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Abstract: The ability of the lumbar extensor muscles to accurately control static and dynamic forces
is important during daily activities such as lifting. Lumbar extensor force control is impaired in
low-back pain patients and may therefore explain the variances in lifting kinematics. Thirty-three
chronic low-back pain participants were instructed to lift weight using a self-selected technique.
Participants also performed an isometric lumbar extension task where they increased and decreased
their lumbar extensor force output to match a variable target force within 20–50% lumbar extensor
maximal voluntary contraction. Lifting trunk and lower limb range of motion and angular velocity
variables derived from phase plane analysis in all planes were calculated. Lumbar extensor force
control was analyzed by calculating the Root-Mean-Square Error (RMSE) between the participants’
force and the target force during the increasing (RMSEA), decreasing (RMSED) force portions and
for the overall force error (RMSET) of the test. The relationship between lifting kinematics and
RMSE variables was analyzed using multiple linear regression. Knee angular velocity in the sagittal
and coronal planes were positively associated with RMSEA (R2 = 0.10, β = 0.35, p = 0.046 and
R2 = 0.21, β = 0.48, p = 0.004, respectively). Impaired lumbar extensor force control is associated
with increased multiplanar knee movement velocity during lifting. The study findings suggest a
potential relationship between lumbar and lower limb neuromuscular function in people with chronic
low-back pain.

Keywords: low-back pain; kinematics; lifting; force control; motor control; correlation

1. Introduction

The lumbar extensor (LE) muscle group is comprised of the multifidi, erector spinae
and short and intersegmental muscles and is involved in controlling lumbar posture and
movements [1]. The LE muscle group is capable of generating forces directed in the sagittal,
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frontal and axial planes, resulting in compression and posterior shear forces on the spine [2].
The neuromuscular function of the LE muscle group has been demonstrated to be altered
in people with chronic low-back pain (CLBP) [3], the biggest contributor to disability in
industrialized countries [4]. In the literature, people with CLBP typically present clinically
with pain across the lower back region between L1-S1 spinal segments, with or without
associated unilateral or bilateral leg pain [5], have demonstrated variable trunk muscle
activation patterns [3], delayed lumbar muscle activation to perturbation [6] and impaired
lumbar proprioception, particularly in sitting [7] compared to healthy controls. Addition-
ally when compared to healthy controls, people with CLBP also demonstrated impairment
in sub-maximal LE muscle force control [8].

Lumbar extensor muscle force control is defined as the ability of the LE muscle
group to produce accurate force [8]. LE muscle force control is typically assessed by
assessing isometric LE muscle force steadiness [9] and isometric muscle force accuracy
using a moving—i.e., variable force target [8]. Force accuracy is typically quantified
by calculating the root-mean-square error between the participants’ force output and
target force [8]. Pranata et al. [8] demonstrated that people with CLBP exhibited 30–45%
more LE force matching error (i.e., overshot or undershot the target force)—hence, they
exhibited decreased force control compared to healthy controls. Additionally, the inability
to produce accurate force has been demonstrated to be associated with increased CLBP-
related disability, suggesting the clinical relevance of the novel LE muscle force control
assessment [8].

The function of the LE muscle group in people with CLBP can also be evaluated,
in part, by assessing the kinematics of functional movements such as lifting. Lifting
is an activity of daily living that is usually performed at submaximal intensities and
requires an appropriate level of muscle force control for coordinated movement of the
trunk and lower limb. Lifting-related kinematic strategies are known to vary between
CLBP and healthy individuals, with high variability demonstrated in the in those with
CLBP [10] which are task dependent [11]. For instance compared to healthy controls,
decreased inter-subject trunk movement variability has been observed during trunk flexion-
extension tasks performed at self-selected pace [12]. Similarly, decreased hip and knee
coordination variability was observed during a free-style lifting task in people with CLBP
when compared to healthy controls [13].

It has been proposed that CLBP could be associated with adverse changes distal to
the trunk—such as in the hip and knee during functional task performance [14]. Recent
studies have reported decreased in hip abductor [15] and quadriceps [16] strength in people
with CLBP which could affect functional task performance. Furthermore, recent studies
have demonstrated that ankle proprioception could be impaired in people with CLBP [17].
People with CLBP have demonstrated poorer standing balance that is reflected in increased
postural sway during quiet standing [18,19]. That said, it is unknown whether dynamic
tasks, such as lifting, is affected by trunk and lower limb neuromuscular impairments in
people with CLBP. However, overall, the research in this area is sparse.

This study proposed that impairments in LE muscle force control could contribute to
changes in lower limb kinematics (e.g., increased lower limb movements) which in turn
could alter dynamic posture and subsequently task performance such as lifting in people
with CLBP. Thus, the aim of this study is to investigate the relationship between LE muscle
force control and lower limb kinematics during lifting in the sagittal and coronal planes. It
was hypothesized (H1) that there would be a significant (positive or negative) association
between LE muscle force control (i.e., target matching error) and lower limb lifting range of
motion (ROM) and angular velocity. A null hypothesis (H0) of this study was there would
be no significant association between LE extensor muscle force control and lifting lower
limb kinematic variables.
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2. Materials and Methods
2.1. Participants

A pragmatic sample of thirty-three participants (nfemale = 18, nmale = 15) aged 25–60 years
with CLBP were recruited from a large physiotherapy clinic in Melbourne, Australia. Par-
ticipants were new patients of the clinic who reported pain between the level of the twelfth
thoracic vertebra (T12) and the gluteal fold >3 months. Physiotherapists screened and ex-
cluded participants if they presented with overt neurological signs such as muscle weakness
associated with lumbar radiculopathy or myelopathy, previous spinal surgery, systemic or
inflammatory conditions, malignancy, unstable spondylolisthesis (i.e., specific diagnosis
of CLBP) using a physical assessment framework previously described [20] or inability to
understand written or spoken English. Ethics approval was obtained from The University
of Melbourne’s Behavioural and Social Sciences Human Ethics Committee (ID: 1340715).
All participants provided written informed consent prior to entering the study.

2.2. Outcome Measures and Experimental Procedure
2.2.1. Pain and Disability

All participants completed the widely used and validated Oswestry Disability Index
(ODI) a measure of CLBP-related disability [21] and rated their pain out of 10 using a
Numerical Rating Scale [22] prior to commencing the laboratory session.

2.2.2. Lumbar Extensor Muscle Force Control

Details of the experimental protocol for assessing LE muscle force control have been
described in detail previously [8]. Isometric LE strength was derived from the assessment
of LE muscle maximum voluntary isometric contraction (MVIC). Maximum voluntary
isometric contraction of the LE muscle was performed by instructing the participants to
push against the backrest as hard as possible whilst seated on the MedX (Ocala, FL, USA) LE
dynamometer. The MedX is a valid [23] and reliable (r = 0.57–0.93, SEE = 12.0–44.5 Nm) [24]
instrument to measure LE strength in people with CLBP.

For the assessment of submaximal LE muscle force control, participants were seated
in a lumbar dynamometer machine and locked in 12◦ lumbar flexion (i.e., upright sitting,
0◦ is full extension). Using visual biofeedback displayed on a tablet computer placed 1 m
in front of the participants, participants were instructed to press their back against the
backrest, increasing and decreasing isometric force output to match a variable force target
that moves at a frequency of 0.08 Hz (Figure 1A). Participants were instructed to match
a moving force target that varies between 20% MVIC (lower force limit) and 50% MVIC
(upper force limit) as accurately as possible by increasing and decreasing LE isometric
force production over a 1 min period. No verbal encouragement was provided, and the
environment was kept silent. Prior to the data collection proper, participants were provided
with one practice trial and a 30 s rest. As such, participants were required to complete
~5 ascending and ~5 descending cycles of a sinusoidal wave.

2.2.3. Lifting Kinematic Assessment

Likewise, the methodology for the lifting kinematic assessment has been described
in detail elsewhere [13]. Twenty-one retro-reflective markers of 13 mm diameter were
attached to pre-specified anatomical landmarks using a double-sided tape to create a thorax,
pelvis, thigh and shank segments. Thoracic marker configuration was similar to previously
published study by Christe et al. [25] as such that the lumbar movement is the rotational
movement between the thorax and pelvis segments. Hip (pelvis-thigh) and knee (thigh-
shank) joints were derived using the longitudinal axes of each segment. Participants stood
in front of a 12-camera Optitrack Flex 13 motion capture system (NaturalPoint, Corvallis,
OR, USA). They were instructed to lift an 8 kg kettlebell up to the level of their abdomen
using a self-selected technique and pace (Figure 1B). The 8 kg weight was selected as this
was the average weight of a bag of groceries [26]. The movement was repeated twice, the
first served as a practice trial.
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Figure 1. Testing procedures of LE muscle force control (A) and lifting kinematics (B).

2.3. Data Analysis

Lumbar extensor isometric strength data from the MedX was filtered using a low-pass
Symlet-8 undecimated wavelet filter with a frequency of 62.5 Hz [8] and converted to torque
in Newton meters (Nm) using a custom-written LabVIEW software (National Instruments,
Austin, TX, USA) [8]. The custom data acquisition system was calibrated by applying a
series of loads to the MedX dynamometer, recording the results from the MedX software and
raw data from the data acquisition system and creating a calibration factor for the raw data
with the MedX results as the criterion reference using linear regression analysis. Lumbar
extensor muscle force control was quantified using the root-mean-squared error (RMSE)
between the participant’s torque output and the target torque. RMSE was calculated for
the ascending or ramping up phase (i.e., the force error between 20–50% MVIC; RMSEA),
descending or ramping down phase (i.e., the force error between 50–20% MVIC; RMSEB)
and average total error (RMSET) [8]. This resulted in five ascending and five descending
cycles during data collection. For data analysis, the first and last waveforms were removed,
resulting in four ascending and four descending cycles (Figure 2). Kinematic data was
cleaned, and gap filled using the Optitrack Motive software (NaturalPoint, Corvallis, OR,
USA) and passed through a custom written kinematic data analysis LabVIEW pipeline
(National Instruments, Austin, TX, USA). Joint angle data, in degrees, were filtered using a
fourth order zero-phase shift low-pass Butterworth filter with a 6 Hz cut-off frequency [27].
The start position for the lifting task was the position where the lumbar spine was at
its maximum flexion. The end lifting position was where the lumbar position was at its
maximal extension (i.e., upright position). The kinematic variables between sides were
averaged. Following this, the average ROM and angular velocity (first derivative of angular
displacement) of the lumbar, hip and knee joints in the sagittal (x-axis) and coronal (y-axis)
planes were obtained for statistical analyses.

2.4. Statistical Analysis

Linearity and strength of relationships between the independent variables (i.e., lumbar,
hip and knee ROM and VEL in x and y-axes) and dependent variable (i.e., RMSE variables)
were analyzed using Pearson product-moment correlation coefficient and scatterplots.
Normality, homoscedasticity and linearity of the residuals of the regression analyses were
assessed using Levene’s test and scatter graphs. Kinematic variables that exhibited a
significant correlation with RMSE variables were included in a series of multivariate linear
regression models. All analyses were conducted with significance level set at 0.05 using
SPSS Version 21.0 (IBM, Inc., Chicago, IL, USA).
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Figure 2. An analysis of LE muscle force control assessment for a CLBP participant. Orange
trace = target force, blue trace = participant’s force. RMSEA = average root-mean-squared error
during ascending/ramp-up phase of the test, RMSED = average root-mean-squared error during
descending/ramp-down phase of the test, RMSET = average total root-mean-squared error dur-
ing testing.

3. Results

Descriptive data pertaining to participant characteristics are presented in Table 1.
Participant LE muscle force control and lifting kinematic variables are presented in
Tables 2 and 3, respectively. Only knee angular velocity variables were positively associ-
ated with the RMSE variables. Specifically, RMSEA was positively correlated with knee
angular velocity in the sagittal (r = 0.35, p = 0.046) and coronal (r = 0.48, p = 0.004) planes.
RMSED was positively correlated with knee angular velocity in the coronal (r = 0.37,
p = 0.034) plane. RMSET was positively correlated with knee angular velocity in the
coronal plane (r = 0.36, p = 0.039). There was no significant correlation between the
lumbar and hip kinematic variables and the RMSE variables.

Table 1. Descriptive data (mean (SD)) pertaining to CLBP participant characteristics.

Variables (Units) Mean (SD)

Age (years) 41.8 (10.8)

Gender (female, %) 18 (54.5%)

Height (m) 1.70 (0.1)

Mass (kg) 75.3 (17.7)

BMI (m/kg2) 25.2 (4.7)

CLBP duration (months) 107.5 (119.0)

ODI (%) 20.7 (12.3)

NRS (/10) 3.30 (1.8)
Values indicate mean (standard deviation), n = number of participants, BMI = Body Mass Index, ODI = Oswestry
Disability Index, NRS = Numerical Rating Scale.
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Table 2. Descriptive data (mean (SD) pertaining to CLBP lumbar extensor muscle force control.

Variables Mean (SD)

RMSEA 5.87 (2.96)

RMSED 4.13 (1.35)

RMSET 5.21 (1.91)
RMSEA = average root-mean-squared error during ascending phase, RMSED = average root-mean-squared error
during descending phase, RMSET = total average root-mean-squared error, SD = standard deviation.

Table 3. Descriptive data (mean (SD)) pertaining to CLBP lifting biomechanical parameters.

Variables Body Parts

Hip Knee

Range of motion (o) X 34.06 (9.31) 13.27 (7.60)

Y 3.71 (2.54) 3.43 (2.34)

Angular velocity (o/s) X 13.89 (6.15) 5.53 (3.82)

Y 1.52 (1.26) 1.44 (1.25)

Total lifting time (s) 2.71 (0.97)
X = sagittal plane movement, Y = coronal plane movement.

Results of the linear regression analyses between kinematic and RMSE variables
are summarized in Figure 3. Knee angular velocity in the sagittal plane was positively
associated with RMSEA (adjusted R2 = 0.10, β = 0.35, p = 0.046). Knee angular velocity in
the coronal plane was also positively associated with RMSEA (adjusted R2 = 0.21, β = 0.48,
p = 0.004).
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Figure 3. The associations between lumbar extensor force control and lifting parameters. RMSEA

and Knee VELx (A), RMSEA and Knee VELy (B). RMSEA = average root-mean-squared error during
ascending phase, Knee Velx = knee angular velocity in the sagittal plane movement, Knee Vely = knee
angular velocity in the coronal plane movement.

4. Discussion

The aim of this study was to investigate the relationship between LE muscle force
control and lifting-related lumbar and lower limb movement variables in the sagittal
and coronal planes. To our knowledge, this is the first published study to investigate
the relationship between LE force control and lifting kinematics. A previous study has
demonstrated that LE submaximal muscle force control is impaired in people with CLBP
when compared to healthy controls [8]. In particular, people with CLBP demonstrated
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30% less ability to produce LE accurate force when compared to healthy controls [8]. The
result of this study adds to the previous research and indicates that the inability to produce
accurate LE force is associated with increased knee movements during lifting. This means,
people with CLBP with poorer LE force control compensated more with their legs during
lifting, evident by increasing knee movements during lifting.

The study findings supported our hypothesis that LE force control is associated with
changes in lifting lower limb kinematics. Specifically, LE force control partially explains the
variances in knee angular velocity in the sagittal and coronal planes. CLBP-related impair-
ments in trunk muscle function are well described in the literature and include: increased
trunk muscle co-contraction [3], delayed trunk muscle response to perturbation [28], altered
trunk and lower limb movement coordination [13,29]. Increased trunk stiffness via trunk
muscle co-contraction [30] has been identified as a strategy to maintain spinal posture
during dynamic tasks (e.g., lifting) in people with CLBP [31]. However, excessive trunk
stiffness [32]—which is strongly associated with imprecise force production, can potentially
impair dynamic task performance as a result of delayed activation of the trunk and lower
limb muscles resulting in higher joint excursion and postural sway [33,34] leading to a
potential loss of balance [35]. Increasing trunk muscle activation (i.e., stiffness) could be
implemented by people with CLBP as a preferred strategy to decrease their dependence on
cognitive feedback mechanism during complex task performance [36] such as lifting at the
expense of maintaining dynamic balance.

Movements at the hips and knees in all planes have been proposed to improve balance
during dynamic task performance by aligning the body center-of-gravity within the base
of support. This motor behaviour may have been reflected in this study findings. Our
findings are also in line with Mitchell et al. who observed increased lower limb move-
ments, knee movements in particular, during a step-up task in people with CLBP when
compared to healthy controls [37]. Interestingly, Mitchell et al. [37] found that during
step-up movement—a task that is predominantly performed in a sagittal plane, people
with CLBP demonstrated increased knee movements in the coronal plane (i.e., out of plane
movement). Similarly, when compared to healthy controls, people with CLBP had the
tendency to utilize more hip and knee movements, in reference to the ankle, during a deep
squat task to achieve similar maximum squat depth as healthy controls [38]. The dynamic
task utilized in this study, bilateral lifting, also predominantly required movements of the
lumbar, hip and knee regions in the sagittal plane. The requirement for additional stability
in the lower limb is also evident by reports of decreased hip and knee movement variability
in people with CLBP compared to healthy controls during lifting [13]. The reason why
people with CLBP preferred out of plane movements in the knee (i.e., in the coronal plane)
was not clearly explained in the literature. These findings could be explained by the concept
of Regional Interdependence, where a patient’s primary musculoskeletal symptoms may
be directly or indirectly influenced by other body regions or systems, regardless of the
proximity of the primary symptoms [39]. In this case, people with CLBP presenting with
compromised trunk muscle function could be more reliant on their lower limbs to perform
a dynamic task such as lifting.

Lifting is a task that requires activation of the LE muscle group and lower limb
muscles (e.g., hamstring, quadriceps) [40] to initiate and control lumbar and lower limb
extension movement. In this study, most participants stoop lifted (i.e., lifting with the
knee relatively straight; average participant knee ROM was 13.7◦) to lift the load off the
ground. When utilizing a stooped lifting technique, the lumbar and hip joint movements
contribute to power generation whilst the knee flexor moment and the co-contraction of
lower limb antagonistic muscles (i.e., the quadriceps and hamstrings; the anterior tibial
compartment muscles and the calf muscles) appear to be critical to attenuate forces imposed
on the lumbar joints [41,42]. Specifically, forces generated through the lower limbs may be
transmitted to the spine through the thoracolumbar fascia that has fibers spanning from
the occiput to the sacrum, erector spinae aponeurosis and sacrotuberous ligament [43].
Thus, the knee movements observed in CLBP participants may not provide a stable base
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(i.e., constantly moving center-of-gravity about the base of support) required for optimum
force transmission up the kinetic chain which may, in turn, impact accurate force production
in the lumbar spine. Furthermore, lower limb-related impairments (e.g., decreased strength
and endurance of gluteus maximus and gluteus medius [44,45], decreased quadriceps
strength [16,44] and decreased hamstring length [46]) have also been observed in people
with CLBP when compared to healthy controls, and these may adversely affect lower limb
force-generating and attenuating capacities. As it is the role of the trunk to position the
peripheral joints optimally for functional tasks, impaired force control may also alter the
lower limb kinetic chain synchrony during lifting, which may, in turn, adversely affect LE
muscle force control.

Results of this study suggest a link between knee movement during lifting and LE
muscle force control which in turn, could be associated with disability (i.e., decreased
LE muscle force accuracy is associated with increased disability [8]). Furthermore,
although not observed in this study, questions could be raised whether CLBP could
predispose one to a knee injury. In a prospective study by Zazulak et al. [47], history of
low-back pain has been demonstrated to increase the risk of knee injuries (e.g., anterior
cruciate ligament injuries) in athletes. CLBP can have prolonged adverse impact on trunk
neuromuscular control—even after pain has subsided [3] which may impact on long-term
lower limb health. More recent study [48] also suggests that better trunk neuromuscular
control (e.g., the ability to decrease the amount of lateral trunk lean) during fast cutting
movements during sporting performance could decrease the risk of anterior cruciate
ligament injuries. Furthermore, training trunk neuromuscular control (e.g., ‘core stability’
training) has been demonstrated to decrease the risk of anterior cruciate ligament injury
due to its impact on knee valgus angle (decreased), hip adduction angle (decreased) and
vastus medialis and lateralis activation ratio (increased) in side-stepping cutting task [49].
These studies further provide a link between trunk and lower limb neuromuscular
control in people with CLBP.

From this study findings, by association, it is tantalizing to postulate that training of
lower limb neuromuscular function, in particular knee control may improve LE muscle force
control in people with CLBP. However, no study to date has investigated the effects of lower
limb training on LE muscle force control in people with CLBP. Similarly, neuromuscular
retraining of LE muscle force control (e.g., targeted training of force matching ability of the
LE muscles across varying submaximal target force) may be associated with improvements
in lower limb kinematic performance during lifting in people with CLBP. Research in this
area is emerging [50]. Thus, future studies should continue to investigate the effects of LE
muscle force control training in people with CLBP on lifting performance.

There are several limitations associated with this pilot study. Firstly, the LE muscle
force control test utilized in this study was quasi-isometric with the participants’ lumbar
spine and lower limbs fixed in the dynamometer. In contrast, lifting is a dynamic task
involving concentric and eccentric trunk muscle contraction. Moreover, our study partici-
pants mostly performed a stooped lifting technique (i.e., high amount of lumbar and hip
movement) with minimal knee flexion akin to their LE muscle force control testing posi-
tion on the dynamometer. Thus, perhaps this explains why only lower limb kinematics
(i.e., the knee) were associated with LE muscle force control in this study. Therefore,
future studies should assess trunk muscle force control (e.g., muscle force matching
task) under dynamic conditions. At this point of writing, there was a dearth of evidence
on how the assessment of dynamic LE muscle force control could be performed in a
clinical or laboratory setting. This could be a focus for future research. Secondly, our
frequency selection for the variable force target may not reflect lifting-related task de-
mands (e.g., lifting weight or technique). Further research is required to investigate
different variable force target frequencies for trunk force control assessment. Finally, this
study utilized a small pragmatic sample size of thirty participants and thus, only three
predictor variables could be included in the multivariate regression analyses. Therefore,
this study could not take into account potentially important non-modifiable covariates,
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such as gender or duration of back pain [51]. However, ex post facto correlation analyses
of these variables with the regression input variable were performed and they were not
significantly correlated. This indicates that they are unlikely to have influenced our
results. Furthermore, this study did not take into account the impact of pain-related fear
(e.g., fear of movement) which could impact lifting performance. It has been established
that a higher fear of movement is associated with a higher CLBP disability [52]. However,
the participants in this study reported relatively low levels of pain (mean = 3.30 out of
10) and disability (mean ODI = 20.7% or minimal disability), indicating that participants
could cope with most living activities including lifting. Therefore, it is unlikely that
fear of movement would significantly impact the result of this study. Lastly, this study
did not target the ankle region as part of the lower limb kinematic analysis. Ankle
proprioception has been demonstrated in people with CLBP [17] which may have ad-
verse implications on functional tasks, such as the possibility of increased postural sway
during lifting. As indicated by the possibility of regional interdependence [39], trunk
neuromuscular impairments could be associated with impaired ankle function. Thus,
the relationship between ankle kinematics and trunk muscle force control should be
explored in future studies. Due to the small number of participants associated with this
pilot study, we could not account for potential gender differences associated with our
lifting task (e.g., gender-associated differences in trunk and lower limb muscle strength
that may impact lifting performance). Readers should also remember that given the
cross-sectional nature of this study, it is important to acknowledge the possibility of
reverse causation. Specifically, it is unclear whether neuromuscular adaptations explored
in this study had existed prior to the onset of CLBP.

5. Conclusions

Decreased ability to produce accurate LE muscle force was associated with increased
knee movement velocity in the sagittal and coronal planes during lifting in people with
CLBP. People with CLBP presenting with compromised trunk muscle function may be
more reliant on their lower limbs—in particular, the knee joint—to perform a lifting task.
This explorative study suggests a potentially important relationship between the lower
limb and trunk neuromuscular function in people with CLBP which should be investigated
in future studies.
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