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Abstract: This paper presents a leader–follower mobile robot control approach using onboard sensors.
The follower robot is equipped with an Intel RealSense camera mounted on a rotating platform.
Camera observations and ArUco markers are used to localize the robots to each other and relative
to the workspace. The rotating platform allows the expansion of the perception range. As a result,
the robot can use observations that are not within the camera’s field of view at the same time in the
localization process. The decision-making process associated with the control of camera rotation is
implemented using behavior trees. In addition, measurements from encoders and IMUs are used
to improve the quality of localization. Data fusion is performed using the EKF filter and allows
the user to determine the robot’s poses. A 3D-printed cuboidal tower is added to the leader robot
with four ArUco markers located on its sides. Fiducial landmarks are placed on vertical surfaces in
the workspace to improve the localization process. The experiments were performed to verify the
effectiveness of the presented control algorithm. The robot operating system (ROS) was installed on
both robots.

Keywords: sensor data fusion; fiducial marker; extended kalman filter; mobile robots; leader–follower
control; ROS; landmarks; behavior tree

1. Introduction

Different types of robots [1,2] are created by researchers according to specific tasks
and applications. They have also developed different types of controllers for collision
avoidance [3] and also for leader–follower configurations [4]. Due to their simplicity and
ease of use, fiducial ArUco markers are widely used. Researchers have proposed different
types of control algorithms [5,6] with different features depending on their applications.

The pose calculation from the ArUco marker using the Kalman Filter is well described
in the paper [7]. The paper [8] explains a tutorial on behavior trees in video games and
the book [9] gives an introduction to the behavior tree. The examples of controls for the
formation of robots are described in the papers [10,11]. The paper [12] gives an overview
of the introduction of the landmarks with the Extended Kalman Filter.

Control based on only onboard sensors is more challenging but results in a robot’s
operating area that is not limited by the coverage of the external measurement system.
The novelty of the paper is an approach of controllers for leader–follower robots including
the independent control of the camera’s field of view. While the rotating platform does not
cover the full angle (its range is −150 to 150 degrees), it allows observation of a robot and
landmarks located on the sides or to some extent behind. This is achieved by using only one
camera. The main task of the behavior tree is to switch between observing the leader and
static fiducial markers placed on the wall. This provides correction of positions obtained
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based on intrinsic sensors, which can drift, using features available in the environment.
In addition, the decision to switch between observed objects using a behavior tree will
make it possible in the future to easily shape the process of perception of the environment
depending on the conditions of the task (for example, the speed of robots and other objects,
the quality of perception due to the distances and angles of observation of markers or
lighting conditions).

An additional benefit of using a behavior tree is the simplified management of task
initiation. In the case of tasks carried out by more than one robot, it is necessary to spread
information about the readiness of key sub-systems to work. This problem can be solved in
many ways and is usually overlooked in the literature. It has been faced by every team
implementing a multi-robot system. This paper proposes a neat solution to this problem
based on the behavior tree approach.

To the best of the authors’ knowledge, there is no use of a behavior tree in the literature
to expand the robot’s perception range. In particular, the use of this approach in a multi-
robot system has never been proposed. According to the authors, the proposed combination
of hardware and software allows for a significantly reduced cost of the perceptual system
because there is no need to use many cameras.

The authors emphasize that the practical usefulness of this approach is not obvious,
because the rotation of the camera reduces the quality of the recorded image, and as a result,
makes it difficult to track the marker. The research presented in the article shows that under
standard laboratory conditions, the camera on a rotating platform does work and can be
used in this kind of task. The ground points which explain the difference between already
published papers and work represented by authors in this paper are as follows:

(a) A decentralized vision-based system for markers is represented in the paper [13].
In the same paper, each robot has a truncated regular octagon and a fixed camera,
whereas in this paper, the camera is movable and independent of the movement of
the mobile platform.

(b) The paper [14] is the extension of the research work presented in paper [13]. A dual
Unscented Kalman Filter is used to estimate the leader’s velocities from fiducial
markers. But the work presented in this paper has a centralized architecture and only
simulation results are given.

(c) In the paper [15], the ArUco markers are placed on the top of the robots and the camera
is placed on the stand observing the robot vertically. The disadvantage of the method
presented in this paper is that the vertical camera should cover all the environments
with the robots. Our algorithm presented in this paper covers this gap and such a
solution limits the working area only to that covered by the measurement system.

(d) The paper [16] represents a hitchhiking robot approach for leader–follower robots.
The author used a QR marker, and the mapping and computation are conducted by
the driver robot. But a completely different control algorithm from this paper is used
with a fixed camera.

The paper [17] used the ArUco markers on the top of the robots which presents a
protocol for a network of multiple robots. The nonholonomic robots in the paper are
asymptotically stabilized. The paper [18] represents an algorithm for intermittent vision
measurements and odometry with noise. The follower robot generates the trajectory of
the leader robot with Bayesian trajectory estimation, and the ArUco marker was on the
leader robot.

The paper [19] represents a fusion system with the combination of technologies INS,
EKF, IMU, GNSS, and information from ArUco markers. The paper [20] represents the
follower robot recognizing the ArUco marker on the clothes worn by the factory worker.
The Mecanum platform is used and the human gait error model is also presented by the
authors. The paper [21] also presents an algorithm with ArUco markers placed on the
assets of a truncated rhombi cuboctahedron on the drone. The GPS-denied environment
for Unmanned Aerial Systems (UASs) is discussed in the paper.
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This paper is the extension of the conference paper [22] with landmark fusion in
EKF and a behavior tree controlling the robots. A leader–follower mobile robot control
approach using onboard sensors and fiducial markers is shown in this paper. A 3D-printed
cuboidal tower is mounted on the leader robot with four ArUco markers located on its
sides. The follower robot is equipped with an Intel RealSense camera mounted on a
rotating platform. An Intel RealSense Depth sensor D435 is installed on the follower robot.
The depth sensor has an ideal range from 0.3 m to 3 m which works in indoor as well as in
outdoor environments. Both the leader and follower robots are equipped with MPU9255
IMU sensors which deliver nine pieces of information, a three-axis gyroscope, a three-axis
accelerometer, and a three-axis compass/magnetometer. A Dynamixel 12-A servo motor is
used in a one-degree-of-freedom rotating platform. The servo motor has a resolution of
0.29 degrees per pulse with 0 to 300 degrees of endless turn. Both of the robots also have
an NUC Intel single-board PC which has inbuilt Wi-Fi modules for connectivity. Camera
observations and ArUco markers are used to localize the robots to each other and relative
to the landmarks located in the workspace. A proportional–integrative–derivative (PID)
controller rotates the camera platform independently from the mobile platform movement
of the follower robot. The follower robot detects the ArUco markers on the leader robot
and calculates its pose. The data from the wheel encoders and the IMU sensors are fused
by EKF to calculate the global pose of the robots in the environment. The environment has
artificial markers (ArUco markers) on vertical surfaces. The EKF of the follower robot also
takes the data from the landmarks to update its pose.

The Robot Operating System (ROS) is installed on both robots. The experiments
are performed to verify the effectiveness of the control algorithm presented in the paper.
The leader robot is shown in Figure 1a and the follower robot is shown in Figure 1b. The
behavior tree is explained in Section 2, ArUco marker detection in Section 3, the Extended
Kalman Filter and its matrices specific to the sensors used in Section 4, and the control
algorithm in Section 5. The experimental methodology is given in Section 6 and the
experimental results in Section 7. In the last section, concluding remarks are given.

(a) (b)
Figure 1. (a) Leader robot. (b) Follower robot.

2. Behavior Tree

In general, behavior trees are used in video games, computer science, control systems,
and robotics and is defined as the mathematical model to execute a plan.

The plan execution of the leader and follower robot is controlled by the two separate
behavior trees implemented in on-board systems. The behavior tree is used as it is effective
and easy to modify and extend the tasks in the same trees. The behavior trees only execute
the node that is in the current state which makes them effective while executing. Another
feature is that behavior trees are easily debuggable, as they are visual representations of
the sequence of tasks. The C++ library [23] is used to build and execute the behavior tree
in ROS. At the heart of a behavior tree is the root node, which acts as the starting point.
From here, the tick signal begins its journey through the tree’s nodes. The initiation of a
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behavior tree’s operation commences at the root. This root node emits periodic “ticks” to its
child nodes. As a node within the behavior tree is permitted to execute, it conveys a status
update back to its parent node. If the node’s task is still in progress, it communicates a
“running” status, if the objective is accomplished, it communicates “success”, and if the task
encounters an obstacle or failure, it relays “failure” to the parent node. The representation
of the behavior tree for the leader robot is presented in Figure 2 and for the follower robot
in Figure 3. The behavior tree of the leader robot has the condition “Follower robot ready”;
only when the follower robot is connected to the ROS master and sends the signal that it is
ready to move will this condition relay a “success” status to the upper-level sequence node.
After success, the sequence node will execute the task “Follow virtual robot”, in which the
leader robot will start moving and follow the trajectory of the virtual robot.

Figure 2. Behavior tree of leader robot.

Figure 3. Behavior tree of follower robot.

The behavior tree of the follower robot checks the two conditions “Leader robot ready”
and “Leader robot moving”. The sequence node will obtain two successes when the leader
robot is connected to the ROS master and moving with some velocities. After success from
two conditions, the sequence node will execute a fallback node. The fallback node will
rotate the camera platform of the follower robot towards the landmarks on walls for 3 s
and then rotate the camera platform towards the leader robot for 5 s. The execution time of
the platform rotation is negligible from the point of view of the task.

3. ArUco Marker

ArUco markers are fiducial markers created by S. Garrido-Jurado [24]. The different
IDs and sizes of ArUco markers can be created from the online generator website [25].
The distances and the angles between the ArUco marker and the camera axes can be
extracted by using the OpenCV library [26].

Section 3.1 explains the placements of ArUco markers on the leader robot. The data
extraction after detection of the ArUco marker is explained in Section 3.3. The calculation
of the leader pose expressed in the global coordinate frame is explained in Section 3.4.

3.1. ArUco Marker Placement on Leader Robot

The center of the cuboidal tower coincides with the center of the leader robot. The
ArUco markers from IDs 1 to 4 of size 5 cm × 5 cm are pasted on the faces of the cuboidal
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tower (Figure 1a). Different IDs are required to detect the side of the leader robot which has
a direct influence on the angle between the follower and leader robot. Figure 4 shows the
top view of the leader and follower robot, the same figure also shows the ArUco marker
placement on the leader robot.

Figure 4. Top view of the leader and follower robots.

3.2. Artificial Landmarks

ArUco markers of size 10 cm × 10 cm from IDs 100 to 104 are pasted on the vertical
surface in the environment. The distance between the landmarks is measured in the
environment and the same distances are added according to respective IDs to give global
positions in the environment.

3.3. Pose Estimation from ArUco Markers

A calibrated camera gives the precise information from the markers, distortion coeffi-
cients (D), and camera matrix (K) of the same camera as follows:

D =
[

k1 k2 c1 c2 k3
]
, (1)

K =

 fx 0 cx
0 fy cy
0 0 1

. (2)

Intel’s ROS library [27] helps to connect the Intel RealSense sensor to the ROS environ-
ment. The factory calibration information, such as D and K values, is published through
the ROS topic “/camera/color/camera_info”.

A total of two cases are possible when the follower robot observes the leader robot
in the camera frame. In case 1 (Section 3.3.1), the follower robot observes only one ArUco
marker in the camera frame, or in case 2 (Section 3.3.2), the follower robot observes two
ArUco markers at the same time. The translation and the rotation of ArUco markers are
conducted to calculate the center of the leader robot.

3.3.1. Case 1—When One Marker Detected

When one ArUco marker on the leader robot comes into the camera frame of the
follower robot, ID information and the translation (~tvec) and rotation (~rvec) vectors are
extracted by the ArUco library [26]. The camera rotation matrix relative to the tag (ArUco
marker) is calculated by Rodrigues’ formula as follows:

RCT = Rodrigues(~rvec) , (3)



Sensors 2023, 23, 8886 6 of 20

The transposition of Equation (3) gives the rotation matrix of the tag relative to the
camera (RTC):

RTC = RT
CT , (4)

The Euler angles (φR, θR, ψR) from the tag to the camera are calculated from the
rotation matrix RTC. The Z–Y–X rotation conventions are used for Euler angles. The axis
representation between the camera and ArUco marker is shown in Figure 5. The leader–
follower controller shown in this paper requires the geometric center of the leader and
follower robots. The ArUco markers have some offset distance from the center on the leader
robot. The translation is conducted to move the marker exactly to the center of the leader
robot. The algorithm proposed in this paper to calculate the leader robot’s pose requires
that the XY plane of the ArUco marker be parallel to the camera’s XY plane. The first
rotation is conducted from the ArUco markers and then the translations. When a rotation
matrix Ry(θR) is multiplied by the rotation matrix RTC, it gives a new matrix ´RTC which is
rotated along the y-axis of the marker.

Ry(θR) =

 cos θR 0 sin θR
0 1 0

− sin θR 0 cos θR

 , (5)

´RTC = Ry(θR) · RTC , (6)

Figure 5. Representation of the axis between the ArUco marker and the camera.

To virtually displace the marker from the cuboidal wall to the center of the leader
robot which is also the center of the cuboidal tower, a translation should be added in Z-axis.
The cuboidal tower measures 0.06 m on each side so 0.03 m is added into the (~tvec) vector
of the marker. The new vector (~́tvec) of the marker is as follows:

~́tvec =~tvec +
[

dx dy dz ]
T , (7)

where dx = 0, dy = 0 and dz = 0.03.
The translation matrix (~t tag

cam) to the camera coordinate is calculated from ´RTC from
Equation (6) and~́tvec.

~t tag
cam = − ´RTC ·~́tvec , (8)

The transpose representation of the translation matrix~t tag T
cam is as follows:

~t tag T
cam =

[
xmarker ymarker zmarker

]
. (9)

zmarker and xmarker from the translation vector~t tag T
cam from Equation (9) gives the dis-

tance between the follower and leader robots in the x and y directions expressed in the
global coordinate frame. To calculate the angle between the leader and follower, the mod-
ification of the pitch angle θR of the ArUco marker is conducted, which is explained in
Figure 6. The pose difference between the leader and follower robot is (zmarker, xmarker, θ́R).
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Figure 6. Flow chart of pitch angle θR modification of ArUco marker.

3.3.2. Case 2—When Two Markers Detected

The proposed solution by the authors is the translation and rotation of markers to the
center of the leader robots. Theoretically, both the detected markers should give the same
readings, but due to manufacturing and pasting errors, the markers give slightly different
readings of the center of the leader robot. The solution to the problem raised is to take the
average readings of markers depending on the pixel areas captured in the image frame.

The pixel area ai of the i’th marker is calculated by the Shoelace formula [28] as:

a =
1
2
|x1y2 + x2y3 + x3y4 + x4y1 − x1y4 − x2y1 − x3y2 − x4y3| , (10)

The Shoelace formula is a mathematical algorithm to find out the area after cross multipli-
cation of corresponding coordinates of vertices. Figure 7 explains the corner points of the
ArUco markers. The pixels in the x coordinates are (x1, . . . , x4) and in the y coordinates are
(y1, . . . , y4).

The total area A is calculated as follows:

A =
Nm

∑
i=1

ai , (11)
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where Nm is the total number of markers detected. At most, the follower robot may detect
only two markers, so Nm = 2.

Figure 7. Representation of ArUco marker corner points.

Both the detected markers have sets of translation~tvec i and rotational RTC i vectors.
The new rotation matrices ´RTC i are calculated as explained in Equation (6). Both of the
detected markers come into the same XY planes after multiplying with rotation matrices.
To obtain the center of the leader robot, translation distances should be added to translation
~tvec i vectors. The distance of 0.03 m is added to the Z-axis. As the cuboidal side is 0.06 m,
0.06 m is added or subtracted according to the set of markers detected. When ArUco IDs
(ID1 and ID2) or (ID2 and ID3) are detected, the translation distances are added in the
following ways:

~́tvec 1 =~tvec 1 +
[

dx1 dy1 dz1 ]
T , (12)

where dx1 = 0, dy1 = 0 and dz1 = 0.03.

~́tvec 2 =~tvec 2 +
[

dx2 dy2 dz2 ]
T , (13)

where dx2 = 0.06, dy2 = 0 and dz2 = 0.03.
And when ArUco IDs (ID3 and ID4) or (ID4 and ID1) are detected:

~́tvec 1 =~tvec 1 +
[

dx1 dy1 dz1 ]
T , (14)

where dx1 = 0, dy1 = 0 and dz1 = 0.03.

~́tvec 2 =~tvec 2 +
[

dx2 dy2 dz2 ]
T , (15)

where dx2 = −0.06, dy2 = 0 and dz2 = 0.03.
´RTC 1 and ´RTC 2,~́tvec 1 and~́tvec 2 are used to calculate the translation matrix tags on the

camera.
~t tag

cam 1 = − ´RTC 1 ·~́tvec 1 , (16)

~t tag
cam 2 = − ´RTC 2 ·~́tvec 2 , (17)

The average of translation vector~t tag
cam is calculated as follows:

~t tag
cam =

1
A

Nm

∑
i=1

ai~t
tag

cam i . (18)

In this case, the distances zmarker and xmarker are taken from the average matrix~t tag
cam

from Equation (18). The authors have considered the pitch angle θR from the marker having
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a bigger pixel area. After considering the pitch angle, the new angle θ́R is calculated as
explained in Figure 6.

3.4. Pose Calculation of Leader Robot

Let the poses of follower robot (PoseF) be represented as x2, y2, and θ2. After ArUco
marker detection, ztag and xtag give the distances in the x-axis and y-axis, respectively,
between the center of the follower and leader robot. The angle between the camera and the
ArUco marker is θ́R and the angle between the rotating platform and follower robot base is
θc. Both the angles θc and θ́R are added to obtain the resultant angle, as they are opposite in
nature. Figure 8 represents the situation of models after pose estimation (Section 3.3) or the
situation of robots assuming the estimation is perfect.

Figure 8. Pose representation of the leader and follower robots.

The pose of the leader robot (PoseL) is written as:

Pose>L =

 x1
y1
θ1

 =

 x2 + zmarker
y2 + xmarker
θ2 + θ́R + θc

. (19)

4. Extended Kalman Filter

A total of three Extended Kalman Filters (EKFs) are used in the robots—two EKFs in
the follower robot and one EKF in the leader robot. The EKF of the leader robot (Figure 9)
takes the input data from the wheel encoders and IMU sensor to generate the robot’s
own poses in the global frame, whereas one of the follower EKFs (Figure 10a) has the
same inputs but with landmarks in addition. The remaining EKF of the follower robot
(Figure 10b) predicts the position of the leader robot after ArUco marker detection. The
EKF model is taken from the paper [29]. The system state X of EKF is written as:

X =
[

xi yi θi vi ωi
]> , (20)

where i = 1, 2 for leader or follower robot. Variables xi, yi, and θi represent the position in
the x-axis, y-axis, and the orientation of the leader or follower robot in the global frame,
respectively. The linear and angular velocities are vi and ωi, respectively.

The discrete time model of the system X(k) = [xi(k) yi(k) θi(k) vi(k) ωi(k)]> is
written as follows:

X(k) =


xi(k− 1) + vi(k)4t cos θi(k− 1)
yi(k− 1) + vi(k)4t sin θi(k− 1)

θi(k− 1) + ωi(k)4t
vi(k− 1)
ωi(k− 1)

 , (21)
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Figure 9. EKF of leader robot.

(a) (b)
Figure 10. (a) EKF 1 of follower robot. (b) EKF 2 of follower robot.

The state model and measurement model of the filter are as follows:

X(k) = f (X(k− 1)) + w(k− 1) , (22)

z(k) = h(X(k)) + υ(k) , (23)

where the non-linear system is represented as f , measurement model as h, the dynamic
system Gaussian noise as w(k− 1) (w(k) ∼ N(0, Q(k))) and the measurement Gaussian
noise as υ(k) (υ(k) ∼ N(0, R(k))). The covariance matrices are Q(k) and R(k). To make the
system linearized, a Jacobian matrix of f is calculated as:

F(k) =
∂ f (X)

∂X
|X̂−k (24)

F(k) =


1 0 −vi(k)4t sin θi(k) 4t cos θi(k) 0
0 1 vi(k)4t cos θi(k) 4t sin θi(k) 0
0 0 1 0 4t
0 0 0 1 0
0 0 0 0 1

 , (25)

where 4t is the time difference between the two consecutive samples. The prediction
Equations are as follows:

X̂(k)− = f (X̂(k− 1)+) , (26)

P(k)− = F(k)P(k− 1)F(k)T + Q(k) , (27)
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The update Equations are as follows:

K(k) = P(k)−H(k)T(H(k)P(k)−HT + R(k))−1 , (28)

X̂(k)+ = X̂(k)− + K(k)(z(k)− h(X̂(k)−)) , (29)

P(k)+ = (I − K(k)H(k))P(k)− . (30)

where the Kalman gain is represented as K(k), X̂(k)−, P(k)−, X̂(k)+ and P(k)+ are priori
and posteriori state estimates.

4.1. Wheel Encoder Data of the EKF

Both the leader and follower robots have motors with encoders. As a result, the wheel
angular velocities of the left and right wheel in radians per second are calculated as:

wli = (φcli − φpli)/4tφl · π/180 , (31)

wri = (φcri − φpri)/4tφr · π/180 , (32)

where wli and wri are the angular velocities (rad/s) of the left and right wheels of i-th robot.
φcli and φpli are current encoder ticks and previous saved encoder ticks, respectively, for
the left wheels, whereas φcri and φpri are for the right wheels. 4tφl and4tφr are the time
between the two consecutive readings of the left and right wheel readings.

The linear velocities (in m/s) of wheels are calculated by multiplying the wheel radius
Rwheel i in Equations (31) and (32) as:

Vli = wli · Rwheel i , (33)

Vri = wri · Rwheel i , (34)

Equations (33) and (34) are used to calculate the linear and angular velocities of
robots as:

vwheel i = (Vri + Vli)/2 , (35)

ωwheel i = (Vri −Vli)/Li , (36)

where Li is the length of the wheel separation of robots in meters. vwheel i and ωwheel i are
linear and angular velocities of robots calculated from the wheel encoder readings. The
calculated linear and angular velocities of robots are used in EKF to calculate the pose of
the robot in the global reference frame.

The measurement matrix zencoder(k) for EKF is as follows:

zencoder(k) =
[

vwheel i ωwheel i
]

, (37)

The Hencoder(k) matrix is as follows:

Hencoder(k) =
[

0 0 0 1 0
0 0 0 0 1

]
. (38)

4.2. IMU Data to the EKF

The gyroscope data are only used from the IMU sensor in both robots. The measure-
ment matrix zgyro(k) for IMU data is as follows:
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zgyro(k) =
[

ωgyroscope i
]

, (39)

The Hgyro(k) matrix is as follows:

Hgyro(k) =
[

0 0 0 0 1
]

. (40)

4.3. Landmark Data to the EKF

ArUco markers give the global x and y positions of robots, so zlandmark(k) is as follows:

zlandmark(k) =
[

xi yi
]

, (41)

The Hlandmark(k) matrix is as follows:

Hlandmark(k) =
[

1 0 0 0 0
0 1 0 0 0

]
. (42)

4.4. Pose Prediction of Leader Robot

The follower robot has another EKF which predicts the position of the leader robot.
The measurement matrix zleader(k) for leader pose prediction is as follows:

zleader(k) =
[

x1 y1 θ1
]

, (43)

where the pose of the leader robot (x1, y1, θ1) is taken from Equation (19). The Hleader(k)
matrix is as follows:

Hleader(k) =

 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 . (44)

5. Control Algorithm
5.1. Control for Rotating Platform

The movement of the rotating platform on the follower robot is independent of its
robot body. A proportional–integral–derivative (PID) controller is used to control the
movement of the rotating platform. The main aim of the controller is to minimize the
distance between the center of the camera and the ArUco marker as much as possible.
The distance between the ArUco marker center and the camera center (xmarker) is either
taken from Equation (8) or (18) depending on the ArUco marker.

uPID(t) = KPe(t) + Ki

∫
e(t)dt + Kd

de
dt

, (45)

where uPID(t) is the control signal generated for a time t. KP, Ki and Kd are the proportional
gain, integral gain, and derivative gain parameters, de is the change in error, dt is the change
in the time, and e(t) is expressed as follows:

e(t) = SP− PV(t) . (46)

where SP is the setpoint which is set to be zero as the camera should point between the
center of the ArUco marker. PV(t) is the process variable which was equal to the current
angle between the center of the camera and the ArUco marker (xmarker).

5.2. Control Leader and Follower Robots

The kinematic model of the mobile robot Ri (i = 1, 2) is written as:
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 ẋi
ẏi
θ̇i

 =

 cos θi 0
sin θi 0

0 1

[ vi
ωi

]
, (47)

where i = 1, 2 for the leader and follower robots, respectively. The robot pose is represented
by vector [xi yi θi]

>. xi, yi, and θi are the variables representing the pose of the robot in
the global reference frame. The control vector is

[
vi ωi

]>, where vi and ωi are linear and
angular velocity controls of the robot, respectively. The aim of the leader is to mimic the
pose [x0 y0 θ0]

> of the virtual leader:

x1d = x0

y1d = y0

θ1d = θ0. (48)

The desired velocity vector is [v0 ω0]
>, where v0 is the linear velocity and ω0 is the angular

velocity. With some constant displacement [d2x d2y]
>, the follower has to mimic the motion

of the leader on a mobile platform:

x2d = x1 + d2x

y2d = y1 + d2y , (49)

and with the same orientation:

θ2d = θ1 , (50)

which brings the following quantities to zero:

pix = xid − xi

piy = yid − yi

piθ = θid − θi. (51)

The system errors with respect to the robot’s fixed frame are as follows: eix
eiy
eiθ

 =

 cos(θi) sin(θi) 0
− sin(θi) cos(θi) 0

0 0 1

 pix
piy
piθ

. (52)

Due to its simplicity and its effectiveness, the trajectory tracking algorithm is taken
from [30]. In the original version [30], the algorithm was used for trajectory tracking by
a single robot. The same paper presents stability proof that remains valid for the leader
without changes and for the follower under the assumption that the leader’s motion is
a trajectory generator for the follower after adding a fixed displacement [d2x d2y]

>. The
control for the i-th robot is written as:

vi = vi−1 cos eiθ + k1eix
ωi = ωi−1 + k2sgn(vi−1)eiy + k3eiθ ,

(53)

where k1, k2 and k3 are constant parameters greater then zero, and the function sgn(•) is
defined as follows:

sgn(ξ) =


−1 for ξ < 0
0 for ξ = 0
1 for ξ > 0

.

A detailed analysis of the properties of the control is presented in paper [30].
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6. Methodology

The experiments with real robots are performed in an environment without obstacles.
A PC with Intel i7 5th generation with 16 GB RAM and Ubuntu 20.04 as the operating
system is used. ROS Noetic is installed on the PC and both the two robots. A NUC
single-board computer is used in both robots as the hardware. PC and both the robots are
connected to the same WiFi network. PC is selected as the ROS master and both robots
are connected as the slave nodes. The task for the formation of two robots is to follow a
sinusoidal trajectory. Two experiments were performed by the authors.

In experiment 1 (Section 7.1), the follower robot has to follow the leader as it will move
along sinusoidal path. The behavior tree and landmarks are not used in the experiments,
the experiment is performed to validate the algorithm presented by the authors in which
the follower robot will detect the markers on the leader robot and calculate its global pose.
The rotation platform will continuously observe the markers on the leader robot with the
PID controller described in the paper. All the data generated in the experiments were saved
in the text (txt) files.

In experiment 2 (Section 7.2), landmarks are placed in the environment. The behavior
Tree will switch the movement of the rotating platform towards landmarks placed on the
wall or to towards the leader robot.

7. Experiment Results

The control gains of the controller (53) between the virtual robot and leader robot are
k1 = 0.15, k2 = 2 and k3 = 2. The control gains of the controller (53) between the leader
robot and follower robot are k1 = 0.25, k2 = 1.5 and k3 = 1.5. Their values were tuned
manually. The d2x = 0.5 and d2y = 0 in Equation (49).

7.1. Experiment 1

Experiment 1’s duration was 75 s. Figure 11a shows the (x, y) plots of the virtual leader,
the leader robot, and the follower robot. The pose theta of all the robots is represented
in Figure 11b, which also represents the EKF output of the theta after filtering. The noise
is visible on the plot of the orientation from EKF after marker detection is caused by the
inaccuracy of mounting and 3D printing of the cuboidal stand and the limited precision of
sticking the ArUco markers onto it. The noise is particularly noticeable when two ArUco
markers, placed on two perpendicular walls of the stand are observed at the same time. As
the leader robot tries to mimic the pose of the virtual robot, the leader–follower controller
tries to minimize the desired displacement which is a design parameter between the robots.
The errors of the leader robot in the x-axis, y-axis, and orientation are shown in Figure 11d,
Figure 11e and Figure 11f, respectively. Their values do not exceed 7 cm. The actual
linear and angular velocities of the leader robot are shown in Figure 11g and Figure 11h,
respectively. For short periods, angular velocity reaches the platform limit set at 0.2 rad/s.
The follower robot detects the ArUco markers on the leader robot and tries to mimic the
pose of the leader robot, and the errors generated by the leader–follower controller are
saved and plotted. The errors of the follower robot in the x-axis, y-axis, and orientation are
shown in Figure 11i,j and 12a, respectively. The actual linear and angular velocities of the
follower robot are shown in Figure 12b and Figure 12c, respectively. The noise associated
with ArUco marker detection and, consequently, the result of relative position computation
translates into more variable waveforms than in the case of the leader robot and also more
frequent reaching of platform velocity limits. The follower robot that observed the pose
of the leader robot through ArUco marker detection after EKF is shown in Figure 11c.
The information from the follower robot, whether it detected the ArUco marker or not, is
shown in Figure 12d; 1 means the marker is detected and 0 means the marker is not detected
in the figure. As can be seen, the ArUco marker was not visible for only a short while.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)
Figure 11. Experiment result 1 (a). (a) (x,y) plot of all robots. (b) Theta of all the robots. (c) (x,y) plot of
all robots with EKF. (d) Error in x-axis for leader robot. (e) Error in y-axis for leader robot. (f) Error of
leader’s orientation. (g) Linear velocity of leader robot. (h) Angular velocity of leader robot. (i) Error
in x-axis for follower robot. (j) Error in y-axis for follower robot.
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7.2. Experiment 2

Experiment 2’s duration was 40 s. Figure 13a shows the (x, y) plots of the virtual leader,
the leader robot, and the follower robot. The path of the follower robot is shown in green in
Figure 13a, which shows disturbances in the sinusoidal trajectory; for 3 s, the follower robot
watched the landmarks on the walls, and for 5 s the follower robot watched the leader robot.
Figure 13b shows the (x, y) plots of the virtual leader, odometry, and data fusion positions
of the leader robot. A slight drift from the odometry data is removed after data fusion.
The errors generated from the leader–follower controller algorithm are saved and plotted.
The errors of the follower robot while following the leader robot in the x-axis and y-axis are
shown in Figure 13c and Figure 13d, respectively. The actual linear and angular velocities of
the follower robot are shown in Figure 13e and Figure 13f, respectively. Figure 13g,h show
the distance of the follower robot in the global coordinate frame when the camera on the
rotating platform observes the landmarks. Figure 13i gives the information of the landmark
ID detected. Figures 13j and 14a show the distance between the follower robot and the
leader robot when the camera on the rotation platform of the follower robot watches the
leader robot. The information from the follower robot, whether it detected the ArUco
marker or not, is shown in Figure 14b; 1 means the marker is detected and 0 means the
marker is not detected in the graph.

(a) (b)

(c) (d)

Figure 12. Experiment result 1 (b). (a) Error of follower’s orientation. (b) Linear velocity of fol-
lower robot. (c) Angular velocity of follower robot. (d) Marker detection information.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 13. Experiment result 2 (a). (a) (x,y) plot of all robots. (b) (x,y) plot of leader robot.
(c) Error in x-axis for follower robot. (d) Error in y-axis for follower robot. (e) Linear velocity
of follower robot. (f) Angular velocity of follower robot. (g) Landmark x-distance. (h) Landmark y-
distance. (i) Landmark id information. (j) Marker x distance.
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(a) (b)

Figure 14. Experiment result 2 (b). (a) Marker y distance. (b) Marker detection information.

8. Conclusions

A leader–follower approach based on extended onboard camera perception is shown in
this paper with the integration of a behavior tree and EKF-based sensor data fusion. The be-
havior tree was on the top-level controller, which controlled the robots in the workspace.
When the follower robot is ready in the environment, the behavior tree sends the signals to
the leader robot to mimic the virtual robot. The one-degree-of-freedom rotating platform
on the follower robot is also controlled by the behavior tree. For 5 s, the rotating platform
watched the leader robot, and for 3 s it watched the landmark. A low-level PID control for
the ArUco marker has followed the markers on the leader robot. The leader robot followed
the virtual leader robot and as a result, mimicked the sine curve of the virtual leader robot.

The authors have performed two experiments. In one experiment, the landmarks and
behavior tree are not involved, so the rotation platform of the follower robot observes the
marker on the leader continuously. The result of the experiment shows that the leader
robot followed the virtual robot with a diverging error in the x and y axes of less than 4 cm.
The follower robot followed the leader robot with a diverging error in the x and y axes of
less than 4 cm. The EKF has filtered out the data, which is clearly seen in Figure 11b,c. In the
second experiment, all the algorithms proposed in the paper are involved. The behavior
tree controlled the switching of the rotating platform from landmarks to markers and vice
versa. The global position errors for the x and y axes for the follower robot diverge towards
approximately zero. Data fusion of leader and follower robots with the use of EKF is
achieved. The fluctuation in the follower robot is seen in the results due to the landmark
data. In future research, authors of this paper will work to minimize the fluctuations due
to the landmark addition. The follower robot should achieve exactly the same trajectory as
that of the leader without disturbances, which will also be another challenging task for the
future.
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