge gateway. The recognition speed of
Edge–LPR can reach 187.6 FPS, and the recognition accuracy can reach 95.6%.

The remaining sections are structured in the following manner. The associated work
of DL networks in LPR and in the creation of EC device implementation is introduced in
Section 2. The Edge–LPR system’s architecture and algorithm are presented in Section 3.
The experimental findings and a comprehensive description are presented in Section 4. The
study’s results and potential applications are presented in Section 5.

2. Related Work

In this section, the recent advances in LPR technology are firstly discussed, and then
an overview of the development of model compression technology is provided. Finally, the
application of OD in EC is summarized.

2.1. License Plate Detection Algorithm

DL is used to create image features, and manually creating image features are the two
main methods currently used by LPR systems for intelligent detection.

(1) A technique using fictitious visual features
By integrating edge statistics with mathematical morphology or seed growth method-

ologies, it is possible to ascertain the existence of the license plate from the image’s regular
edges. The structural elements are visible because the license plate contains characters
that make up a string. Therefore, by identifying characters in the photograph, the license
plate can be located. Li. et al. [11] used the MSER method to extract character areas from a
license plate. Li. et al. [12] proposed that pixel color is a key component of license plates.
To identify actual license plates in candidate zones, a cascaded license plate classifier based
on color salient features was developed. According to the identical distribution of pixel
textures in the license plate area, texture features were used to determine the license plate
location [13].

(2) Method based on DL technology
The LPR techniques that relied on visual features have run into development road-

blocks because of a variety of issues, including complex settings and erratic image lighting.
DL performs exceptionally well at detecting objects [14]. The multi-OD algorithm has
significantly outperformed earlier systems. The LPR techniques based on DL had been sug-
gested by Xie and Co. [15]. A multidirectional LPR framework built on CNN was proposed,
called the MD-YOLO model. The distinction was that our approach concentrates on mobile
applications, which can fully utilize computing resources and increase LPR efficiency.

Sensors 2023, 23, 8913 4 of 22

2.2. License Plate Recognition

Two of the commonly used LPR phases are character categorization and character
recognition. Character segmentation methods commonly used include projection algo-
rithms, SIFT features, and extreme area extraction [16]. Because character directions in
the image can be easily changed by blurring, noise, and distortion [17], the aforemen-
tioned methods suffer from segmentation bias, which causes false positives for recognition.
Various other license plate character recognition techniques that do not require character
segmentation were proposed by Gezdev et al. [18]. The lightweight LPR network LPRNet,
which can produce recognition results rapidly and with exceptional precision, has been
suggested for deployment.

2.3. Lightweight Object Detection Model

The usage of OD technology is widespread in fields of study such as rubbish sorting,
autonomous driving, and vehicle identification. OD algorithms based on DL have gradually
become mainstream. YOLO, single-shot multibox detector (SSD), and RetinaNet are exam-
ples of one-stage approaches. These methods employ the idea of regression, eliminate the
preclassification and regression phase of the two-stage approaches, and directly separate
specific categories while regressing the border. Two-stage approaches tend to be utilized to
describe OD techniques based on region hypotheses; primarily, R-CNN series techniques
are used such as Fast R-CNN, Faster R-CNN, Mask R-CNN. The LPR network on edge
gateways necessitates not enhancing edge gateway memory and processing capabilities
but optimizing regular neural networks. Model compression can be used to produce a
reduced LPR model. M. Sandler [18] invented deep separable convolution, which dramati-
cally reduces the number of characteristics in neural network modeling models to create a
lightweight neural network model. Guan. et al. [19] developed a simple three-step detec-
tion framework module composed of a rough region scheme and a post-processing stage
to identify obstacles in a single railway image. A simple approach to meter recognition
that combines DL and conventional CV technology was proposed by Fan et al. [20]. On the
basis of YOLOv4, Cai et al. [21] suggested a one-stage based OD system for autonomous
driving. An optimization network pruning approach was put forth at the same time to
address the issue of onboard computer resources. The computing platform was constrained
and was unable to fulfill real-time demands.

2.4. Object Detection Application at the Edge Platform

EC evolved to deal with the negative aspects of cloud computing. Low latency, low
bandwidth, and low cost were advantages of EC over cloud computing [22]. EC is closer to
the data source, reducing latency, power consumption, and cost. The comparison between
cloud computing and EC is shown in Figure 1. Wang et al. [22] reduced the model size
from 64 MB to 8 MB through multiple sparse training and pruning techniques. Bi et al. [23]
presented a YOLOv3-based dish identification machine on an FPGA architecture. To speed
up the OD network and facilitate the deployment of edge platforms, Tu et al. [24] offered
an improved slim instance segmentation system-based immediate-term defect detection
scheme for tracking components.

SoC, FPGA, application-specific integrated circuits (ASIC), CPUs, and GPUs are exam-
ples of devices that could utilize EC. Initially, FPGA is considered to be the ideal hardware
for EC adoption of AI. FPGA successfully scaled power consumption, but it is not great at
inferencing performance or supporting the DL ecosystem. ASIC is suited for professional
customization because of its lengthy development cycle and expensive cost [22], but it
is challenging for it to adjust to the fast growth of object identification algorithms. The
manufacturing of semiconductor components like GPUs, CPUs, and RAMs are proceed-
ing apace; EC resources are provided to neural networks and increase the possibility of
implementing AI models in EC. The NVIDIA Jetson series are promising AI SoC, which
are more crucial to note [25]. They have high throughput, compact size, and good energy
efficiency. Traditional GPUs need between 100 and 250 watts of power, but the integrated

Sensors 2023, 23, 8913 5 of 22

GPU in the Jetson uses between 5 and 15 watts. It can speed up model inference by convert-
ing popular DL frameworks like TensorFlow, Caffe, and Python into TensorRT [26] using
transfer learning methods. The fundamental idea is to maximize the GPU’s capabilities,
network layer fusion calculations, and inference accuracy [27]. It can offer high-throughput
and low-latency deployment inference for embedded systems like safety monitoring and
autonomous driving.

Figure 1. Comparison between edge computing and cloud computing.

3. Method

This section provides a detailed introduction to the chosen system platform and
design scheme. The YOLOv7 framework serves as the foundation, and an enhanced Edge–
LPR algorithm is proposed in this paper, specifically tailored for edge gateways. The
backbone layer was reconstructed by applying channel pruning to reduce the network
model parameters. It effectively decreased the GPU resource consumption, while the
feature fusion technology was enhanced to achieve a balance between high precision and
real-time performance in the edge AI domain [28].

3.1. Comparative Design of System Platforms

OpenVINO was selected in this paper; it is a comprehensive tool suite launched by
Intel, for the rapid deployment of applications and solutions. The model training task
was placed on the cloud workstation with strong computing power. Cloud devices were
trained regularly, and new weight files were obtained to update the model weights of edge
gateways. At the same time, real-time Edge–LPR was performed on the edge gateway.
Figure 2 shows the schematic diagram of our EC collaboration scheme.

(1) Real-time photographs of vehicles entering and exiting the charging post parking
lot were captured by the camera (FPS was set to 30), and raw license plate information was
allowed to be captured.

(2) The video stream was sent to the Intel Movidius Myriad X edge gateway device
for license plate and model inference.

(3) The outcome was locally saved. The technology relayed the test findings at the
same time.

(4) After labeling the data, the cloud server trained the data to obtain new weights
and downloaded the new weights to the edge gateway.

Sensors 2023, 23, 8913 6 of 22

Figure 2. Schematic diagram of our edge cloud collaboration scheme.

3.2. License Plate Detection

In YOLOv7, FPN [29] uses upsampling and the fusion of various layer features to
recognize targets at three different scales. The size of the vehicle in the photograph will be
small if it is distant from the shooting location. The first 3-scale detection of the YOLOv7
head upgraded to 4-scale detection to solve this problem. To find targets, finer anchor
boxes were used in larger feature maps. To determine the anchor box sizes for each target
in the vehicle training set, the K-means clustering and intersection–union ratio were used
by us (IoU, represented by RIoU) with rectangular frames as a measure of similarity.
Twelve sizes that matched four detection scales were picked [30]. The K-means clustering
distance function is as follows:

d(B, C) = 1− RIoU(B, C) (1)

where B stands for the rectangle box’s dimensions, C for its center, and RIoU(B, C) for its
intersection with another rectangular box.

Figure 3 illustrates the use of a dense connection approach to fuse multiscale features
while enhancing the original horizontal connection method for multiscale features. Cascade
fusion, which preserved more of the original feature information, replaced parallel fusion.
The semantic information of high-level functions and the detailed knowledge of low-level
functions were utilized in this paper.

The image was divided by our detection network into an S grid. It made predictions for
bounding boxes for each grid unit, and each box had a confidence rating. The likelihood of
C conditional classes was predicted (the likelihood of object classes was one for each class).
The network outputted the probability of class and offset value for each bounding box in
turn. Features in the image were identified and bounding boxes with feature probabilities
higher than a threshold were selected.

The squeeze and excitation network (SENet) was used in the YOLOv7 C3 module to
enhance the perception ability and accuracy of the underlying network [31]. The SENet
schematic diagram is shown in Figure 4. The SENet evaluates the interaction between
feature channels and applies an attention mechanism to them. First, the squeeze operation
compresses the spatial dimension by globally pooling each feature map and obtaining
an average value. This operation can include global receptive field features, which ap-
proximates a number and then enters it into the activation operation. Throughout the
squeeze operation, the thread outputs a feature map of size 1 × 1 × C, and weights (w) are
utilized to assess the exact correlation of C channels [32]. By reducing the dimensionality
of the C channel, network computations can be reduced while improving nonlinearity
capabilities. Additionally, SENet is an attention mechanism [33] that can improve the
correlation between feature maps at various spatial places, and the model is enabled to pay
closer attention to significant objects and regions.

Sensors 2023, 23, 8913 7 of 22

Figure 3. FPN architecture.

Figure 4. SENet network structure diagram.

To enhance the perception ability and accuracy of using various levels of characteristics
for prediction when LPR is a common practice, due to issues with license plate occlusion or
large-degree tilt in the real-time monitoring of charging stations, the partial convolution
(PConv) network was introduced to more accurately identify license plates. Figure 5 shows
the comparison between PConv and traditional convolution, deep convolution/group
convolution. Different levels of feature maps are treated by PConv as feature maps of
different frames in the video frame [34], a method similar to 3D convolution. The output of
the 3D convolution of the intermediate frames is obtained by performing 3D convolution
on neighboring N frames. The information from the front and back feature layers are
combined in the output, and the fusion process is more adaptable than simple addition or
cascading. PConv performs quickly and effectively because it applies filters to a select few
input channels without influencing the others. Compared to deep group convolution and
ordinary convolution, PConv achieves smaller flops.

Figure 5. Comparison between PConv and conventional convolution, deep convolution/group
convolution.

Sensors 2023, 23, 8913 8 of 22

The target detector implemented as a sliding window introduces multiple detection
anchors for the same target object. The NMS technology was employed to eliminate
redundant bounding boxes in the license-plate-recognition process and to improve the
accuracy of license plate recognition [35]. The NMS involves determining a threshold value
(Tnms) [29], a list of bounding boxes B is selected, and an appropriate confidence level
C is set. The detection frame with the highest score is chosen initially. The IoU of the
remaining detected frames is then compared to the IoU of the highest scoring frame. This
process is repeated until the list B is empty. If there is a significant overlap between two
target frames, the algorithm promptly removes the detection with the lower confidence
level [36]. This approach may potentially lead to a low recall rate and missed detections; we
utilized the Soft-NMS optimization process to adjust the score loss instead of immediately
setting the score to 0 [37]. The final results were output using the IoU function. The
NMS technology was used in this paper to eliminate redundant bounding boxes in the
license-plate-recognition process and improve the accuracy of license plate recognition.
Algorithm 1 describes the output process of the Soft-NMS algorithm.

Algorithm 1 Soft-NMS method.
Input: B = {b1, · · · , bN}, C = {c1, · · · , cN}, Tnms

B is a list of the initial detection boxes
C contains a list of corresponding detection scores
Tnms relates to is the NMS threshold
Output: Final detection Bounding box list S
1: function SOFT_NMS
2: while B 6= empty do
3: m← arg max C
4: S← S ∪ bm; B← B ∪ bm; C ← C ∪ cm
5: si ← si f (IoU(M, bi))
6: for bi ∈ B do
7: if IoU(M, bi) ≥ Tnms then
8: B← B ∪ bm; C ← C ∪ cm
9: else

10: si ← si f (IoU(M, bi))
11: end if
12: end for
13: end while
14: return result

3.3. Model Compression

YOLOv7s is a lightweight detection network, but the model is still relatively large, so
it is necessary to reduce the network input size. But simply reducing the input to reduce
the calculation, such as reducing from 640 to 320, will cause a great loss in the detection
effect. The coefficients of the batch normalization (BN) layer can be constrained by adding
L1 regularization to make the coefficients sparse. After sparse training, the layers with
very small sparseness are cut out, and the corresponding activation is small, so the impact
on the latter is very small [38]. By iterating this process repeatedly, a simplified model
can be obtained. The entire pruning process is shown in Figure 6. First, the network was
initialized, the parameters of the BN layer were regularized, and the network was trained.
Then, the pruning rate was set to prune the network. By setting different pruning rates,
redundant convolutional layers were removed and the model structure was optimized
so that it can be better deployed on edge gateways. Finally, the pruned network was
fine-tuned to complete the pruning work.

Sensors 2023, 23, 8913 9 of 22

Figure 6. Example diagram of the pruning process.

BN layer calculation:

ẑ =
z ˜in − µB√

σ2 + ε
(2)

zout = γẑ + β (3)

The activation size of each channel is positively correlated with the coefficient (PyTorch
corresponds to the weights of the BN layer, and β corresponds to the bias). If γ is closed to 0,
the activation value is small. Sparse learning is performed based on the pretrained network,
and the overall framework is shown in Figure 7. The design of lightweight networks is
chosen for sparse learning to deliver a target number of parameters and computations[39].
Parameter values are initialized and retrained on the basis of the architecture created by
the pruning process.

Figure 7. Schematic diagram of model pruning process.

After training the network model of YOLOv7, the coefficients of the BN layers are
similar to the normal distribution.

By adding L1 regular constraints:

L = ∑
(x,y)

l(f (x, W), y) + λ ∑
γ∈Γ

g(γ) (4)

where the loss function from regular training is the first item, and the second item is
the constraint, where g(s) = |s| , γ is the regularization coefficient. When performing
backpropagation, parameters can be sparse and added to the training loss function:

L′ = ∑ l′ + λ ∑ g′(γ) = ∑ l′ + λ ∑ |γ|′
= ∑ l′ + λ ∑ γ ∗ sign(γ)

(5)

The first and second terms on the right side of the loss function are constraints, and
L is the initial loss function. Where g(s) = |s| , γ is the regular coefficient, it is necessary
to multiply the weight of the BN layer by the output and coefficient of the coincidence
function of the weight during backpropagation.

There are certain drawbacks to using complex convolutional networks in resource-
constrained edge environments. It is difficult to leverage large networks for inference due
to memory limitations, while lower computing power requires longer inference times [40].
The suggested pruning strategy can produce a network with the desired parameters and
FLOPs, which makes it easier to employ CNN in embedded settings. Equations (6) and (7)
represent the computation of the pruned network and parameter. Fl , Pl , and Cl repre-

Sensors 2023, 23, 8913 10 of 22

sent the computation amount, number of parameters, and number of channels of the l
convolutional layer, respectively. L is the number of layers in the network.

Fpruned =
L

∑
l=1

{
Fl

(
∑

cl−1
c=1 θ(γl−1,c, t)

Cl−1

)(
∑

Cl
c=1 θ(γl,c, t)

Cl

)}
(6)

Ppruned =
L

∑
l=1

{
Pl

(
∑

cl−1
c=1 θ(γl−1,c, t)

Cl−1

)(
∑

Cl
c=1 θ(γl,c, t)

Cl

)}
(7)

The same loss function as (8) is obtained by combining Equations (6) and (7). Fbaseline
represents the calculation amount and the size of the baseline network’s parameters, and
Ft arg et and Pt arg et represent the calculation amount and the number of parameters of the
target pruning network, respectively. The indicator function developed is used by sparse
learning, and Fpruned and Ppruned signify the amount of computation and network parameters
that are present after eliminating unneeded filters. The first bracket item on the right side
of (8) and (10) indicates the trimmed effect of the previous layer, and the second bracket
item indicates the trimmed effect of the current layer.

Losspruning =

(Fpruned − Ft arg et

Fbaseline

)2

+

(Ppruned − Pt arg et

Pbaseline

)2

(8)

Cross-entropy loss is used for classification while training network parameters. The
objective of this paper is to optimize the architectural parameters by gradient descent
during training. Finally, the best-trimmed model is found, and the computational cost
satisfies the resource limitations. The loss function has the following shape:

Loss = Lossorigin + αLosspruning (9)

for learning with the loss function of pruning Losspruning, and then they are solved simul-
taneously during training. The training is followed, and the ideal network design with
the desired parameters and computation volume is established. Algorithm 2 describes the
compression process of the Edge–LPR model.

Algorithm 2 Compression of Edge–LPR algorithm.

Require: output minimum loss L, maximum average accuracy AP
Ensure: maximizing model accuracy

1: initialization;
2: input images set xi and its label y, training round n;
3: train the previous network model T to obtain αT ;
4: conduct channel pruning and get reward AP, R;
5: add L1 regular constraint,
6: classify using cross entropy loss, g(s) = |s|;
7: calculate the model accuracy Loss using Equations (8) and (10);
8: calculate the model accuracy AP using Equations (15);
9: if n < N then

10: repeat;
11: update the previous weight network model T;
12: end
13: end if
14: if n ≥ N then
15: update the previous weight network model T;
16: output L,AP;
17: end if

3.4. License Plate Recognition

License plate images can be retrieved immediately through the Edge–LPR network,
although these license plates are often tilted at an acute angle, as shown in Figure 8. The

Sensors 2023, 23, 8913 11 of 22

coordinate base was used as the center center to correct the horizontally rotated license
plate image, as shown in Figure 9. Based on the license plate edge points received from the
license plate positioning network, the slope of the longest edge in the license plate was used
to calculate the tilt angle of the license plate. According to the positive and negative slope,
it can be divided into two situations, as shown in the figure. When the slope is positive,
the license plate must rotate clockwise. When the slope is negative, it should be rotated
counterclockwise. If the slope of the longest side of the straight line is k, then the tilt angle
of the license plate is θ. The inclination angle can be calculated using the following formula:

θ = arctank (10)

Figure 8. Camera-detected license plate image.

Figure 9. Schematic diagram of license plate rotation angle.

Given that the length of the line is r, and the initial angle is α, the line rotates about
the origin of the point. The rotational angle is θ. Equations (11) and (12) can be used to
determine the coordinates (m, n) following rotation while spinning clockwise. Figure 10
displays the results of the horizontal rotation correction for the license plate image. The
illustration shows that, following correction, the license plate image with horizontal rotation
can produce good results.

m = r ∗ cos(α− θ) (11)

n = r ∗ sin(α− θ) (12)

Sensors 2023, 23, 8913 12 of 22

Figure 10. Corrected license plate image.

End-to-end license plate character recognition is made possible by LPRNet, which
uses a lightweight CNN structure with strong robustness and does not require license
plate character segmentation [41]. Figure 11 shows the CNN-based LPR architecture.
Three convolutional layers, three maximum aggregation layers, three basic modules, and
two exit layers, used to avoid overfitting, make up the LPRNet backbone network. This
network utilizes a convolutional layer as the output layer and a 94 × 24 picture as the
input layer. The figure depicts its structure. An input layer, a feature output layer, and
four convolutional layers make up each basic module. LPRNet uses a backbone network to
extract image features in order to obtain the sequence of license plate characters and then a
convolutional kernel for convolution.

Figure 11. CNN-based LPR architecture.

3.5. Edge Computing

Our edge deployment was performed under the OpenVINO framework. OpenVINO
is capable of deploying high-performance computer vision applications on edge gateways
and contains a powerful toolkit for rapid development of computer vision applications that
can run on edge gateways. The detailed deployment process of the OpenVINO toolkit is
shown in Figure 12.

(1) Pretrained models: The OpenVINO toolkit comes with large number of pretrained
networks that are specially trained and tuned for specific computer vision tasks. These
models have been adopted in the intermediate representation (IR) format.

(2) Model optimizer: It converts models from multiple different frameworks into IR
format and uses them with the inference engine to reduce the size and complexity of the
model, and reduces memory and computing pressure.

(3) Inference engine: It is responsible for actual reasoning. The inference engine works
on models created using the model optimizer or obtained from pretrained models. This
tool provides hardware-based optimizations to further improve IR format models.

Sensors 2023, 23, 8913 13 of 22

Figure 12. Detailed deployment process of the OpenVINO toolkit.

4. Result and Discussion
4.1. Dataset Description

The Chinese city parking dataset (CCPD) is a large-scale domestic parking lot license
plate dataset created by a team from the University of Science and Technology of China for
license plate detection and recognition. The CCPD2020 dataset mainly includes new energy
license plate data in various lighting conditions, tilt angles, and weather conditions [42].
The images are stored in .jpg format and have a resolution of 1242× 375. The cameras of the
charging piles are used to record surveillance videos of vehicles entering and leaving the
parking spaces of the charging piles at different time periods and under different weather
conditions for fair comparison. The frame processing of these monitoring videos is carried
out. To ensure the objectivity and authenticity of the performance evaluation, the real
data of the vehicle were collected by manually retrieving the bicycle speed in the video
clips, and the real-time monitoring dataset of the charging pile was constructed, including
vehicles entering and exiting the charging pile parking space, including the new energy
license plate dataset under different brightness, different tilt angles, and different weather
conditions, to minimize potential data errors. The image resolution was 1032 × 1260, and it
was saved in .jpg format. Table 1 introduces the numbers of training, testing, and validation
sets for the two datasets.

Sensors 2023, 23, 8913 14 of 22

Table 1. Dataset description.

Dataset CCPD 2020 Ours

Classes 2 2
Train dataset 5769 2652
Test dataset 1001 650

Validation dataset 5006 1847

4.2. Model Training

When training YOLOv7 on an Ubuntu 18.04 workstation, PyTorch 1.12 was used as
the model framework. The OpenVINO range of EC devices supports CUDA 10.2 to speed
up model training and model reasoning. The cost of obtaining labeled datasets for LPR
was high, and there was a large amount of unlabeled data. In terms of feature distribution,
both marked data and unmarked data had the same feature distribution. To make full
use of unlabeled data labeling to improve the feature learning ability of the model, an OD
framework for SSL was proposed in this paper. The Edge–LPR model was trained firstly
using a modest quantity of marked data. After reaching stability, labels for unmarked data
were generated by self-training.

The self-training algorithm required two sample sets, Labeled = {(xi, yi)}, Unlabeled ={
xj
}

and in quantity L << U.
(1) A classification strategy F was generated with marked data.
(2) The classification strategy F was used to classify unmarked data and calculate the error.
(3) A subset of unmarked data was selected, and a label was added if the error

was small.
(4) The above steps were repeated until the unmarked data were an empty set.
The marked data were continuously selected from the unmarked data to add samples

with good performance. The algorithm calculation strategy of the subset was continuously
updated. An optimal calculation strategy was obtained. In the self-training process, an
entropy-based regularization loss term was added to the Edge–LPR network loss function
to make the prediction result more accurate. The co-training training method was used
to predict the unmarked data on the training model, and the pseudo-mark data were
generated. Finally, we generated a more accurate test model. It can learn more feature
information from the data, and the prediction results were more accurate. The specific
parameters of model training are shown in Table 2.

Table 2. Model parameter settings.

Parameter Values

Weight decay 0.0005
Batch size 16

Learning rate 0.01
Epoch 200

Precision, recall rate, FPS, mAP, and F1 score are the major assessment metrics for
LPR. There are four categories for what is associated with license plate detection: TP
represents positive samples that are correctly classified, FP represents positive samples that
are misclassified, FN represents negative samples that are misclassified, and TN represents
negative samples that are correctly classified.

The proportion of samples that are correctly classified as positive to all samples that
are detected is referred to as precision. Recall is the proportion of such samples that
are correctly categorized and recognized to the complete target test set of such samples.
Additionally, the algorithm’s performance on the target frame is determined and evaluated
using the missed detection rate. The F1 score considers both the precision and recall of the
classification model.

Sensors 2023, 23, 8913 15 of 22

Re =
TP

TP + FN
(13)

Pr =
TP

TP + FP
(14)

All possible parameters of precision and recall were tested by us to construct precision–
recall curves. The area under the curve, which had a value range of 0 to 1, was used to
calculate the network’s average precision:

AP =
∫ 1

0
p(r)dr (15)

F1 = 2 · Pr ·Re
Pr+Re

(16)

Different compression thresholds were used to reduce the model size; the pruning per-
centages of 0.5, 0.8, and 0.9 were set, and the models were trained sparsely. Tables 3 and 4
give the impact of the model at different pruning thresholds. When the compression
threshold is 0, it is the original model without model compression.

Table 3. Effects of different thresholds on the compression of the YOLOv7s model in the
CCPD2020 dataset.

Threshold 0 0.5 0.8 0.9

Params (MB) 36.6 19.5 12.2 8.1
Model storage size (MB) 74.8 37.2 14.7 8.2

Speed/GPU (ms) 17 12 11 9
Speed/CPU (ms) 154 86 58 41

mAP (%) 97.1 96.5 96.2 95.6

Table 4. Effect of different thresholds on the compression of YOLOv7s model in real-time monitoring
dataset of charging pile.

Threshold 0 0.5 0.8 0.9

Params (MB) 36.6 23.5 12.3 8.3
Model storage size (MB) 74.8 37.3 14.0 8.1

Speed/GPU (ms) 26 18 15 11
Speed/CPU (ms) 168 98 64 52

mAP (%) 96.1 95.5 95.2 94.6

Figure 13 illustrates how much channel pruning occurs in various BN layers. When
more channels are kept, this layer becomes even more crucial. Only a part of the most
crucial channels are retained by those BN layers, and all other channels are pruned. These
BN layers have little impact on the entire neural network.

To effectively demonstrate the superiority of the algorithm proposed in this paper for
license plate detection, a comparative experiment was conducted on the same hardware
device with the mainstream detection algorithms SSD, Faster RCNN, YOLOv4 series,
YOLOv5 series, YOLOX series, YOLOv7 series, EfficientDet, deep feedforward network
(DFF) and Edge–LPR system. The comparison results are shown in Table 5. We compared
the state-of-the-art detection algorithms, and the results are shown in Table 6. The number
of params and FLOPs of our Edge–LPR network was significantly less than that of other
detectors, and the detection speed can reach 187.6 FPS.

Sensors 2023, 23, 8913 16 of 22

Figure 13. The channels pruned by the model BN layer and the number of reserved channels when
the pruning rate is 0.5.

Table 5. Comparison with the state-of-the-art detection algorithms.

Detection Algorithm mAP (%) F1 Params (MB) FLOPs (G) Speed (FPS)

SSD 73.82 0.725 26.285 64.818 86.174
Faster RCNN 92.25 0.891 137.057 13.52 28.405

YOLOv4 93.48 0.872 64.106 59.851 70.622
YOLOv4-tiny 95.07 0.916 5.924 6.862 238.151

YOLOv5 93.48 0.928 7.093 6.76 130.069
YOLOv5-tiny 95.77 0.919 1.821 1.796 128.555

YOLOX 96.92 0.928 8.968 118.965 104.149
YOLOX-tiny 95.65 0.931 5.056 6.41 107.208

YOLOv7 98.83 0.945 36.49 103.5 87.624
EfficientDet 95.62 0.938 3.9 2.5 16.25

DFF 87.68 0.897 144 160 35.48
Edge–LPR (ours) 95.6 0.914 1.1 5.3 187.6

Table 6. Comparison with the other algorithms.

Detection Algorithm mAP (%) Speed (FPS)

CA-CenterNet [17] 96.8 52.7
LSV-LP [18] 89.3 112.56
P2OD [25] 97.52 108

Li et al. [27] 95.59 132.76
MFLPR-Net [30] 92.02 54
Edge–LPR (Ours) 95.6 187.6

This paper give two plots in Figure 14 that show the link between the number of
mAPs in relation to parameters and the number of FLOPs in relation to inference speed
to illustrate the trade-off between accuracy and effectiveness. The Edge–LPR successfully
strikes a balance between accuracy, parameter quantity, FLOPs, and inference speed.

For edge model inference, power consumption is a key issue to ensure its effectiveness.
OpenVINO was selected as the edge gateway platform for model inference in this paper.
Model inference in lightweight networks was held using GPU and CPU, which significantly
reduced the vulnerability of embedded devices to memory resources while also preserving
great detection accuracy. The aforementioned network framework was retrained using
the real-time monitoring dataset of the charging station, and accuracy was noticeably
increased. The network model’s final scale and computational complexity had marginally
decreased, while the speed of inference had marginally increased. The number of Edge–LPR

Sensors 2023, 23, 8913 17 of 22

parameters can be greatly decreased by compressing the trunk layer and reconstructing the
neck. This can accomplish quick multiobjective detection of vehicle edge scenarios while
also better meeting real-time needs.

(a) (b)

Figure 14. Illustration of the trade-off among mAP and the number of parameters, the number of
FLOPs, and the inference speed. (a) mAP–params curve. (b) FPS–FLOPs curve.

Edge–LPR can accurately detect license plate targets at different distances, different
lights, and different environments in Figure 15, and multiple targets in one picture can be
detected. Figure 16 shows the reasoning time of Edge–LPR under different compression
thresholds in the CCPD2020 dataset and the charging station real-time monitoring dataset.
The higher the threshold, the faster the inference time. When the compression threshold is
0.9, the fastest inference time of the model is around 40 ms.

(a)

(b)

Figure 15. Compression model test result sample. (a) Detection results of CCPD2020 dataset. (b) Test
results in charging pile environment.

The trained LPR model was reasoned by using the OpenVINO deployment on the
Intel i7 9th generation processor, the Python deployment on Nvidia RTX2070, and the
OpenVINO deployment on the gateway of EC. The CCPD license plate dataset was tested,
and the comparative data of different hardware and inference frameworks are shown in
Table 6.

The OpenVINO framework has a faster inference time than the PyTorch framework
when running on identical hardware. The Intel i7 9th generation processor outperforms
the Intel second-generation computational neural network when using the OpenVINO
framework for inference, and the OpenVINO framework can produce real-time results
when installed on gateways. All recognitions’ average accuracy (mAP) falls within a
manageable error range.

Sensors 2023, 23, 8913 18 of 22

Figure 16. Inference time on different datasets before and after YOLOv7 pruning.

On EC devices, the CUDA 10.1 was integrated into the Python 1.6 training framework
to speed up model training and model reasoning. The 18.04 version of the Ubuntu system
setting was used for our work. The GPU, memory, gigabit floating-point computations per
second (GFLOPS), thermally designed power, and manufacturing stages for each system
combination are thoroughly broken down in Table 7. The DL workstation in the cloud
has a thorough hardware setup that comprises an Intel i7 9th generation CPU processor,
AMD Ryzen 7 5800H, an NVIDIA RTX 2070 graphics card, and 128 GB of Intel second-
generation computing stick (NCS2) memory. In terms of EC, the processing power and
power consumption of EC hardware are, respectively, 1.7% and 7.8%.

Table 7. Comparison of different hardware performance.

Computer Platform Memory GLOPS (FP16) Thermal Design Power Manufacturing Process

AMD Ryzen 7 5800H 8 GB 64 bit
DDR4

4600 45 W 7 nm

Intel Core i711700K 8 GB 64 bit
LPDDR4x

450 125 W 10 nm

NVIDIA RTX2070 11 GB
35GDDR5X

7500 175 W 12 nm

NCS2 128 G 4 1.5 W 28 nm

To verify the advantages of low data transmission and low latency of edge computing,
this paper conducts tests on the NCS2 platform and cloud computing platform, respectively,
and records the amount of data transferred and the time spent in Table 8.

Cloud computing license plate detection usually requires five steps: (1) capture the
image; (2) upload; (3) process in the cloud; (4) download the detection image and results;
(5) output the detection results at the edge. The cloud host hardware configuration is
NVIDIA RTX2070, and the network test environment is set up with a bandwidth of 200 M.
The edge gateway has license plate detection capabilities; therefore, there is no need to
download the results. After the image is captured and processed, the result is returned
directly.

The process from capturing the license plate image to outputting the license plate
information is defined as a response cycle. With cloud computing, it takes 23 ms to capture
an image. The uploaded process takes 104 ms, which include packaging the detection image
into JavaScript Object Notation (JSON) format data and network latency. The processing
time is 28 ms, including API routing analysis, image detection, and result output. It
takes 89 ms to download the detection images and results. This process includes network
transmission and terminal data analysis. Finally, the edge device takes 34 ms to output
the license plate information. Therefore, the response cycle of cloud computing is 278 ms.

Sensors 2023, 23, 8913 19 of 22

In contrast, if edge computing is used, network I/O time is significantly reduced, and
the response cycle only includes capturing the image (21 ms), edge processing (96 ms),
and outputting the result (32 ms). Therefore, the detection cycle only takes 149 ms. Edge
computing solutions reduce latency by 46% compared to cloud computing. The focus of
the above experiments is to identify the differences between the two computing modes,
and the impact of network infrastructure instability is beyond the scope of this paper.

Table 8. Edge and cloud computing response times.

Step Edge Computing Cloud Computing

Step 1 Capturing images
21 ms

Capturing images
23 ms

Step 2 Edge computing
96 ms

Uploading original images
104 ms

Step 3 Output results
32 ms

Cloud computing
28 ms

Step 4 – Result returned
89 ms

Step 5 – Output results
34 ms

Response cycle 148 ms 278 ms

Figure 17 shows a comparison of the number and latency of uploaded images between
cloud computing and EC computing methods. Edge–LPR was deployed on cloud com-
puting workstations and had high inference ability. We tested for transmission latency,
which had been shown to slow down edge processing speed, and is necessary for cloud
computing systems.When the volume of photos grows, the transmission strain caused by
cloud computing causes latency to accelerate, and it is a challenge to guarantee real-time
and quick performance. This phenomenon shows that the EC cooperation architecture
provides benefits for deep edge learning, and the timeliness of edge gateways has been
fully utilized.

Figure 17. Comparison of the number and latency of uploaded images between cloud computing
and edge cloud computing methods.

5. Conclusions

Edge–LPR is an EC and lightweight model LPR system based on SSL, which is pro-
posed in this paper. Edge–LPR used the method of SSL to solve the problem of insufficient
label data in actual work, greatly improved work efficiency, and supported the LPR al-
gorithm based on DL in EC scenarios. To improve the accuracy of multiscale prediction,
the pruned feature extraction network and the compressed feature fusion network were
coupled together without reducing the accuracy of the model. In contrast to conventional
LPR methods, it used cloud computing to upload data gathered at the network’s edge and

Sensors 2023, 23, 8913 20 of 22

continually update the overall network model. The real-time recognition capabilities of EC
devices were improved. Edge–LPR maintained a better balance between the YOLO algo-
rithm’s rapidity and precision on edge gateways, and it is suitable for tiny edge gateways.
Additionally, we incorporated Edge–LPR into more platforms and situations for intelligent
transportation systems and applied it to a greater variety of EC devices.

Author Contributions: Data curation, J.Z. (Jianqun Zhu), J.Z. (Jiaqi Zhao), and Y.Y.; Formal analysis,
Y.L. and Q.Y.; Investigation, W.S. and Y.L.; Methodology, J.Z. (Jinzhao Zhao) and C.W.; Software, Z.Z.
and J.L.; Validation, Y.Y., X.C. and C.F.; Visualization, X.J., C.W. and F.X.; Writing—original draft, X.C.,
X.J., J.Z. (Jianqun Zhu), Y.L., W.S., Q.Y., Z.Z. and J.Z. (Jinzhao Zhao); Writing—review and editing,
J.L., C.F., Q.Y., F.X., Y.Y. and J.Z. (Jiaqi Zhao). All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the following funds: Natural Science Foundation of Shandong
Province of China: No.ZR2022MF289, ZR2019MA037; Innovation Ability Enhancement Project for
Shandong Province Science and Technology Small and Medium Enterprises: No.2023TSCG0159; Intro-
duce Innovative Teams of 2021 “New High School 20 Items” Project: No.2021GXRC071; Program for
Youth Innovative Research Team in the University of Shandong Province in China: No.2019KJN010;
Research Leader Program of Jinan Science and Technology Bureau: No.2019GXRC061; Graduate Edu-
cation and Teaching Reform Project of Qilu University of Technology in 2023; School-level Teaching
and Research Projects of Qilu University of Technology in 2021: No.2021yb08; Talent Training and
Teaching Reform Project of Qilu University of Technology in 2022: No.P202204; Qilu University of
Technology’s First Batch of Special “Unveiling List System” Projects for Major Innovations in Science,
Education and Industry in 2023: No.2023JBZ03.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Part of the data based on this research institute was accessed from the
CCPD2020 public database and can be downloaded through the following link: https://github.com/
detectRecog/CCPD, accessed on 15 October 2022.

Acknowledgments: Thank you to all authors for their assistance and support in this research work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gao, L.; Zhang, W. Research on License Plate Detection and Recognition Based on Deep Learning. In Proceedings of the 2021

International Conference on Computer Engineering and Artificial Intelligence (ICCEAI), Shanghai, China, 27–29 August 2021;
pp. 410–415. [CrossRef]

2. Zhu, G.; Liu, D.; Du, Y.; You, C.; Zhang, J.; Huang, K. Toward an Intelligent Edge: Wireless Communication Meets Machine
Learning. IEEE Commun. Mag. 2020, 58, 19–25. [CrossRef]

3. Mukherjee, M.; Matam, R.; Mavromoustakis, C.X.; Jiang, H.; Mastorakis, G.; Guo, M. Intelligent Edge Computing: Security and
Privacy Challenges. IEEE Commun. Mag. 2020, 58, 26–31. [CrossRef]

4. Wang, X.; Han, Y.; Leung, V.C.M.; Niyato, D.; Yan, X.; Chen, X. Convergence of Edge Computing and Deep Learning: A
Comprehensive Survey. IEEE Commun. Surv. Tutor. 2020, 22, 869–904. [CrossRef]

5. Ning, Z.; Zhang, K.; Wang, X.; Guo, L.; Hu, X.; Huang, J.; Hu, B.; Kwok, R.Y.K. Intelligent Edge Computing in Internet of Vehicles:
A Joint Computation Offloading and Caching Solution. IEEE Trans. Intell. Transp. Syst. 2021, 22, 2212–2225. [CrossRef]

6. Hung, J.M.; Li, X.; Wu, J.; Chang, M.F. Challenges and Trends inDeveloping Nonvolatile Memory-Enabled Computing Chips for
Intelligent Edge Devices. IEEE Trans. Electron Devices 2020, 67, 1444–1453. [CrossRef]

7. Dong, C.; Shen, Y.; Qu, Y.; Wang, K.; Zheng, J.; Wu, Q.; Wu, F. UAVs as an Intelligent Service: Boosting Edge Intelligence for
Air-Ground Integrated Networks. IEEE Netw. 2021, 35, 167–175. [CrossRef]

8. Tian, H.; Wang, T.; Liu, Y.; Qiao, X.; Li, Y. Computer vision technology in agricultural automation—A review. Inf. Process. Agric.
2020, 7, 1–19. [CrossRef]

9. Hua, X.; Cui, X.; Xu, X.; Qiu, S.; Liang, Y.; Bao, X.; Li, Z. Underwater object detection algorithm based on feature enhancement
and progressive dynamic aggregation strategy. Pattern Recognit. 2023, 139, 109511. [CrossRef]

10. Bai, T.; Yang, J.; Xu, G.; Yao, D. An optimized railway fastener detection method based on modified Faster R-CNN. Measurement
2021, 182, 109742. [CrossRef]

11. Chu, P.; Li, Z.; Lammers, K.; Lu, R.; Liu, X. Deep learning-based apple detection using a suppression mask R-CNN. Pattern
Recognit. Lett. 2021, 147, 206–211. [CrossRef]

https://github.com/detectRecog/CCPD
https://github.com/detectRecog/CCPD
http://doi.org/10.1109/ICCEAI52939.2021.00081
http://dx.doi.org/10.1109/MCOM.001.1900103
http://dx.doi.org/10.1109/MCOM.001.2000297
http://dx.doi.org/10.1109/COMST.2020.2970550
http://dx.doi.org/10.1109/TITS.2020.2997832
http://dx.doi.org/10.1109/TED.2020.2976115
http://dx.doi.org/10.1109/MNET.011.2000651
http://dx.doi.org/10.1016/j.inpa.2019.09.006
http://dx.doi.org/10.1016/j.patcog.2023.109511
http://dx.doi.org/10.1016/j.measurement.2021.109742
http://dx.doi.org/10.1016/j.patrec.2021.04.022

Sensors 2023, 23, 8913 21 of 22

12. Li, G.; Huang, Y.; Chen, Z.; Chesser, G.D.; Purswell, J.L.; Linhoss, J.; Zhao, Y. Practices and Applications of Convolutional Neural
Network-Based Computer Vision Systems in Animal Farming: A Review. Sensors 2021, 21, 1492. [CrossRef] [PubMed]

13. Cao, X.; Yao, J.; Xu, Z.; Meng, D. Hyperspectral Image Classification With Convolutional Neural Network and Active Learning.
IEEE Trans. Geosci. Remote Sens. 2020, 58, 4604–4616. [CrossRef]

14. Fan, X.; Zhao, W. Improving robustness of license plates automatic recognition in natural scenes. IEEE Trans. Intell. Transp. Syst.
2022, 23, 18845–18854. [CrossRef]

15. Wang, Q.; Lu, X.; Zhang, C.; Yuan, Y.; Li, X. LSV-LP: Large-Scale Video-Based License Plate Detection and Recognition. IEEE
Trans. Pattern Anal. Mach. Intell. 2023, 45, 752–767. [CrossRef]

16. Su, H.; Wei, S.; Yan, M.; Wang, C.; Shi, J.; Zhang, X. Object Detection and Instance Segmentation in Remote Sensing Imagery
Based on Precise Mask R-CNN. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium
(IGARSS 2019), Yokohama, Japan, 28 July–2 August 2019; pp. 1454–1457. [CrossRef]

17. Ghaderizadeh, S.; Abbasi-Moghadam, D.; Sharifi, A.; Zhao, N.; Tariq, A. Hyperspectral Image Classification Using a Hybrid
3D-2D Convolutional Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7570–7588. [CrossRef]

18. Rao, B.S. Dynamic Histogram Equalization for contrast enhancement for digital images. Appl. Soft Comput. 2020, 89, 106114.
[CrossRef]

19. Zheng, Z.; Ren, W.; Cao, X.; Hu, X.; Wang, T.; Song, F.; Jia, X. Ultra-High-Definition Image Dehazing via Multi-Guided Bilateral
Learning. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),Nashville, TN,
USA, 20–25 June 2021; pp. 16180–16189. [CrossRef]

20. Mazur, K.; Sucar, E.; Davison, A.J. Feature-Realistic Neural Fusion for Real-Time, Open Set Scene Understanding. In Proceedings
of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 8201–8207.
[CrossRef]

21. Yue, X.; Li, H.; Meng, L. An Ultralightweight Object Detection Network for Empty-Dish Recycling Robots. IEEE Trans. Instrum.
Meas. 2023, 72, 2505612. [CrossRef]

22. Zhang, Z.Y.; Zhao, P.; Jiang, Y.; Zhou, Z.H. Learning From Incomplete and Inaccurate Supervision. IEEE Trans. Knowl. Data Eng.
2022, 34, 5854–5868. [CrossRef]

23. Bi, R.; Xiong, J.; Tian, Y.; Li, Q.; Choo, K.K.R. Achieving Lightweight and Privacy-Preserving Object Detection for Connected
Autonomous Vehicles. IEEE Internet Things J. 2023, 10, 2314–2329. [CrossRef]

24. Cao, J.; Feng, Y.; Zheng, R.; Cui, X.; Zhao, W.; Jiang, T.; Gao, F. Two-Stream Attention 3-D Deep Network-Based Childhood
Epilepsy Syndrome Classification. IEEE Trans. Instrum. Meas. 2023, 72, 2503412. [CrossRef]

25. Wang, D.; Tian, Y.; Geng, W.; Zhao, L.; Gong, C. LPR-Net: Recognizing Chinese license plate in complex environments. Pattern
Recognit. Lett. 2020, 130, 148–156 . [CrossRef]

26. Li, Q.; Bi, Y.; Cai, R.; Li, J. Occluded pedestrian detection through bi-center prediction in anchor-free network. Neurocomputing
2022, 507, 199–207. [CrossRef]

27. Hsieh, C.Y.; Ren, Y.; Chen, J.C. Edge-Cloud Offloading: Knapsack Potential Game in 5G Multi-Access Edge Computing. IEEE
Trans. Wirel. Commun. 2023, 1 . [CrossRef]

28. Smyrnis, G.; Maragos, P.; Retsinas, G. Maxpolynomial Division with Application To Neural Network Simplification. In
Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2020), Barcelona,
Spain, 4–8 May 2020; pp. 4192–4196. [CrossRef]

29. He, Y.; Dong, X.; Kang, G.; Fu, Y.; Yan, C.; Yang, Y. Asymptotic Soft Filter Pruning for Deep Convolutional Neural Networks.
IEEE Trans. Cybern. 2020, 50, 3594–3604. [CrossRef]

30. Li, H.; Wang, P.; Shen, C. Toward End-to-End Car License Plate Detection and Recognition with Deep Neural Networks. IEEE
Trans. Intell. Transp. Syst. 2019, 20, 1126–1136. [CrossRef]

31. Feng, S.; Feng, R.; Liu, J.; Zhao, C.; Xiong, F.; Zhang, L. An Attention-Based Multiscale Spectral—Spatial Network for
Hyperspectral Target Detection. IEEE Geosci. Remote Sens. Lett. 2023, 20, 5503705. [CrossRef]

32. Yang, L.; Shan, X.; Lv, C.; Brighton, J.; Zhao, Y. Learning Spatio-Temporal Representations With a Dual-Stream 3-D Residual
Network for Nondriving Activity Recognition. IEEE Trans. Ind. Electron. 2022, 69, 7405–7414. [CrossRef]

33. Huang, X.; Li, S.; Li, J.; Jia, X.; Li, J.; Zhu, X.X.; Benediktsson, J.A. A Multispectral and Multiangle 3-D Convolutional Neural
Network for the Classification of ZY-3 Satellite Images Over Urban Areas. IEEE Trans. Geosci. Remote Sens. 2021, 59, 10266–10285.
[CrossRef]

34. Zhang, L.; Yang, L.; Ma, T.; Shen, F.; Cai, Y.; Zhou, C. A self-training semi-supervised machine learning method for predictive
mapping of soil classes with limited sample data. Geoderma 2021, 384, 114809. [CrossRef]

35. Musikawan, P.; Kongsorot, Y.; You, I.; So-In, C. An Enhanced Deep Learning Neural Network for the Detection and Identification
of Android Malware. IEEE Internet Things J. 2023, 10, 8560–8577. [CrossRef]

36. Jiang, Y.; Jiang, F.; Luo, H.; Lin, H.; Yao, J.; Liu, J.; Ren, J. An Efficient and Unified Recognition Method for Multiple License Plates
in Unconstrained Scenarios. IEEE Trans. Intell. Transp. Syst. 2023, 24, 5376–5389. [CrossRef]

37. Gao, J.; Wang, H.; Shen, H. Machine Learning Based Workload Prediction in Cloud Computing. In Proceedings of the 2020 29th
International Conference on Computer Communications and Networks (ICCCN), Honolulu, HI, USA, 3–6 August 2020; pp. 1–9.
[CrossRef]

http://dx.doi.org/10.3390/s21041492
http://www.ncbi.nlm.nih.gov/pubmed/33670030
http://dx.doi.org/10.1109/TGRS.2020.2964627
http://dx.doi.org/10.1109/TITS.2022.3151475
http://dx.doi.org/10.1109/TPAMI.2022.3153691
http://dx.doi.org/10.1109/IGARSS.2019.8898573
http://dx.doi.org/10.1109/JSTARS.2021.3099118
http://dx.doi.org/10.1016/j.asoc.2020.106114
http://dx.doi.org/10.1109/CVPR46437.2021.01592
http://dx.doi.org/10.1109/ICRA48891.2023.10160800
http://dx.doi.org/10.1109/TIM.2023.3241078
http://dx.doi.org/10.1109/TKDE.2021.3061215
http://dx.doi.org/10.1109/JIOT.2022.3212464
http://dx.doi.org/10.1109/TIM.2022.3220287
http://dx.doi.org/10.1016/j.patrec.2018.09.026
http://dx.doi.org/10.1016/j.neucom.2022.08.026
http://dx.doi.org/10.1109/TWC.2023.3248270
http://dx.doi.org/10.1109/ICASSP40776.2020.9053540
http://dx.doi.org/10.1109/TCYB.2019.2933477
http://dx.doi.org/10.1109/TITS.2018.2847291
http://dx.doi.org/10.1109/LGRS.2023.3265938
http://dx.doi.org/10.1109/TIE.2021.3099254
http://dx.doi.org/10.1109/TGRS.2020.3037211
http://dx.doi.org/10.1016/j.geoderma.2020.114809
http://dx.doi.org/10.1109/JIOT.2022.3194881
http://dx.doi.org/10.1109/TITS.2023.3237743
http://dx.doi.org/10.1109/ICCCN49398.2020.9209730

Sensors 2023, 23, 8913 22 of 22

38. Liu, X.; Liu, W.; Ma, H.; Fu, H. Large-scale vehicle re-identification in urban surveillance videos. In Proceedings of the 2016 IEEE
International Conference on Multimedia and Expo (ICME), Seattle, WA, USA, 11–15 July 2016; pp. 1–6. [CrossRef]

39. Wang, B.; Sun, Y.; Li, S.; Cao, Q. Hierarchical Matching With Peer Effect for Low-Latency and High-Reliable Caching in Social IoT.
IEEE Internet Things J. 2019, 6, 1193–1209. [CrossRef]

40. Chen, C.; Liu, X.; Qiu, T.; Sangaiah, A.K. A short-term traffic prediction model in the vehicular cyber—Physical systems. Future
Gener. Comput. Syst. 2020, 105, 894–903. [CrossRef]

41. Gao, H.; Xu, Y.; Yin, Y.; Zhang, W.; Li, R.; Wang, X. Context-Aware QoS Prediction With Neural Collaborative Filtering for
Internet-of-Things Services. IEEE Internet Things J. 2020, 7, 4532–4542. [CrossRef]

42. Abdel-Basset, M.; Hawash, H.; Chakrabortty, R.K.; Ryan, M.; Elhoseny, M.; Song, H. ST-DeepHAR: Deep Learning Model for
Human Activity Recognition in IoHT Applications. IEEE Internet Things J. 2021, 8, 4969–4979. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICME.2016.7553002
http://dx.doi.org/10.1109/JIOT.2018.2867617
http://dx.doi.org/10.1016/j.future.2017.06.006
http://dx.doi.org/10.1109/JIOT.2019.2956827
http://dx.doi.org/10.1109/JIOT.2020.3033430

	Introduction
	Related Work
	License Plate Detection Algorithm
	License Plate Recognition
	Lightweight Object Detection Model
	Object Detection Application at the Edge Platform

	Method
	Comparative Design of System Platforms
	 License Plate Detection
	Model Compression
	License Plate Recognition
	Edge Computing

	Result and Discussion
	Dataset Description
	Model Training

	Conclusions
	References

