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Abstract: The human liver exhibits variable characteristics and anatomical information, which is
often ambiguous in radiological images. Machine learning can be of great assistance in automatically
segmenting the liver in radiological images, which can be further processed for computer-aided
diagnosis. Magnetic resonance imaging (MRI) is preferred by clinicians for liver pathology diagnosis
over volumetric abdominal computerized tomography (CT) scans, due to their superior representation
of soft tissues. The convenience of Hounsfield unit (HoU) based preprocessing in CT scans is not
available in MRI, making automatic segmentation challenging for MR images. This study investigates
multiple state-of-the-art segmentation networks for liver segmentation from volumetric MRI images.
Here, T1-weighted (in-phase) scans are investigated using expert-labeled liver masks from a public
dataset of 20 patients (647 MR slices) from the Combined Healthy Abdominal Organ Segmentation
grant challenge (CHAOS). The reason for using T1-weighted images is that it demonstrates brighter
fat content, thus providing enhanced images for the segmentation task. Twenty-four different state-
of-the-art segmentation networks with varying depths of dense, residual, and inception encoder and
decoder backbones were investigated for the task. A novel cascaded network is proposed to segment
axial liver slices. The proposed framework outperforms existing approaches reported in the literature
for the liver segmentation task (on the same test set) with a dice similarity coefficient (DSC) score and
intersect over union (IoU) of 95.15% and 92.10%, respectively.

Keywords: deep learning; automated liver segmentation; MRI; diagnostic radiology; T1-weighted contrast

1. Introduction

Over the past decade, remarkable advancements in deep learning (DL) algorithms
have led to a rapid transformation in the field of radiology. DL-aided diagnostics have
achieved exceptional accuracy in detecting abnormalities in various domains such as
ophthalmology, respiratory, and breast imaging. In some cases, multimodal DL solutions
now exhibit accuracy levels comparable to expert radiologists. The high performance and
clinically satisfactory outcomes achieved through computer-aided diagnostic radiology
were previously considered inconceivable [1–3].
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Semantic segmentation is a prerequisite for any DL-driven diagnostic task, as it allows
the model to learn from the region of interest. Formerly, for semantic segmentation tasks in
radiology/medical imaging, distinct mathematical models were implemented, but such
approaches often lacked a generalized solution. Deep learning-based segmentation tasks
outperform conventional mathematical modeling-based approaches. Segmentation has al-
ways helped in improving the performance of computer-aided diagnosis [4,5]. Q. Dou et al.
present a unique 3D deeply supervised network (3D DSN) explicitly designed for liver
segmentation from CT data [6]. The network incorporates deep supervision to enhance
optimization and discrimination capabilities during the learning process, resulting in com-
petitive segmentation results compared to state-of-the-art approaches, along with improved
processing speeds. In another study, C. Chen et al. propose an innovative method for
lung lesion segmentation in CT scans of COVID-19 patients. Their approach involves
region-of-interest extraction and employs a 3D network with attention mechanisms to
enhance segmentation accuracy [7]. Additionally, C. Chen et al. introduce a rapid and pre-
cise lung segmentation technique, utilizing the edge-weighted random walker algorithm
with spatial and clustering information to achieve a heightened accuracy and reduced
segmentation time [8]. Similarly, P. Hu et al. develop a liver segmentation framework by
integrating a 3D convolutional neural network (CNN) with globally optimized surface
evolution. Their approach demonstrates effective segmentation outcomes suitable for
clinical applications [9]. Together, these contributions significantly enhance the field of
automated organ segmentation, offering valuable insights for medical imaging research
and clinical implementations.

However, such a segmentation task in an anatomical paradigm, i.e., the identification
and delineation of an anatomical area or structure in magnetic resonance imaging (MRI),
encounters a colossal amount of complexity. The complexity can be due to topology,
spatial distance, location, relative motion, texture, geometrical structure, and other varying
anatomical information. As a consequence, anatomical segmentation has always been a
demanding task. In particular, compared to other anatomical structures, very few significant
works can be found that focus on liver segmentation [10–12].

For any deep learning-based liver disease diagnosis system, precise automated liver
segmentation is indispensable. However, similar to any anatomical segmentation task, it
is extensively challenging. This is due to the fact that, compared with other abdominal
organs, its anatomy can noticeably differ with patients and clinical conditions. Additionally,
the liver’s proximity to contiguous abdominal organs (the spleen and kidneys) generates
substantial ambiguity [13,14].

However, recent research has demonstrated excellent results for deep neural network
(DNN)-based liver segmentation tasks from volumetric abdominal computed tomography
(CT) images. Tang et al. [15] achieved a dice similarity coefficient (DSC) of 98% in the
liver segmentation task from a plain CT scan using a modified multiscaled convolutional
neural network (CNN). Hu et al. [9] used a three-dimensional CNN for the same task and
achieved a high performance of around a 97.25% dice similarity coefficient. These works
utilized Hounsfield unit (HoU) scaling as a hyperparameter for image enhancement in
the preprocessing stage [16]. The review by Xiang et al. [17] observed that, in terms of
liver segmentation from magnetic resonance imaging (MRI) scans, high performance could
not be achieved and also very little significant work exists in this domain. Owing to the
absence of such homogeneous HoU-based image enhancement convenience, in terms of
automated liver segmentation from volumetric abdominal MR scans, achieving a similarly
high performance to CT images is challenging.

Moreover, MRI scans are extensively adopted by clinicians for liver pathology inves-
tigation, due to their superior contrast and spatial resolution for soft tissues compared
to CT scans [18,19]. CT scans can provide solid anatomical information. On the contrary,
MRI demonstrates high signal intensity in comparison to CT scans. As a result, both
anatomical and physiological information can be derived from MRI scans. In particular,
both CT and MRI can provide accurate anatomical information about the liver lesion or
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haemangioma; however, MRI scans can provide a further important basis for screening
benign or malignant types [20–22].

The above studies demonstrate the significance of liver segmentation, specifically from
volumetric MRI scans, as this modality is favored by clinicians in relation to pathological
diagnosis. In this regard, liver segmentation from MRI scans holds significant importance.
A. Mostafa et al. investigated a whale optimization algorithm for liver segmentation from
MRI scans [23]. A. Hänsch et al. studied multimodal training and three-dimensional CNN
for the task [24]. X. Zhong et al. used deep action learning with a 3D UNet [25], and P.
Pandey et al. investigated contrastive semisupervised learning for the liver segmentation
task [26] on the CHAOS abdominal MRI dataset [27]. D. Mitta et al. implemented a
weighted UNet with attention gates for the liver segmentation task [28] on the same dataset,
and J. Hong et al. achieved a slightly better performance using a source-free unsupervised
UNet [29]. X. Wang et al. investigated a bidirectional search of the neural net for the
task [30]. Additionally, S. Mulay et al. used a geometric edge enhancement-based mask
R-CNN [31]. The more recent work of L. Zbinden et al. achieved better performance than
previous research for liver segmentation on the same testing set by implementing nnUNet
on T1-weighted MRI slices [32].

In this research, we investigated 24 state-of-the-art segmentation networks for liver
segmentation tasks from T1-weighted MR scans using a publicly available dataset, which
annotated ground truths for the liver segmentation of 20 patients. The prospect of predicting
a precise mask from T1-weighted MR scans is higher as fat (and protein) contents are
brighter and more distinguishable in such a group. The investigation explores state-of-
the-art segmentation networks, such as UNet, UNet++, and feature pyramid network
(FPN) segmentation networks with varying dense encoder backbones, along with various
image enhancement techniques in the preprocessing stage. The proposed cascaded network
showed superior performance to many high-performance state-of-the-art approaches on the
same test set. Finally, we developed a software prototype by deploying our proposed DL
model in a cloud server for public usage. The cross-platform software is open source and
can be accessed from http://130.211.209.103/projects/the-big-mri-project-beta, accessed on
9 August 2023.

The main contributions of the research are listed below.

• This research extensively investigates state-of-the-art approaches for precise liver
segmentation from T1-weighted abdominal MR scans to facilitate clinicians with
AI-driven assistance for liver pathology diagnosis;

• This research investigates the effects of multiple image enhancement techniques for
automated liver segmentation tasks from MR scans;

• This research proposes a novel cascaded network for the liver segmentation task that
demonstrated state-of-the-art performance compared to the literature;

• The proposed model was deployed in a cloud server for demonstration purposes so
that clinicians can directly benefit from the results of this investigation.

2. Materials and Methods

The brief methodology of the research is explained in Figure 1. The methodology will
be discussed in detail in the following section.

2.1. Dataset

The dataset was collected from the Combined Healthy Abdominal Organ Segmen-
tation (CHAOS) grant challenge [27]. The public portion of the CHAOS dataset includes
computed tomography (CT) and magnetic resonance imaging (MRI) abdominal scans of
20 patients, in the Digital Imaging and Communications in Medicine (DICOM) format.
The ground truths (GT) were provided from the source, which includes masks for the right
kidney, left kidney, liver, and spleen. The ground truth masks were annotated by certified
radiologists. All scans are of healthy patients. The MRI scans include T1-weighted in-phase
and out-phase, along with T2-weighted scans, which are discussed in the next subsection.

http://130.211.209.103/projects/the-big-mri-project-beta
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Each T1 scan includes 26 to 56 slices; for 20 patients the total number of T1-weighted slices
is 647 [27].

Figure 1. Flow diagram explaining methodology for automated liver segmentation from T1-weighted
MRI scans.

2.2. Selecting Task-Specific Contrast Group

Among different contrast-enhanced groups (in-phase T1-weighted, out-phase
T1-weighted, and T2-weighted), specific groups were chosen by analyzing the relevant
abdominal anatomy and attributes of the available contrast-enhanced groups.

2.2.1. Relevant Abdominal Anatomy

The supplied masks (left kidney, right kidney, liver, and spleen) lie in close proximity
to each other in the abdominal region, leading to a colossal amount of ambiguity in
distinguishing any of the organs. The anatomy of these organs is briefly visualized in
Figure 2 [33]. The superior part of the liver (left lobe) lies within the epigastric and left
hypochondriac regions. It is in close proximity to the spleen and rests in front of the spleen
in terms of the axial plane. The middle part of the liver resides above the umbilical region.
The inferior part of the liver is just in front of the upper pole of the right kidney, which
occupies the right lumbar region. The left kidney lies in the left lumbar region just below
the spleen. Therefore, such close proximity generates an enormous amount of complexity
and obscurity in automated abdominal organ segmentation tasks using machine learning.

2.2.2. T1- and T2-Weighted Images

The T1 and T2 parameter represents relaxation time for longitudinal (Mz) and trans-
verse (Mt) magnetization components for each proton. T1 is noted as the spin–spin relax-
ation phenomenon, and T2 is noted as the spin–lattice relaxation phenomenon. When the
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macroscopic magnetizing vector for each voxel is Mo, then the relationship among the
magnetization components and T2, T1 is denoted as [34]

Mt(t) = Mo sin αe
−t
T2 (1)

Mz(t) = Mo cos αe
−t
T1 + Mo(1− e

−t
T1 ) (2)

where α denotes the flip angle, which represents a rotation in net magnetization. Character-
istically, the T1 tissue relaxation time is always larger than T2. The relaxation times vary
broadly with tissue attributes and characteristics. These varying intervals can also be used
to distinguish between healthy and abnormal tissues. Table 1 denotes T1 and T2 values for
relevant abdominal tissues [35].

Figure 2. Superficial visualization of relevant abdominal anatomy for describing underlying ambigu-
ity in the segmentation task.

Table 1. Average T1 and T2 relaxation time (msec) for 1.5 T and 3.0 T MRI scans.

Tissue
1.5 T 3.0 T

T1 (msec) T2 (msec) T1 (msec) T2 (msec)

Kidney 966–1412 85–87 1142–1545 76–81
Liver 586 46 809 34

Spleen 1057 79 1328 79
Lipid 343 58 382 68
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The relation among the image intensity of each voxel I(x, y), the tissue density ρ(x, y),
the echo time (TE), and the repetition time (TR) can be denoted as

I(x, y) = ρ(x, y)
(1− e

TR
T1 ) sin α

1− e
TR
T1 cos α

e
TE
T2 (3)

In Equation (3), α is optimized by following

αErnst = cos−1 e
TR
T1 (4)

when TE� T2, and either α ∼ αErnst or TR ∼ T1, then the image is defined as T1-weighted.
Moreover, the image is defined as T2-weighted when TE > T2, and either α � αErnst or
TR� T1 [36].

In accordance with its definitions, fat (and protein) content in T1-weighted MRI scans is
brighter. Owing to such characteristics, the liver is more distinguishable in T1-weighted MRI
scans. Figure 3 shows sample T1- and T2-weighted slices of different axial views. It is clear
from the figure that for T1-weighted in-phase scans, the liver is far more distinguishable
(even in the slices where the liver is small) in the inferior part of the liver, and the superior
part of the liver in the axial view. In the MRI slices where the liver is larger (i.e., the
middle part of the liver), both in-phase and out-phase T1-weighted scans can be used. As
T1-weighted out-phase scans represent out-of-phase protons, a darker boundary can be
noticed around regions of varying intensities. As a result, unwanted artifacts are introduced
in these slices.

Figure 3. Visualization of MRI slices from (a) upper pole of the kidney, (b) inferior part of the liver,
(c) middle part of the liver, and (d) superior part of the liver for different types of data available in
the dataset.

Due to such attributes among different contrast-enhanced MRI scans, in-phase
T1-weighted contrast-enhanced scans were selected for the liver segmentation task. Such
groups provide initially enhanced images, which can contribute to boosting the perfor-
mance of deep neural networks.

2.3. Dataset Preprocessing

Firstly, in-phase T1-weighted 647 DICOM slices were converted to PNG format in
order to optimize the preprocessing and processing steps. In the ground truth mask,
there are multiple organs (right kidney, left kidney, liver, and spleen) present. Binary
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masks are generated for the liver alone. Each slice and GT mask pair is then resized to
256× 256 dimensions from their original 512× 512 dimensions. Reducing the size of the
dataset offers notable benefits in terms of enhancing computational efficiency during the
training process of segmentation networks.

In order to ensure the data are ready for the machine learning investigation, there are
important steps that include fold creation from the preprocessed dataset. Fold creation
invovles dividing the data into the training set, validation set, and testing set for five folds.
In order to avoid biases during training, it is important to make sure that the dataset is
balanced; this is achieved by the augmentation of the training set. Finally, the authors
investigated different image enhancement techniques for each of the created folds. Figure 4
represents techniques for fold creation and augmentation, which performed following the
literature in [37–39]. Image enhancement techniques are demonstrated in Figure 5.

Figure 4. Flow diagram explaining the methodology for fold creation and augmentation in the
training set.

Figure 5. Visualization of image enhancement techniques.
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2.3.1. Fold Creation

The methodology follows five-fold cross-validation techniques for validating the net-
work performances. From the preprocessed dataset, five folds were created. In each fold
training, validation, and testing set ratios were 70%, 10%, and 20%, which corresponds to 453,
65, and 129 DICOM slices, respectively. This was done to make sure that the performance
metric represents the performance of the trained network on the complete dataset.

2.3.2. Augmentation

The training set for each fold was augmented using geometrical spatial transformation of
coordinates (rotation and translation). Geometric spatial transformations represent a widely
recognized and efficient technique for processing topographic imaging datasets [40,41].

The affine matrix for rotation Irotation and for translation Itranslation can be denoted as

Irotation =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (5)

Itranslation =

 1 0 0
0 1 0
tx ty 1

 (6)

where the values of θ are defined by the set:

θ = {±5◦,±10◦,±15◦,±20◦, ...,±90◦} (7)

and the values (tx, ty) are defined by the set:

(tx, ty) = {(−10, 10), (+10,−10), (−10,+10), (10, 10)} (8)

The validation and testing sets were not augmented. After augmentation, each training
fold consisted of around 6700 slices. The validation set was used to avoid overfitting, which
is a common problem in machine learning model development [42,43].

2.3.3. Image Enhancement

Image enhancement includes gamma correction for each fold. For each of the pixels
f (x, y), the gamma correction can be denoted as [44]

g(x, y) = 255
(

f (x, y)
255

) 1
λ

(9)

where g(x,y) denotes the gamma corrected pixel value, and the value of λ is considered
to be 0.5 in this study. And, for all f (x, y) > 200, f (x, y) is considered to be 255 to
enhance the targeted region. Another image enhancement technique called contrast-limited
adaptive histogram equalization (CLAHE) was used in the three-channel (or RGB) image
construction technique. If in a histogram kth, the intensity value is rk, and the number of
pixels with the rk intensity value is nk, then for an M× N dimensional image, the equalized
histogram can be represented by

p(rk) =
nk

M× N
(10)

CLAHE is an adaptive histogram equalization technique that undergoes transforma-
tion over local regions. Here, a matrix of 8× 8 dimension was used for local histogram
equalization. The output histogram from the CLAHE transformed image follows the
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Rayleigh distribution. Gamma correction was applied to the CLAHE-enhanced image, and
finally, the image was complemented. The image compliment f−1(x) can be expressed as

f−1(x) = 255− f (x) (11)

The three-channel (or RGB) image was constructed by concatenating the original
image, the gamma-corrected CLAHE enhanced image, and the complement of the gamma-
corrected CLAHE enhanced image.

2.4. Deep Neural Networks

UNet-like architectures with pretrained deep dense, residual, and inception encoder
backbones previously showed high performance in both classification and segmentation
tasks for 2D chest X-rays [45]. UNet++ with deep dense blocks showed benchmark per-
formance in segmenting lung content from volumetric CT scans [46]. These segmentation
networks also performed well in solving complex problems such as detecting intracranial
hemorrhages [47]. These studies inspired us to investigate these UNet-like architectures
with pretrained encoder backbones for liver segmentation tasks from MR scans. UNet,
UNet++, and feature pyramid network (FPN) segmentation networks were investigated
with varying depths of dense, residual, and inception encoder backbones. The network
architectures are shown in Figure 6. The encoder backbones were pretrained dense, resid-
ual, and inception blocks (marked in light orange). The decoder (light blue) uses transpose
convolution blocks for upscaling the vector output from the bottleneck (marked in dark
blue) output to construct the segmentation mask. The yellow blocks in UNet++ and FPN
represent both concatenation and convolution blocks.

Figure 6. Network architectures of different segmentation networks and investigation frameworks.
The varying depth of pretrained dense, residual, and inception encoder backbones were investigated
for UNet++, UNet, and FPN segmentation network architectures.

2.4.1. UNet

UNet architecture consists of an encoder and a decoder part. The encoder part reduces
the input image size in each of the convolutional blocks through max pooling. In the final
encoder block, the two-dimensional original image matrix is reduced to a vector array.
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The decoder part upscales the converted vector array in each block through convolutional
blocks and upconvolution layers. Lastly, the skip connections among encoder–decoder
blocks transfer weights for localizing the region of interest. These skip connections are
similar to the attention mechanism [48].

2.4.2. UNet++

UNet++ is an extension of the UNet and wide UNet architecture. It utilizes the concept
of deep supervision. UNet++ also introduces nested convolutional blocks inside each
skip pathway, and such blocks enhance the quality of feature spaces that are passed to the
decoder blocks [49,50].

2.4.3. Feature Pyramid Network (FPN)

In the FPN network, weight connections from the UNet decoder blocks are fed through
skip connections to feature pyramid blocks. Further, the output from each feature pyramid
block is fed into a single convolutional block. Finally, the output from the convolutional
block is fed into a rectilinear unit (ReLU) activation layer for generating the predicted
masks [51].

2.4.4. Pretrained Backbones

The concept of transfer learning is utilized to enhance the segmentation performance
and reduce the training time. Several pretrained encoders (variants of dense, residual, and in-
ception networks), which were trained on the ImageNet computer vision database [52], were
used as the backbones. For each backbone variant, three varying depths were investigated.
The variants of DenseNets were DenseNet201, DenseNet161, and DenseNet121 [52–54], while
the variants of residual networks were ResNet152, ResNet50, and ResNet18 [55]. InceptionV4
and InceptionResNet were the variants of the inception backbones [56].

2.5. Experiments

Two major experiments were carried out in this study: (i) the generalized model and
(ii) the specialized network for handling anatomical ambiguity.

2.5.1. Generalized Model

In this experiment, MRI slices with different liver sizes were used in training and
evaluation and the model was generally not specific to any particular liver size. Then, the
effects of image enhancement on the generalized model were investigated. A total of
24 networks (three architectures with eight backbones) were tested on three versions of
MRI images (i.e., original, gamma-corrected, and 3-channel view) to segment the liver.

2.5.2. Specialized Network for Handling Anatomical Ambiguity

To enhance the performance of the segmentation network in segmenting the liver
region from the MRI slices where the liver shape varies, multiple segmentation networks
needed to be trained to segment the liver region reliably. A total of 90 slices from the
inferior part of the liver and the upper right pole of the kidney were trained separately.
Exact preprocessing and processing steps were followed for this set of slices, which was
discussed previously. For this specific task, only varying depths of the ResNet encoder–
decoder backbones with UNet++, UNet, and FPN were investigated as the ResNet showed
better performance in the preliminary study. Three variants of ResNet and Inception-
ResnetV2 with three architectures (a total of 12 experiments) were investigated specifically
for the slices with small liver contents.

2.5.3. Cascaded Network

Since the liver size varies in the MRI volume, every single generalized model proposed
in the literature fails to generalize. Therefore, we propose a cascaded model using a decision
function to improve the performance of the segmentation network. The architecture of the
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cascaded network is depicted in Figure 7. The volumetric MRI scan is fed into the network
slice by slice. At first, a liver mask is predicted from the generalized network. From the first
predicted mask, the number of predicted white pixels is calculated. The following equation
is used to decide the potential shape of the liver mask in the slice under investigation,
where k represents the white pixel count:

Liver_Content =


Absent, if k = 0
Small, if 1 ≤ k ≤ 750
large, if k > 750

(12)

Figure 7. Cascaded network for handling anatomical ambiguity: the generalized network predicts
an initial mask; if the pixel count for the predicted mask refers to a constrained or null liver content,
then the input slice is fed into the specialized network.

If the number of white pixels is zero, there is no liver in the slice and so the mask is
completely black. However, if the decision function identifies a number between 1–750, the
slice is again fed into the specialized network for producing the final mask. However, if the
number is higher than 750, the mask generated by the generalized model is used as the
final liver mask.

The sets of large, small, and absent liver contents are created on the basis of the
topographic visualization of the abdominal anatomy, which was described earlier in
Section 2.2.1. The liver content is maximum in the axial views from the middle part
of the liver. Moreover, the liver content is medium and constrained in the axial views from
the superior part of the liver and the inferior part of the liver, respectively. In the axial
view from the upper part of the kidney, the liver content is absent. In this perspective,
the set of large liver content is constructed with the axial views from the middle part and
superior part of the liver. The axial views from the inferior part of the liver are represented
in the set of small liver content. Lastly, the set of absent liver content is formed by the axial
views from the upper part of the right kidney. The threshold values are then determined
by analyzing the pixel counts in each of the sets.

Generally, the axial views from the superior part and inferior part of the liver have
significant liver content and the liver area can be comfortably segmented. However,
ambiguity arises for the axial views from the inferior part of the liver and the upper part
of the right kidney, as the liver portion is significantly constrained. In such a perspective,
segmentation performance may improve if slices from these two complicated axial views
are handled with a separate network, which is only trained with such cases. Thus, such a
cascaded approach was investigated.
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2.6. Loss Function

Binary cross-entropy (BCE) loss is typically used for classification tasks. As any
semantic segmentation task can be considered as a classification task at the pixel level, this
loss is also effective for segmentation. BCE loss can be expressed by [57,58]

Loss(BCE) =
1
N

N−1

∑
i=0
−(yi log(ŷi) + (1− y) log(1− ŷi)) (13)

The dice coefficient is used to calculate the similarity index between ground truth and
predicted masks for segmentation tasks. Dice loss is a region-based loss function and it is
introduced in [59]. Dice loss can be expressed by

Loss(DICE) = 1−

N−1
∑

i=0
yi ŷi

N−1
∑

i=0
y2

i +
N−1
∑

i=0
ŷ2

i + ε

(14)

In Equations (13) and (14), N represents the total number of pixels, yi represents the
ith pixel in the ground truth mask, and ŷi represents the ith pixel

Initially, both the mentioned loss functions were investigated to find the optimum
solution. However, the detailed investigation was carried out with the BCE loss, as it
demonstrated superior performance over dice loss in the initial investigation.

2.7. Training Parameters

In order to conduct a uniform comparison among the network performances, it was
indispensable to use the same training parameters for all the networks. All the training was
conducted in an NVIDIA Tesla P100-PCIE graphics processing unit (GPU) with 16 gigabytes
(GB) og memory. The initial learning rate was set to 0.0001 with a learning factor LR of
0.02. If the validation loss did not show significant changes in 10 epochs, the learning
rate was reduced by 1

LR . The maximum epoch number was set to be 100 for each fold,
but if the validation loss was constant for 20 epochs, the training was terminated. Z-score
normalization was used, which uses the standard deviation and mean of the raw MRI slices
for normalizing each image. For optimizing the process of gradient descent, in each of the
epochs, the ADAM optimization algorithm was used as it showed superior performance
over stochastic gradient descent (SGD) in the initial investigation [60,61].

2.8. Evaluation Metrics

For evaluating the performance of each investigated network, the accuracy, dice
similarity coefficient (DSC) (i.e., F1-score), and intersection of union (IoU) were computed.
For each network, the average metrics for each ground truth mask and predicted mask
pairs were calculated. Accuracy, DSC, and IoU can be expressed by

Accuracy =
TP + TN

2× TP + TN + FP + FN
(15)

DSC =
2× TP

2× TP + FP + FN
(16)

IoU =
TP

2× TP + FP + FN
(17)

In Equations (15), (16), and (17), TP, TN, FP, and FN denote true positive, true negative,
false positive, and false negative, respectively.
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2.9. Cloud Deployment

A cloud-based application for real-time liver segmentation from MRI images was
deployed. The deep learning model was deployed in the cloud back-end server, which
runs on an 8-core, 32 GB Memory Apache Linux instance hired from Google Cloud Per-
form (GCP). The back-end server was connected to a SQL database for storing the MRI
images. The application is cross-platform compatible and users can access the application
anytime via a web browser from any edge device. The cloud-based application can be
remotely connected with a Picture Archiving System (PACS) for assisting radiologists in
liver pathology investigations. In order to provide more convenient remote access for
clinicians, an Android application was also developed. Figure 1 superficially describes the
cloud application. To ensure the robustness of the segmentation network, an automated
self-learning scheduler was implemented in the back-end server following the concept
discussed [62]. The scheduler automatically retrains the deployed model with the incoming
new data provided by the user, and such an approach boosts the network’s performance
on unseen real-world data.

3. Results and Discussion

The results from different investigations are discussed in this section. Later, a perfor-
mance comparison is presented, which compares the efficiency of the proposed approach
with the reported high-performance techniques in the literature for liver segmentation on
the same MRI test set. In the following section, the performance of the generalized model,
specialized model, and cascaded models are presented.

3.1. Generalized Model

The Table 2 summarizes the network performance for segmenting the liver region in
the MR slices using a generalized model. Deep networks showed superiority in perfor-
mance in comparison to shallow networks. On the nonenhanced images (original image),
UNet++ with dense backbones showed the top performance. UNet++ with a DenseNet201
backbone showed the best performance with a DSC and IoU of 94.3% and 91.00%, respec-
tively. On the nonenhanced images, UNet with different DenseNet backbones exhibited a
similar performance.

For the three-channel image set, networks with DenseNet backbones demonstrated
slightly better performance compared to other networks. Among the variants of the
DenseNet model, DenseNet161 performed the best for this specific image set. Both FPN and
UNet with DenseNet161 backbones achieved a DSC of over 93%. Among the investigated
image enhancement techniques, the gamma-enhanced image set performed the worst.

The liver content is maximum in the slices showing the middle part of the liver and
also significantly larger in the superior part of the liver. For these two specific types of
slices, all of the DenseNet backbones showed excellent performances. Figure 8a shows the
predicted liver masks for the slices from the middle part of the liver. The figure shows that
all of the networks can segment the liver region accurately.

3.2. Effects of Image Enhancement for Generalized Model

It can be observed that the network performances were slightly decreased when image
enhancement techniques were implemented (Table 2). This is due to the ambiguity that arises
from the slices where the liver content varies widely. Though image enhancement was very
effective for the slices where the liver portion was significant, the performance dropped when
the liver size was minimum in the slice of investigation. Figure 8b shows such a sample liver
slice with the ground truth mask and the masks predicted by different models.

Due to this ambiguity, finding a generalized image enhancement technique for such a
complex and varying anatomy is very challenging.
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3.3. Limitation of the Generalized Model

In the case of the slices of the middle part of the liver, all ResNet and inception
backbones demonstrated satisfactory performance. Figure 9 shows the predicted masks
from top-performing networks for the middle part of the liver (large liver content), inferior
part of the liver (small liver content), and upper pole of the kidney (no liver content) for
the original T1-weighted images. Figure 9 shows that the generalized model performed
well for the slices with large liver content and for the slices where the liver was absent.
However, when the liver content was small, the generalized model struggled to locate the
liver area precisely.

Table 2. Summary of the investigated network performances from the generalized approach. UNet++
with DenseNet201 encoder exhibited the best performance.

Networks Original Three Channel Gamma Corrected

Architecture Backbone Acc. (%) IoU (%) DSC
(%) Acc. (%) IoU (%) DSC

(%) Acc. (%) IoU (%) DSC
(%)

UNet++ DenseNet201 99.73 91.00 94.30 99.60 88.95 92.35 99.42 89.28 91.91
DenseNet161 99.68 89.78 93.06 99.71 89.60 92.95 99.66 87.00 90.30
DenseNet121 99.43 89.17 92.57 99.66 90.08 93.40 99.56 87.58 90.92

ResNet152 99.70 89.79 93.13 99.67 87.97 91.34 99.70 89.00 92.33
ResNet50 99.70 90.42 93.81 99.68 89.54 92.98 99.66 88.13 91.64
ResNet18 99.70 89.73 93.08 99.70 89.63 93.01 99.63 84.55 88.50

Inception-resnet-v2 99.71 89.16 92.57 99.65 88.31 92.10 99.70 89.60 91.98
inception-v4 99.70 87.98 91.29 99.68 89.23 92.62 99.70 89.79 92.16

UNet DenseNet201 99.76 89.98 93.22 99.72 88.77 92.13 99.78 88.74 92.18
DenseNet161 99.57 90.48 93.84 99.43 90.08 93.60 99.45 87.58 90.92
DenseNet121 99.43 89.88 93.27 99.66 89.48 92.90 99.64 87.04 90.31

ResNet152 99.69 89.46 92.97 99.67 88.66 92.25 99.67 88.91 92.35
ResNet50 99.68 87.48 90.93 99.66 85.49 89.01 99.68 88.79 92.36
ResNet18 99.67 88.16 91.83 99.67 86.83 90.38 99.68 88.77 92.31

Inception-resnet-v2 99.66 87.68 91.41 99.68 88.20 91.80 99.70 87.81 91.32
inception-v4 99.68 88.64 92.34 99.70 90.68 93.47 99.62 87.89 91.71

FPN DenseNet201 99.65 89.45 92.83 99.36 89.50 92.97 99.47 88.33 91.87
DenseNet161 99.70 89.38 92.77 99.66 89.32 93.00 99.53 88.11 91.85
DenseNet121 99.47 87.52 91.08 99.47 89.39 92.94 99.71 86.91 90.49

ResNet152 99.66 88.49 92.08 99.67 88.90 92.59 99.68 87.85 91.46
ResNet50 99.69 89.01 92.52 99.65 88.15 91.88 99.66 88.76 92.40
ResNet18 99.68 88.33 91.91 99.66 88.10 91.95 99.67 88.58 92.33

Inception-resnet-v2 99.61 87.03 91.46 99.67 88.17 92.08 99.65 88.52 92.39
inception-v4 99.62 85.52 90.85 99.66 88.64 92.55 99.66 88.64 92.55

Figure 8. Visualization of the predicted masks from the networks with DenseNet backbones for a
sample axial slice showing the middle part of the liver (a) and the inferior part of the liver (b).
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A more detailed picture is shown in Table 3. The table illustrates the fold-wise slice
distribution and the observed DSC for each of the different groups of liver shapes for the
top-performing UNet++ model with the DenseNet201 backbone. Though the percentage of
slices from the middle part of the liver was the minimum for all the folds, the DSC value
for the best-performing model was still over 95% for each fold. Slices with medium liver
content occurred the most and the DSC value for each fold was around 95%. The network
also efficiently handled slices where the liver content is absent.

However, the model performance was greatly reduced for the slices where liver content
was small. It is worth mentioning that the number of such slices in the training set was
also insignificant. Our hypothesis was that handling such slices by a separate model may
improve the overall segmentation performance, which is explored in this study.

Figure 9. Visualization of the predicted masks from selected networks for a sample slice in (a) middle
part of the liver (large liver content), (b) inferior part of the liver (small liver content), and (c) upper
pole of the kidney (no liver content).

Table 3. Distribution of slices of distinct axial views in train set and test set, along with the observed
DSC. Slices depicting axial view from the inferior part of the liver holds a constrained liver content
and exhibits anatomical ambiguity.

Fold No

Middle Part of Liver Superior Part of Liver Inferior Part of Liver Upper Part of Kidney
(Liver Content: Large) (Liver Content: Medium) (Liver Content: Small) (Liver Content: Absent)

Train Set Test Set
DSC (%)

Train Set Test Set
DSC (%)

Train Set Test Set
DSC (%)

Train Set Test Set
DSC (%)Slice % Slice % Slice % Slice % Slice % Slice % Slice % Slice %

1 7.74% 19.38% 97.03% 45.63% 34.89% 95.33% 12.71% 16.28% 81.95% 34.12% 29.46% 100.00%

2 7.73% 11.63% 95.75% 44.36% 41.86% 95.11% 13.25% 11.63% 82.64% 34.66% 34.88% 95.55%

3 6.69% 17.83% 96.17% 43.43% 41.86% 95.20% 11.79% 12.40% 78.13% 35.85 % 30.23% 97.43%

4 7.67% 10.85% 95.70% 43.26% 42.63% 95.23% 14.90% 9.30% 80.20% 34.18% 37.21% 97.91%

5 6.86% 16.79% 97.35% 44.25% 38.17% 93.90% 14.15% 9.16% 82.46% 34.75% 35.88% 94.78%

3.4. Specialized Network for Handling Anatomical Ambiguity

Table 4 illustrates the performance of the specialized models trained with different
architectures and different backbones in comparison to the best-performing generalized
model in segmenting the MR slices with a small liver content.

The UNet with ResNet18 encoder backbone showed superior performance over the
other investigated networks, with an IoU and DSC of 77.00% and 86.22%, respectively.
For UNet++, the Inception-resnet-V2 encoder backbone showed better performance over
the varying depths of ResNet backbones with an IoU and DSC of 75.58% and 84.03%,
respectively. The shallow ResNet18 backbone performed better for the FPN architecture
over other pretrained encoder backbones with an IoU and DSC of 71.20% and 82.04%,
respectively. Each of the top-performing encoder backbones for UNet, UNet++, and
FPN performed better than the top-performing generalized network for this task, which
demonstrated an IoU and DSC of 70.74% and 80.88%, respectively. Lastly, the shallow
networks performed better compared to deep networks for this specific task, as the liver
content in the slice was small.
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3.5. Cascaded Network

Figure 10 shows the predicted masks from the proposed cascaded network. It can
be observed that such an approach enhances the mask quality for slices with a small
liver content. Combining both the generalized and specialized network enhances the
performance of the network for segmenting the liver region. Table 5 summarizes the
performance metrics for the generalized network and the cascaded network. Cascading
both the networks improves the overall DSC score (from 94.3 to 95.15%).

Figure 10. Comparison of the predicted masks from the generalized and specialized networks for
sample MR slices with small liver content.

Table 4. Summary of the investigated network performance for the slices with small liver content
using different specialized models and the best-performing generalized model. UNet with ResNet18
backbone showed improved performance for the task.

Networks Metrics (Specialized Network) Metrics ( Best-Performing Generalized Network)

Architecture Backbone Acc. (%) IoU (%) DSC (%) Acc. (%) IoU (%) DSC (%)

UNet ResNet18 99.64 77.00 86.22
ResNet50 99.81 72.06 80.94

ResNet152 99.78 70.00 79.73
Inception-resnet-v2 99.70 72.73 81.72

UNet++ ResNet18 99.78 71.71 78.38
ResNet50 99.76 71.62 80.96

ResNet152 99.80 71.89 81.02 99.76 70.74 80.88
Inception-resnet-v2 99.78 75.58 84.03

FPN ResNet18 99.80 71.20 82.04
ResNet50 99.77 69.75 79.77

ResNet152 99.78 71.86 81.20
Inception-resnet-v2 99.80 70.92 80.41

Table 5. Performance metrics for the best-performing generalized and cascaded network. Here, the
results of the cascaded network are marked in gray.

Experiments Acc. (%) IoU (%) DSC (%)

Generalized Network 99.73% 91.00% 94.30%
Cascaded Network 99.70% 92.10% 95.15%

3.6. Discussion

The performance comparison of our proposed framework with all of the existing
high-performance networks (using the same test for evaluation) is summarized in Table 6.
X. Zhong et al. [25] investigated deep action learning for abdominal organ segmentation
tasks from volumetric MRI images. Their proposed network demonstrated superiority
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over 3D UNet in terms of overall performance, and achieved a DSC of 80.6% for the liver
segmentation task. P. Pandey et al. [26] explored a contrastive semisupervised approach for
the same task, and it achieved a DSC of 85.9%. The proposed method generates patches for
each slice, which enhances the feature space. Mitta et al. [28] achieved a DSC of 88.12% on
the test set by using W-Net with attention gates. J. Hong et al. [29] and X. Wang et al. [30]
used source-free unsupervised learning and bidirectional searching for the segmentation
task, respectively. By using geometric edge enhancement, S. Mulay et al. [31] boosted the
performance of the mask R-CNN for the liver segmentation task on this test set. L. Zbinden
et al. [32] achieved a DSC of 93.60% by implementing nnUNet on T1-weighted MRI slices.

Our proposed cascaded framework outperforms all of these existing high-performance
techniques by a large margin with a DSC of 95.15%. As discussed previously, the size of
the liver content in an arbitrary MRI slice depends on its axial view source. Any gener-
alized segmentation network can perform comparatively better when the liver content is
significant in the given MRI slice (axial view from the middle part of the liver). On the
contrary, the network faces ambiguity when the liver content is reduced for the given MRI
slice (axial view from the upper pole of the kidney, the inferior pole of the kidney, and
the superior part of the liver). As a result, the network performance drops significantly
for these specific groups of slices where the liver content is small. This specific cause for
reduced segmentation performance is overlooked in all of the previous studies. Our pro-
posed framework separately handles this specific group of slices with a small liver content,
which generates ambiguity through a specialized network, thus enhancing the overall
segmentation performance.

Table 6. Comparison of the proposed method (marked in gray) with existing studies that used the
same testing set.

Authors Methodology and Approach Metric (DSC)

X. Zhong et al. [25] Deep action learning with 3D UNet 80.60 ± 5.30%
P. Pandey et al. [26] Contrastive Semi Supervised Learning Approach with UNet 85.90%
D. Mitta et al. [28] W-Net with attention gates 88.12%
J. Hong et al. [29] Source Free Unsupervised UNet 88.40%
X. Wang et al. [30] Bidirectional Searching Neural Net 89.80%
S. Mulay et al. [31] Mask R-CNN 80.00%

Geomatric Edge Enhancement based Mask R-CNN 91.00%
L. Zbinden et al. [32] nnUNet 93.60%

Proposed Cascaded Network for Handling Anatomical Ambiguity 95.15%

4. Conclusions

Abdominal organ segmentation is a challenging task due to the complexity of the
anatomy of the abdominal area and the close proximity of multiple organs. Ambiguity in
the segmentation of the liver arises due to the variance in its anatomical shape in the MRI
volume. The MRI modality is favored by clinicians for liver pathology diagnosis. However,
automated liver segmentation from MRI scans is a demanding task. In this research, we
proposed a novel cascaded network for liver segmentation from T1-weighted MR images.
The proposed network treats each axial view distinctly and achieved a DSC of 95.15% on
the publicly available CHAOS MRI dataset. Such an approach can also be investigated for
other abdominal organ segmentation tasks, such as those involving the kidneys and spleen.
The proposed network was also deployed as an open-source application in a cloud server
for demonstration purposes. This application can later be integrated with PACS for clinical
usage. Lastly, we also investigated the effects of different image enhancement techniques
for liver segmentation tasks from MR scans.
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