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Abstract: Accurate and reliable prediction of air pollutant concentrations is important for rational
avoidance of air pollution events and government policy responses. However, due to the mobility and
dynamics of pollution sources, meteorological conditions, and transformation processes, pollutant
concentration predictions are characterized by great uncertainty and instability, making it difficult for
existing prediction models to effectively extract spatial and temporal correlations. In this paper, a
powerful pollutant prediction model (STA-ResConvLSTM) is proposed to achieve accurate prediction
of pollutant concentrations. The model consists of a deep learning network model based on a residual
neural network (ResNet), a spatial–temporal attention mechanism, and a convolutional long short-
term memory neural network (ConvLSTM). The spatial–temporal attention mechanism is embedded
in each residual unit of the ResNet to form a new residual neural network with the spatial–temporal
attention mechanism (STA-ResNet). Deep extraction of spatial–temporal distribution features of
pollutant concentrations and meteorological data from several cities is carried out using STA-ResNet.
Its output is used as an input to the ConvLSTM, which is further analyzed to extract preliminary
spatial–temporal distribution features extracted from the STA-ResNet. The model realizes the spatial–
temporal correlation of the extracted feature sequences to accurately predict pollutant concentrations
in the future. In addition, experimental studies on urban agglomerations around Long Beijing
show that the prediction model outperforms various popular baseline models in terms of accuracy
and stability. For the single-step prediction task, the proposed pollutant concentration prediction
model performs well, exhibiting a root-mean-square error (RMSE) of 9.82. Furthermore, even for
the pollutant prediction task of 1 to 48 h, we performed a multi-step prediction and achieved a
satisfactory performance, being able to achieve an average RMSE value of 13.49.

Keywords: pollutant concentrations; residual network; ConvLSTM; spatial–temporal attention

1. Introduction

The increasingly serious problem of air pollution has led to a great deal of societal
anxiety in recent years [1]. Environmental management and the control of air pollution
depend heavily on pollutant concentration predictions [2]. An essential element of air
pollutants is PM2.5 (particulate matter with a diameter of less than 2.5 µm) [3]. Elevated
concentrations of PM2.5 in the atmosphere pose a significant risk of respiratory infections,
leading to diseases related to cardiopulmonary dysfunction, which are extremely detrimen-
tal to human health [4]. Predicting air pollution can provide the public and government
agencies with effective early warning and support decision-making in response to serious
pollution events [5]. Effective control of PM2.5 not only protects people’s health but also
reduces social and economic losses. Therefore, accurate prediction of PM2.5 concentrations
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can provide timely early warning and enable governments to take timely action for the
environment. Prediction of air pollutant concentrations, or simply air pollutant forecasting,
plays an important role in air pollution prevention and environmental management [6],
and thus it has recently received significant attention in the research community and is
recognized as a key challenge in environmental management research.

PM2.5 concentration prediction can be viewed as a time-series processing problem
that can be predicted based on past historical correlation data, e.g., meteorological factors
such as temperature and humidity, as well as other pollution factors such as PM10 and
O3 [7]. At this stage, the research methods are divided into two categories according to
the characteristics of the research methods [8]: numerical model-based prediction methods
and data-driven model-based prediction methods. The first is the prediction method of
numerical modeling that simulates the process of emission, diffusion, transformation, and
removal of air pollutants through meteorological principles and statistical methods so as to
achieve the prediction of pollutant concentrations [9]; the second is the prediction method
based on data-driven modeling, which is based on making predictions by learning and
analyzing pollutant historical data [10].

Numerical modeling is mainly based on meteorological principles, knowledge of
atmospheric dynamics and statistics, and the construction of equations for atmospheric
pollutants and meteorological data to predict short-term pollutant concentrations [11,12].
Short-term predictions of pollutants generally refer to predicting pollutant concentrations
for the next 1–6 h [12]. Then, according to the constructed atmospheric conditions, com-
plex differential equations are solved by a computer to simulate the pollutants’ chemical,
environmental, and transportation procedures throughout the atmosphere [13]. There
are several commonly used numerical models: the Community Multiscale Air Quality
Modeling System (CMAQ) [14] and the nested air quality prediction modeling system
(NAQPMS) [15]. Despite the fact that numerical models take into account all changes in
chemistry and atmospheric pollution transmission pathways, they suffer from the uncer-
tainties of pollution sources, meteorological conditions, and transformation processes, as
well as the high complexity of numerical models and the high arithmetic volume [16].

Compared with numerical modeling, the data-driven learning-based modeling ap-
proach is easy, effective, and universally feasible [6]. The model studies and evaluates
historical information, focuses on mapping the relationship between historical data and air
pollution concentration values in the predicted time period, and makes a more reasonable
prediction of future pollutant concentration levels based on the current state [17]. Predic-
tion methods based on data-driven models can be further subdivided into two categories:
machine learning and deep learning models [11]. Machine learning models, an important
type of artificial intelligence learning, combine the trends of the pollutants themselves and
the intrinsic relationship between the pollutants and meteorology to produce predicted
concentration values [18]. The pollutant concentration prediction models in common use
today consist of Random Forest (RF) [19] models, Autoregressive Sliding Average (ARMA)
models [20], and Support Vector Regression (SVR) [21]. These machine learning models
can fully explore the nonlinear relationships between contaminant data with good robust-
ness [22]. However, machine learning parameters generally rely on manual construction,
which relies heavily on personal experience. In addition, they exhibit a lack of ability to
reduce redundant data when dealing with larger and larger datasets, which then impacts
their capacity for learning and generalization [23].

Deep learning models are more suitable to be applied within the field of predicting
pollutant concentrations than traditional machine learning models [24]. Deep learning
models can obtain better robustness through deeper hidden layers and excellent self-
learning ability to explore higher-order nonlinear mapping relationships [25]. The following
are some examples of deep learning models for time-based prediction: Recurrent Neural
Networks (RNNs) [26], Gate Recurrent Units (GRUs) [27], and long short-term memory
networks (LSTMs) [28]. In most cases, deep learning models outperform machine learning
models in terms of effectiveness. Modeling the spatial–temporal interactions between
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numerous complicated nonsmooth air contaminants and meteorological data is necessary
for air pollution prediction [29]. A single network structure may hinder the model’s ability
to forecast accurately, all of which remain deficient when dealing with spatial–temporal
big data.

Other deep learning techniques have been utilized by researchers to improve spatial–
temporal modeling in order to address the limitations of single structure-based models.
The following hybrid models have been employed for the prediction of pollutant concen-
trations: LSTM-FC [30], AC-LSTM [31], and EEMD-GRNN [32]. Due to shared weights
and neighborhood recognition of convolutional processes, convolutional neural networks
(CNNs) offer strong feature extraction capabilities [33]. As a result, using CNNs’ computer
vision capabilities, CNN-LSTMs have effectively assessed the geographic dispersion fea-
tures of atmospheric pollution concentrations [11]. We analyzed models based on CNNs
to thoroughly examine the spatial and temporal correlations between pollutant data and
meteorological parameters as a result of these studies [34].

Additionally, it is commonly acknowledged that attention processes can enhance
the accuracy of predictions made by deep learning methods. In recent years, the ideas
of attention processes and the processing of natural language and picture evaluation
have become increasingly prominent [35]. Their major goal is to help models concentrate
on their more crucial feature data. These are frequently employed in the prediction of
time-series tasks related to, among other things, traffic, wind energy, and floods. For
instance, to forecast flood events, Ding [36] designed a novel LSTM that mixes explainable
temporal and spatial attention mechanisms (STA-LSTMs). Using spatial and temporal
attention, weighting is given to the input data’s pattern of spatial–temporal properties.
Additionally, STA-LSTMs fared better than the LSTM and CNN models. Nevertheless,
the mechanism of spatial–temporal attention is yet to be investigated or used to forecast
pollution. Undoubtedly, a method for bidirectional GRU combining attention was put
forth by Zhang [37]. Studies have shown that the suggested model may outperform its
competitors in capturing the most crucial aspects of historical data. Additionally, the
prediction performance was significantly better than that of well-known RNN, LSTM and
CNN-LSTM, although they did not consider spatial attentional mechanisms when trying to
tap into spatial attributes. In order to improve air pollution prediction, it is worthwhile to
investigate these potential spatial–temporal attention mechanisms in more detail [38].

In view of these, the secret to improving the effectiveness of pollution prediction is
the efficient mining of spatial–temporal aspects of data. To address this issue and produce
a more precise and reliable pollutant concentration forecast, this study provides a hybrid
prediction model using spatial–temporal attention, ResNet, and ConvLSTM for pollutant
concentration prediction. The contribution of this work is summarized below:

(1) By using ResNet as the foundation layer of STA-ResConvLSTM, we avoid the problem
of gradient vanishing or gradient explosion and provide for the removal of the deep
network degradation issue and the extraction of spatially important information from
meteorological and pollution data from numerous cities.

(2) The spatial–temporal attention mechanisms are introduced into the residual block.
Features in the temporal and spatial dimensions of pollutants are extracted using
spatial–temporal attentional processes. As a result, the temporal and spatial depen-
dencies can be effectively exploited, and the accuracy of pollutant concentration can
be improved based on the weight distribution of attention.

(3) ConvLSTM is used in the model as the final prediction layer. In order to fulfill
the aim of mining the spatial–temporal correlation of the data, hidden advanced
connection features must be extracted from the complex spatial–temporal sequence
data generated via STA-ReNet. ConvLSTM avoids the gradient disappearing issue
in addition to gaining from the effectiveness advantages associated with ConvLSTM
with regard to time-series forecasting.
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2. Data Description
2.1. Study Area

Beijing and its neighboring urban agglomerations were chosen to be this study’s
subjects. The geographical distribution of the whole research region is depicted in Figure 1.
With a large concentration of population and intensive social activities, the region is the
political and economic center of China. Therefore, they were chosen as the main research
objects. The industrialization process in the region is rapid, and industrial pollutants
are emitted in large quantities. At the same time, the dense urban population and the
diverse pathways of pollutant generation and diffusion have led to a serious situation of
air pollution. In recent years, prevention and management of pollution in the atmosphere
have been very effective, but compared to internationally advanced standards, there is still
a lot of potential for improvement in the condition of the environment. The number of days
where PM2.5 is the main pollutant accounts for nearly 38.9% of the total number of days
that are contaminated per year [7]. Therefore, it is important to accurately predict PM2.5
concentrations in the region.
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2.2. Data Characterization and Preparation

Multiple interactions exist between PM2.5, PM10, and other significant pollutants.
In particular, PM2.5 and O3 have similar antecedents (such as NOx), and they likewise
engage in a variety of atmospheric interactions [39]. As a result, the air quality index, also
known as the AQI, and the six primary pollutants—namely, PM2.5, PM10, O3, NO2, CO,
and SO2—were employed as inputs to the model. To simplify the structure of the inputs, it
should be noted that the above factors employ the corresponding averages from numerous
observation points in each city. Additionally, climatic factors like temperature, humidity,
and wind speed can have an impact on how well pollutants in the atmosphere disperse [40].
As a result, we obtained hourly level information for the AQI and six key pollutants from the
People’s Republic of China’s Ministry of Ecology and Environment (https://air.cnemc.cn:
18007/) accessed on 21 April 2022. Daily weather information for the same time period was
obtained through the Public Weather website (https://openweathermap.org/) accessed on
21 December 2022.

The gathered data underwent the following preprocessing: In this paper, the maximum
number of missing data for Beijing pollutants in the data is 1782, the minimum number of
missing data is 162, and the missing data rate is from 0.92% to 10.15%. Hence, the first step
is to fill in the missing values in the dataset by simple linear interpolation [34]. As known
from Table 1, the data values of PM10 in Beijing and Tianjin have the largest difference, and
the data values of CO_24h have the smallest difference. The large difference in data values

https://air.cnemc.cn:18007/
https://air.cnemc.cn:18007/
https://openweathermap.org/
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between different impact factors may increase the difficulty of modeling. In order to solve
such problems, this paper uses the Min-Max function to standardize the data [38]. The
following equation describes the Min-Max normalization formula:

y′ =
y−min(y)

max(y)−min(y)

where min(y) denotes the minimum value of each factor and max(y) denotes the maximum
value of each factor. Finally, the data were sequentially divided into a training set, a
validation set, and a test set at a ratio of 70%:20%:10%. For a more illustrative presentation
of the data, Table 1 presents the statistics for the two large cities of Beijing and Tianjin.

Table 1. Statistics about the two main cities.

Parameters
Beijing Tianjing

Min Max Mean Min Max Mean

AQI
(
µg·m−3) 8 500 69.92 9 500 73.87

PM2.5 1 742 39.15 1 365 44.43
PM2.5_24h 2 238 38.78 3 264 44.38
PM10 1 8733 72.52 1 3077 72.01
PM10_24h 2 1790 71.33 3 977 71.71
SO2 1 43 3.06 1 334 8.85
SO2_24h 1 14 3.07 2 31 8.85
NO2 1 144 29.20 1 157 35.22
NO2_24h 2 101 29.19 3 128 35.26
O3 1 322 61.81 1 333 67.44
O3_24h 2 322 103.73 7 333 117.53
CO

(
mg·m−3) 0.1 4 0.59 0.1 5.8 0.83

CO_24h 0.1 2.8 0.60 0.1 2.9 0.83
Temperature (K) 254.42 313.7 287.46 254.25 311.97 287.11
Dew point (K) 240.33 301.9 277.52 237.35 303.9 277.78
Sensible temperature (K) 247.80 318.09 286.96 247.45 316.92 286.25
Min temperature (K) 250.04 310.47 285.42 252.14 311.36 286.38
Max temperature (K) 254.79 314.8 288.79 254.45 312.49 287.86
Pressure (kPa) 986 1048 1012.60 993 1046 1016.53
Humidity (%) 6 100 54.73 3 100 57.66
Wind speed (miles/h) 0.02 8.59 1.91 0 19 3.18
Wind direction (◦) 0 360 180.47 0 360 177.66
Cloudiness (%) 0 100 40.91 0 100 17.49
Weather id 500 804 778.65 500 804 755.66

2.3. The Features of Data Distribution
2.3.1. Exploration of the Temporal Dimension

Beijing’s yearly data for the year 2021 were chosen as this study’s target subject for
the purpose of examining the features of how pollution concentrations and meteorological
data are distributed. Figure 2 displays the yearly variation in value for each contaminant
concentration. When additional pollutants and PM2.5 concentrations are observed, it is
discovered that the pattern of those changes is often constant, which suggests that there
might be an invisible connection among the pollutants. According to a statistical study, in
2021, PM2.5 concentration was to exceed the first intermediate limit of 35 µg·m−3, which has
a slight negative influence on the well-being of some groups that are unusually sensitive. In
2021, the level of PM2.5 was to exceed 75 µg·m−3 13.01% of the time, which was predicted
to have an immediate impact on individuals’ everyday transportation and well-being [41].
Therefore, the prediction of PM2.5, for one, needs to take into account the occult connection
between PM2.5 and other factors. Another aspect is that the study illustrated how timely
prevention of the effects of high PM2.5 concentration on human wellness is possible.
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The yearly value variations for each meteorological component are displayed in
Figure 3. From Figure 3, first, it should be obvious that temperature changes are identical
with variations in the barometric pressure, which are precisely the reverse of temperature
changes. Second, it shows that there may be connections between the meteorological
components because the values of the meteorological elements are extremely different yet
their variations are very comparable. For example, as shown in Figure 3, high temperatures
lead to low barometric pressure, and the reverse is also true. Third, it is obvious from
the numerical curves of pollutant and meteorological data in one year that there are
certain trends in meteorological and pollutant information. Therefore, for the purpose of
addressing the longstanding pollutant concentration dependency, it is necessary to clarify
the trend of pollutant and meteorological factors.
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2.3.2. Exploration of the Spatial Dimension

Figures 2 and 3 show the meteorological and pollutant information within the temporal
dimension, which is analyzed in detail in this paper. Beijing is a major city in the region. Its
concentration of PM2.5 could additionally be described in the context of space. In a similar
vein, this study chooses data on the concentrations of PM2.5 for every city in 2021. As shown
in Table 2, this study calculates the concentrations of pollution and Pearson correlation
coefficients among Beijing and nearby cities. Combining Table 2 and Figure 4, firstly, this
paper observes that the correlation is higher for cities closer to Beijing, as indicated in bold.
Second, when the distance between Beijing and other cities grows, the correlation values
of pollutants in the atmosphere between Beijing and nearby cities steadily decline. The
impact of distance hints at the spatial correlation of air contaminants.

Table 2. Correlation coefficients of air pollutants between Beijing and neighboring cities.

City Pair AQI PM2.5 PM10 SO2 CO NO2 CO

Beijng and Baoding 0.674 0.671 0.560 0.589 0.589 0.628 0.589
Beijng and Cangzhou 0.509 0.505 0.570 0.443 0.450 0.512 0.440
Beijng and Chengde 0.663 0.680 0.566 0.430 0.618 0.684 0.618
Beijng and Datong 0.494 0.453 0.520 0.332 0.336 0.574 0.416
Beijng and Langfang 0.765 0.786 0.621 0.549 0.726 0.693 0.726
Beijng and Qinhuangdao 0.554 0.614 0.533 0.558 0.406 0.563 0.427
Beijng and Tangshan 0.631 0.656 0.563 0.398 0.468 0.611 0.468
Beijng and Tianjin 0.618 0.632 0.597 0.434 0.520 0.640 0.520
Beijng and Zhangjiakou 0.589 0.548 0.415 0.468 0.525 0.524 0.527
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The variations in concentrations of PM2.5 in Beijing and the other cities are then shown
in Figure 4. First, it can be seen from Figures 3 and 4 that the concentration of PM2.5 follows
an overall trend that is lower when the temperature is elevated and elevated when the
temperature is lower. Second, it has been discovered that the overall trends of PM2.5 vary
across every city and are consistent in terms of the geographical and temporal dimensions.
This illustrates the requirement of taking spatial correlation into account when making an
effort to predict pollutant concentration based on the features of pollutant concentration
correlation in Beijing and surrounding cities [42].

3. Methodology
3.1. Framework Overview

STA-ResConvLSTM was designed by us as the pollutant concentration prediction
model, and its whole prediction procedure is a translation from the input of raw data to
the output of results. The input of STA-ResConvLSTM is the past n hour historical data
of pollutant and meteorological information (x = {xt, xt+1, · · · , xt+n−1, xt+n}, xt+n ∈ Rs∗i,
where s indicates the quantity of observation stations and i indicates the total quantity of
pollutant and meteorological factors). The output of the prediction model is the pollutant
concentration in the next r hours (ŷ = {ŷt, ŷt+1, · · · , ŷt+r−1, ŷt+r}, ŷt+r ∈ R, ŷt+r), which
indicates the model’s predicted value for a given moment. Unlike other deep learning
models for pollutant concentration prediction, a three-layer STA-ResConvLSTM predic-
tion model is devised. The base layer of the model consists of an STA-ResNet, where
each layer of the residual network performs convolutional operations on the input data
using convolutional kernels of the same size and uses multiple convolutional layers to
extrapolate spatial characteristics from the pollution and meteorological information pro-
vided. Adding a spatial–temporal attention module to the residuals block makes the model
more attentive to the spatial–temporal characteristics of pollutant and meteorological
information. At the conclusion of STA-ResNet, high-level spatial semantic characteris-
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tics out = {outt, outt+1, · · · , outt+n−1, outt+n} of pollutant and meteorological factor data
are extracted by ResNet. The second layer is the ConvLSTM layer, which implements
spatial–temporal feature extraction of pollutant concentrations. ConvLSTM uses a gating
mechanism and convolutional operations. Like traditional LSTMs, the gating mechanism
is employed for obtaining the data’s time-series characteristics, and the convolution op-
eration is used to extract spatial features of the data. ConvLSTM successfully combines
the data’s spatial–temporal features, making it possible to simultaneously extract these
features. The last layer is the fully connected layer, which completes the final pollutant con-
centration prediction result ŷ = {ŷt, ŷt+1, · · · , ŷt+r−1, ŷt+r} after receiving the output from
the ConvLSTM. The framework of our pollutant prediction model is shown in Figure 5.
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3.2. Spatial–Temporal Attention

Attention mechanisms have their origins in human research in the visual domain.
Humans consciously direct their restricted focus to the visually salient information while
dismissing the unimportant data. Thus, the core task of the attention mechanism is to
search for the internal relevance of the original data, thus ignoring irrelevant information
and highlighting important information with a higher weight [43].

Given an original input F ∈ RC×H×W of a similar image, the dimensions C, H, and
W mean the window size (indicating the magnitude of the historical observational input
to the model), i.e., city information, air pollutant characteristics, and meteorological in-
formation, respectively. The schematic representation of the spatial–temporal attention
module is shown in Figure 6. Since spatial–temporal attention has good weight distribution
capabilities, this paper introduces a combination of spatial and channel attention to capture
the spatial–temporal characteristics of meteorological and pollutant information [44].

3.2.1. Spatial Attention

The pollutant and meteorological information are input into the spatial attention
module of the STA-ResConvLSTM model in time-series order to assign different weights to
the spatial features. Figure 7a shows a diagram of the spatial attention module.

First, on the input features, Maxpool(·) and Avgpool(·) operations are initially carried
out. Then, a unique characteristic descriptor is created by connecting the outputs of two
distinct characteristics. Finally, the convolution and sigmoid function procedures modify the
new feature descriptors into new features. The formula for calculating SAM is as follows:

Ms(F) = fsigmoid(Conv[MaxPool(F); AvgPool(F)])) (1)



Sensors 2023, 23, 8863 10 of 21

where Maxpool(·) indicates Maxpooling, Avgpool(·) represents averagepooling, the multi-
layer perceptron is displayed by MLP(·), and Conv(·) displays the convolutional layer.
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3.2.2. Temporal Attention

The temporal attention mechanism, in contrast to the spatial attention mechanism, is
more interested in the impacts of inputs from various historical pieces of information on
the present and future. Figure 7b is the schematic representation of the temporal attention
module. The temporal attention module is adaptive in acquiring the inner temporal
correlations between the original inputs because the channel dimensions of the original
input reflect the past time-lag information. By finding out each channel’s weights, the
temporal attention module can enhance and suppress meaningful and useless historical
information, respectively.

First, the spatial–temporal dimensions of the intermediate features are compressed
by average pooling and maximum pooling to obtain spatial–temporal contextual features,
respectively. After that, both of those characteristics are transformed by a shared multi-
layer perceptron (MLP(·)) and merged using element-by-element summation. Finally, the
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merged features are activated by a sigmoid function to represent each channel’s importance
weight. The computational procedure for the temporal attention module is as follows:

Mc(F) = fsigmoid(MLP(MaxPool(F′) + MLP(AvgPool(F′))) (2)

3.3. STA-ResNet

In this study, the spatial correlation characteristics of air contaminants and meteoro-
logical variables at numerous stations are extracted using ResNet’s intrinsic advantages.
Meteorological and air pollution data are entered in time-series order in each residual block
in an STA-ResNet. Then, the input data are processed by each ResNet convolutional layer
to extract spatial features using the same convolutional kernel. Meanwhile, the extraction of
the spatial and temporal weights of the initial inputs is carried out by the spatial–temporal
attention modules accordingly. As a result, they enhance each other. The combination of
both modules in each residual cell is shown in Figure 8. STA-ResNet extracted features
are then output in temporal order out = {outt, outt+1, · · · , outt+n−1, outt+n}. Each residual
unit includes two convolutional layers and a spatial–temporal attention module. The
residual unit is mainly divided into the residual part and the direct mapping part, and the
formula is expressed as:

yi = h(xi) + F(xi, wi) (3)

xi+1 = f (yi) (4)

where h(x i) is the direct mapping, F(·) represents the residual function, wi is the weight
matrix, f (·) represents the Relu activation function, and xi and yi represent the input and
output, respectively.
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3.4. ConvLSTM Network

The STA-ResNet performs spatial characteristics extraction on pollutant and mete-
orological data to obtain time-series data out = {outt, outt+1, · · · , outt+n−1, outt+n} with
high-dimensional spatial characteristics. This study takes advantage of ConvLSTM to per-
form spatial–temporal correlation feature extraction and pollutant concentration prediction
on the output time-series data. In the process of spatial–temporal characteristics extraction,
ConvLSTM handles spatial–temporal correlation characteristics extraction on the high-
dimensional time-series data using gating mechanisms and convolution operations. In
the process of pollutant concentration prediction, the fully connected layer receives each
moment’s output states from ConvLSTM, which then generates pollutant prediction values
based on the features of the extracted spatial–temporal correlation.
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As shown in Figure 9a, we illustrate the comprehensive spatial–temporal feature
extraction procedure using ConvLSTM in detail, where (ht, ct) denotes the cell state. Each
cell in the ConvLSTM has a special three-gate structure, where it means the input gate,
ft represents the forgetting gate, and ot means the output gate, which is similar to the
LSTM. The ConvLSTM cell only differs in that convolutional functions are used for input-
to-state and state-to-state transitions instead of fully connected operators. ConvLSTM
outperforms LSTM greatly as a result of these enhancements. As shown in Figure 9b, the
process of extracting spatial–temporal features using ConvLSTM can be described by the
following equations:

it = σ(Wxi ∗ xt + Whi ∗ ht−1 + Wci ◦ ct−1 + bi) (5)

ft = σ(Wx f ∗ xt + Wh f ∗ ht−1 + Wc f ◦ ct−1 + b f ) (6)

gt = tanh(Wxg ∗ xt + Whg ∗ ht−1 + bg) (7)

ot = σ(Wxo ∗ xt + Who ∗ ht−1 + Wco ◦ ct + bo) (8)

ct = ft ◦ ct−1 + it ◦ gt (9)

ht = ot ◦ tanh(ct) (10)

where ∗ is the convoluted function, ◦ denotes the Hadamard product, tanh(·) is the TanHy-
perbolic function, and σ(·) is the sigmoid function. The output and state of the ConvLSTM
unit at the previous instant are indicated by the variables ht−1 and ct−1, respectively. xt is
the input of the current cell, and the potential memory cell for information transmission is
gt. The convolution kernels and bias terms are denoted by W and b, respectively.
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3.5. Metrics

On the same dataset, this study’s suggested deep learning model is compared to other
deep learning models. The root-mean-square error (RMSE), mean absolute error (MAE),
coefficient of determination (R2), and index of agreement (IA) were used as metrics to prove
the validity of the method. The computation formula is presented as is.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (11)
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MAE =
1
n

n

∑
i=1
|yi − ŷi| (12)

R2 =

n
∑

i=1
(ŷi − yi)

2

n
∑

i=1
(yi − yi)

2
(13)

IA = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(|yi − y|+ |ŷi − y|)2

(14)

where n is the sample size of the input dataset of the model, ŷi is the predicted value of the
model, yi is the actual concentration of pollutants, and y is the average concentration of
pollutants.

4. Results
4.1. Parameter Setting

The model’s structural layout and hyperparameter settings have a significant impact
on the model’s ability to predict outcomes. We conducted several random search exper-
iments to investigate the ideal hyperparameter values and structural architecture of the
model in order to assure an equitable distribution of the model’s performance comparability.
Table 3 displays the model test’s parameters.

Table 3. Model parameters.

Layer Name Output Size Parameters Values

STA-ResNet 24 × 10 × 32

(filter, channel, channel) × number of layers (3 × 3, 8/16/32) × 1
SAM - -
CAM - -

(filter, channel, channel) × number of layers (3 × 3, 8/16/32) × 1

ConvLSTM 24 × 10 × 64 (filter, channel, channel) × number of layers (3 × 3, 64) × 1

Full connected layer 256 × 1 layer nodes × number of layers 256 × 1
10 × 1 10 × 1

- - Dropout 0.5
- - Batch size 128
- - Learning rate 0.0001
- - Epoch 50

4.2. Single-Step Prediction

This paper employs the great time-series data processing models CNN, LSTM, CNN-
LSTM, and ConvLSTM as STA-ResConvLSTM model comparison models. Table 4 gives the
quantitative results of the single-step prediction of PM2.5 concentration, comparing the dif-
ferences between the CNN, LSTM, CNN-LSTM, ConvLSTM, and STA-ResConvLSTM mod-
els in terms of RMSE, MAE, R2, and IA. As can be seen from Table 4, the STA-ResConvLSTM
model outperforms other deep learning models in the single-step prediction task of PM2.5
concentration. Compared with other comparative models, STA-ResConvLSTM improves
R2 to 0.9307, IA to 98.29%, RMSE to 9.82, and MAE to 5.86, which significantly improves
prediction accuracy. In addition, the prediction performance of single-structured deep
learning models (CNN and LSTM) is significantly lower than that of hybrid deep learning
models (CNN-LSTM and ConvLSTM). This means that the hybrid deep learning model out-
performs the single-structured deep learning model in the single-step prediction of PM2.5
concentration. Compared to the CNN-LSTM model, STA-ResConvLSTM improved R2 by
0.041, IA by 0.87%, RMSE by 1.77, and MAE by 0.47. Compared with the CNN-LSTM model,
STA-ResConvLSTM improves R2 by 0.041, IA by 0.87%, RMSE by 1.77, and MAE by 0.47.
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This is because STA-ResConvLSTM can learn spatial–temporal correlation characteristics of
pollutants and meteorological information through spatial–temporal attention. Compared
with CNN and LSTM, ResNet and ConvLSTM can obtain deeper spatial–temporal features
of PM2.5 concentration, which can improve the final prediction results.

Table 4. Performance evaluation indicators for model single-step prediction.

Models RMSE MAE R2 IA

CNN 13.90 8.51 0.8166 96.03%
LSTM 12.23 7.57 0.8606 96.89%
CNN-LSTM 11.59 6.33 0.8897 97.42%
ConvLSTM 11.03 6.39 0.9036 97.74%
STA-Res ConvLSTM 9.82 5.86 0.9307 98.29%

Note: window size = 3; model performance evaluation indicators (RMSE, MAE, R2, and IA) are the predictors for
the next 1 h.

4.3. Multi-Step Prediction

Pollutant concentration prediction research has mostly concentrated on single-step
prediction; however, this is insufficient to fulfill the demands of daily life. Predicting
pollutant concentration over an extended period of time in future periods is the goal of
multi-step prediction [7], and its forecast might serve as a helpful guide for travelers. In this
section, the performance of the models for multi-step prediction of pollutant concentrations
is analyzed. Table 5 shows the quantitative results of the multi-step prediction of PM2.5
concentrations. The RMSE of STA-ResConvLSTM decreases to 12.63 and the MAE to 8.52.
The R2 of STA-ResConvLSTM increases to 0.8871 and the IA to 97.19%, which is a significant
improvement in prediction accuracy when compared with the other comparative models.
Moreover, the error of the ConvLSTM model is lower than that of the CNN-LSTM model,
but the difference between the two is not significant, and both values are lower than that
of the deep learning model with a single structure. As a result, the hybrid deep learning
approach is superior to the traditional deep learning model for the multi-step prediction
problem of PM2.5 concentration. In addition, compared with the ConvLSTM model, STA-
ResConvLSTM improved R2 by 0.0657, IA by 1.31%, RMSE by 1.8, and MAE by 0.28.
The results show that ConvLSTM, with its excellent spatial–temporal feature extraction
of pollutants, has higher prediction performance than the other models. However, the
STA-ResConvLSTM model performed better than the ConvLSTM model in both single-step
and multi-step prediction.

Table 5. Comparison of multi-step prediction performance (window size = 8, forecast horizon = 1–6 h).

Models RMSE MAE R2 IA

CNN 17.08 10.28 0.7207 94.08%
LSTM 16.55 9.76 0.7339 94.21%
CNN-LSTM 14.85 9.32 0.7726 95.16%
ConvLSTM 14.43 8.81 0.8214 95.88%
STA-Res ConvLSTM 12.63 8.52 0.8871 97.19%

Everyone is aware that model prediction becomes more difficult as the prediction
time step increases [8]. This section investigates the effect of the prediction time step
on the model constructed in this study and other deep learning models. To assess the
model created in this research and other deep learning models for PM2.5 concentration’s
multi-step prediction capabilities, the quantitative results of the prediction are presented in
Figure 10 through the change curves of RMSE, MAE, R2, and IA. As shown in Figure 10, all
prediction models’ accuracy declines as the prediction time step grows. This is because, as
the prediction time step increases, the difficulty of prediction increases and the accuracy
of the model decreases. Along with the process of increasing the prediction time step,
the prediction performance of the STA-ResConvLSTM model decreases slowly and tends
to a stable state, e.g., the RMSE stabilizes at about 12.5 and the R2 stabilizes at about
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0.88. It is observed from Figure 10 that the forecasting accuracy values of CNN-LSTM
and ConvLSTM are nearly identical, as are the forecasting accuracy values of LSTM and
CNN. As shown, the four metrics used to evaluate the performance of CNN-LSTM and
ConvLSTM consistently outperform CNN and LSTM. This shows that, as the prediction
issue becomes more challenging, the hybrid structural model may characterize complicated
data more accurately. CNN-LSTM’s prediction performance cannot outperform that of STA-
ResConvLSTM in any time period. This indicates that spatial–temporal attention, ResNet,
and ConvLSTM bring stability to the model’s prediction and can better handle complex
spatial–temporal data in multi-step predictions. In addition, it is observed from the figure
that, in comparison to other models with various prediction time steps, STA-ResConvLSTM
has the lowest prediction error and the best forecast accuracy.
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4.4. Trend Prediction

To ensure that the trend forecast made by the model developed in this study is stable,
the pollutant and meteorological information data from the previous 24 h were constructed
as three-dimensional inputs for the prediction model. These inputs were utilized to forecast
the trend of PM2.5 concentration in the following 48 h. The STA-ResConvLSTM constructed
in this paper was compared with other PM2.5 prediction models, and Tables 6 and 7 show
the changes in RMSE, MAE, R2, and IA of CNN, LSTM, CNN-LSTM, and ConvLSTM
with the model in this paper. As shown in Tables 6 and 7, the model constructed in this
paper can continue to significantly outperform other prediction models as the prediction
time step increases. Furthermore, the four performance evaluation indicators of the CNN
and LSTM models fluctuate greatly in long-term predictions. The four evaluation indexes
of this paper’s model fluctuate less with respect to the prediction time step (the smallest
change in value), indicating that STA-ResConvLSTM is the most suitable choice for the
multi-step prediction of PM2.5 concentration. The STA-ResConvLSTM model performs
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well in predicting pollutant concentrations at a time step of 48 h with less fluctuation in
accuracy, which suggests that the model can continue to predict pollutant concentrations
for longer time periods. But as the prediction step increases, the accuracy of the prediction
decreases. CNN-LSTM has more spatial feature extraction ability than LSTM; the results
in the table prove that CNN-LSTM is more suitable for time-series prediction tasks than
LSTM. However, it is far from enough to obtain spatial characteristics of regional pollutant
concentrations only with CNN. CNN cannot filter unimportant information in pollutant
and meteorological data, and it is challenging to obtain an in-depth spatial–temporal
correlation between pollutants and meteorological counts in the region. Therefore, in
this paper, temporal attention, ResNet, and ConvLSTM are combined into a new CBAM-
ResConvLSTM model to fully utilize the advantages of their components.

Table 6. Testing error for model prediction.

Models
RMSE MAE

1–12 h 13–24 h 25–36 h 37–48 h 1–12 h 13–24 h 25–36 h 37–48 h

CNN 18.97 21.13 22.16 23.29 11.98 13.51 13.99 14.52
LSTM 18.06 20.11 21.39 22.74 11.12 12.92 13.66 14.52
CNN-LSTM 15.49 16.65 17.22 19.45 9.56 10.55 11.70 13.28
ConvLSTM 15.23 16.81 17.10 19.00 9.51 10.81 11.35 12.37
STA-Res ConvLSTM 11.88 13.12 13.58 14.37 7.82 8.24 8.60 9.71

Note: window size = 48; prediction error is averaged out by model testing errors (RMSE and MAE) for the next
t ∼ t + n hours.

Table 7. Testing accuracy for model prediction.

Models
R2 IA

1–12 h 13–24 h 25–36 h 37–48 h 1–12 h 13–24 h 25–36 h 37–48 h

CNN 0.6317 0.5197 0.4295 0.3019 91.75 89.99 88.26 84.48
LSTM 0.6608 0.5369 0.4635 0.4167 92.91 90.71 89.28 88.03
CNN-LSTM 0.7826 0.7145 0.7091 0.6359 95.22 94.07 93.71 92.60
ConvLSTM 0.7949 0.7214 0.6976 0.6463 95.41 94.02 93.58 92.26
STA-Res ConvLSTM 0.8919 0.8658 0.8395 0.8161 97.37% 96.79 96.18 95.83

Note: window size = 48; model testing accuracies (R2 and IA) are the average of the prediction accuracy for the
next t ∼ t + n hours.

To further validate the prediction performance of the suggested model for pollutant
trend changes, this paper analyzes the fitting ability of models for predicting PM2.5 con-
centrations with a time step of 48 h. Figure 11 shows a line graph and scatter plot of the
change in predicted and true PM2.5 values over the next 744 h (1 December 2021, 0:00
to 31 December 2021, 23:00). As shown in Figure 11, it can be seen that CNN makes the
worst predictions and is unable to interpret the PM2.5 concentration trend. Compared with
LSTM, it is more capable of predicting PM2.5 concentration, but the prediction accuracy
of the sudden change point (sudden change in value over a short period of time) in PM2.5
concentration is not enough. Although the ConvLSTM curve fluctuation is not very large,
it is challenging to forecast the trend in PM2.5 concentration. The model constructed in this
study outperforms other comparative models in predicting the sudden change point in
PM2.5 concentration and the change trend in PM2.5 concentration. When the concentration
of PM2.5 pollution sources is unstable (when PM2.5 concentration is greater than 60 µg/m3),
the traditional deep learning model cannot capture the real change trend and presents very
confusing results. This illustrates the fact that the model’s ability to forecast future PM2.5
concentrations accurately is still limited. In addition, the STA-ResConvLSTM prediction
results are basically consistent with the observation results, which means that the model
constructed in this paper has a very good fitting result on the prediction of the mutation
points and the change trends in PM2.5 concentration.
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As a result of combining every model’s ability to match the data in Figure 11, the
following conclusions may be drawn: (1) The experimental results confirm that for single-
step, multi-step, and trend prediction of pollutant concentration, the STA-ResConvLSTM
model predicts the trend of pollutant concentration with a very strong reference value.
(2) From Figure 11(a1–e1), the STA-ResConvLSTM model’s prediction performance is
superior to that of the comparison model, and it is appropriate for the purpose of predicting
the abrupt change in pollutant concentration. (3) As can be observed in Figure 11(a2–e2), the
STA-ResConvLSTM model is able to forecast high concentrations of PM2.5 more correctly
than the comparison model. High agreement exists between the projected and actual
values. (4) It is intuitively obvious when paired with the experimental findings in Figure 11
that the concentration of PM2.5 is often greater and the total number of mutation points
is smaller. This mostly reflects the issue that there are not many samples at the mutation
locations in the overall dataset, which causes an issue with unequal data distribution. The
occurrence causes an issue of inadequate learning in the prediction models, which makes
it challenging to learn the pattern of change in pollutant concentration in the event of a
mutation. Because of this, certain models might be challenging to fit when there is an
abrupt increase in pollutant concentration.

The STA-ResConvLSTM model can predict pollutant concentrations beyond the next
48 h in a multi-step prediction, but the prediction performance becomes unstable with the
prediction time step.

5. Discussion

The results show that STA-ResConvLSTM has the best performance among all the
tested models for single-step, multi-step, and trend prediction of PM2.5. The hybrid deep
learning framework based on spatial–temporal attention mechanisms becomes a more
useful tool for processing spatial–temporal data than its deep learning model.

From the temporal dimension, there is a clear cyclical variation in pollutants and me-
teorological data, which can also be said to be time-dependent. From the spatial dimension,
the PM2.5 values of the ten cities are similar, and it can also be said that the pollutants have
a spatial correlation.

From the results of the PM2.5 single-step and multi-step prediction experiments, it
can be seen in Tables 2 and 3 that CNN-LSTM, ConvLSTM, and STA-ResConvLSTM
have better prediction results compared to the CNN and LSTM methods because all
three methods can handle pollutant prediction problems. Next, comparing the prediction
results of CNN, CNN-LSTM, and ConvLSTM in Tables 2 and 3, it can be concluded that the
prediction accuracy of ConvLSTM is higher than that of the other models, which proves that
ConvLSTM has a better ability to extract spatial features of pollutants and meteorological
data. Finally, comparing the prediction results of ConvLSTM and STA-ResConvLSTM in
Tables 2 and 3, it can be seen that the prediction accuracy of STA-ResConvLSTM is higher
than that of ConvLSTM, which proves the superiority of the spatial–temporal attention
mechanism and residual network for deep feature extraction of spatial–temporal data. The
experimental results of the STA-ResConvLSTM model in Tables 2 and 3 also confirm that it
is very effective for the prediction of PM2.5. The optimal values of RMSE are only 9.82 and
12.63, respectively.

From the results of the PM2.5 trend prediction experiment, as shown in Figure 11 for
CNN and LSTM, the curve fluctuates greatly, and it is difficult to predict the trend in PM2.5
concentration. CNN-LSTM’s and ConvLSTM’s curves fluctuate little and are stable, but it is
difficult to predict the trend in PM2.5 concentration at the sudden change point. Combining
Tables 6 and 7 and Figure 11, compared to other deep learning models, STA-ResConvLSTM
has the least fluctuation in prediction accuracy with the increase in prediction time step
and can accurately predict the future trend in pollutant concentration. From the figure, we
can see that the trend of the observed and predicted curves in the red box is consistent.
Therefore, in the future pollutant prediction process, the STA-ResConvLSTM model can be
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considered to be combined with state-of-the-art prediction methods so as to improve the
accuracy of pollutant prediction more effectively.

6. Conclusions and Future

This paper reports a model for pollutant concentration prediction. First, the de-
sign of spatial–temporal inputs to the model is guided by a correlational examination of
inter-city pollution and meteorological information. Once more, using the concepts of
spatial–temporal big data correlation combined with deep learning, an STA-ResConvLSTM
prediction model based on spatial–temporal attention mechanisms ResNet and ConvL-
STM is constructed. The framework is mostly employed to forecast the concentrations
of pollutants in target cities. To explore the spatial–temporal dependency of historical
knowledge, one uses spatial–temporal attention. The primary function of ResNet is to
obtain the spatial characteristics of meteorological and pollution data from various cities.
The high-dimensional information generated from ResNet is processed using ConvLSTM
to obtain the spatial–temporal characteristics. The benefits of the suggested technique are
outlined in the list below:

(1) The temporal attention mechanism and spatial attention mechanism enable the model
to capture more spatially and temporally dependent important information than other
prediction models.

(2) Compared with traditional CNN, ConvLSTM, and CNN-LSTM, ResNet can better
extract spatial characteristics with the same deep network.

(3) The prediction model presented in this study uses the ConvLSTM as the output layer
due to the spatial–temporal correlation of atmospheric pollutants. Compared with
LSTM, ConvLSTM extracts the hidden high-level correlation features in the 3D data
to realize the goal of mining the spatial–temporal correlation of the data.

Although the superiority of the designed prediction model has been well established,
there are still deficiencies that require further improvement. One approach is to divide pol-
lutant and meteorological data from different cities into grids to extract spatial information
more efficiently. In addition, we plan to obtain pollutant and meteorological information
for more cities or longer time spans, as more information is anticipated to increase the
accuracy of the model.
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