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Abstract: In multi-cat households, monitoring individual cats’ various behaviors is essential for
diagnosing their health and ensuring their well-being. This study focuses on the defecation and
urination activities of cats, and introduces an adaptive cat identification architecture based on deep
learning (DL) and machine learning (ML) methods. The architecture comprises an object detector and
a classification module, with the primary focus on the design of the classification component. The DL
object detection algorithm, YOLOv4, is used for the cat object detector, with the convolutional neural
network, EfficientNetV2, serving as the backbone for our feature extractor in identity classification
with several ML classifiers. Additionally, to address changes in cat composition and individual
cat appearances in multi-cat households, we propose an adaptive concept drift approach involving
retraining the classification module. To support our research, we compile a comprehensive cat body
dataset comprising 8934 images of 36 cats. After a rigorous evaluation of different combinations
of DL models and classifiers, we find that the support vector machine (SVM) classifier yields the
best performance, achieving an impressive identification accuracy of 94.53%. This outstanding result
underscores the effectiveness of the system in accurately identifying cats.

Keywords: computer vision; machine learning; cat identification; animal monitoring; model retraining

1. Introduction

The increasing trend of households choosing to adopt pet cats (Felis catus) is evident
in modern society. The surge in cat ownership has brought about greater awareness
and concern for the well-being and overall healthcare of these feline companions. This
growing interest has, in turn, led to a spike in scientific and veterinary research aimed at
proper diagnosis, health management, and treatment of diseases pertaining to cats [1–4].
Nevertheless, as the emphasis on cat healthcare increases, specific challenges have arisen,
particularly in settings where multiple cats coexist. For households with more than one cat
or in locations such as cat shelters, closely monitoring the health and well-being of each
individual cat has become a considerably more complex undertaking. Each cat possesses
unique personalities, behaviors, and health profiles, necessitating additional attention and
diligence in their monitoring. In addition to ensuring that the cats are fed and sheltered, it
is also crucial to spot any subtle signs of health issues, which can often go unnoticed in a
multi-cat environment.

Consequently, systems for remote monitoring in multi-cat households are continuously
being researched. For instance, Majid et al. [5] studied an IoT-based cat feeding and
monitoring system, identifying which cat ate the food through RFID tags attached to the
cats’ collars. Eagan et al. [6] researched a computer vision-based marker tracking system
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for cats in shelters, tracking the behavior of individual cats. They identified the cats by
detecting 2D ArUco markers printed on paper collars attached to the cats’ necks. While
these contact-based systems can continuously monitor the location and behavior of the
target pet cats, there are concerns regarding distress and safety for things like collars
attached to the cats [7]. In this study, leveraging the advancements in computer vision and
artificial intelligence technologies, we propose a cat identification system for monitoring
the health of pet cats.

We introduce a novel two-step system that relies on machine learning (ML) meth-
ods, specifically integrating an object detector and a classification module. We focus on
identifying the optimal combination within our classification module, aiming to achieve
the highest accuracy in individual cat identification. Specifically, this study focuses on
monitoring defecation and urination activities, which serve as clues for diagnosing the
health of cats, and conceptualizes and experiments with a cat identification system in
litter boxes. One of the common diseases that can occur in domestic cats is feline lower
urinary tract disease (FLUTD), which refers to diseases affecting the cat’s bladder or urethra,
presenting symptoms such as pollakiuria, periuria, stranguria, and hematuria [4,8]. If a cat
shows pollakiuria, we may suspect diseases such as cystitis or urinary stones. Meanwhile,
diseases such as feline chronic colitis can affect a cat’s defecation frequency [9]. In multi-cat
households, recognizing cat activities in the litter box and determining the frequency of
individual cats’ defecation and urination activities are effective in diagnosing these cat
digestive and excretory organ conditions.

In the case of multi-cat households, the composition of the cat population may
change over time—whether due to the adoption of new cats or other factors. Addition-
ally, cats undergo significant morphological transformations as they transition from
kittens to adults—a process that occurs within a relatively short span of time. Given the
complexity of this pattern and its potential impact on cat identification, we design an
algorithm specifically tailored to make our model highly adaptive to these appearance
shifts. This adaptability is crucial not only for recognizing evolving cat features but also
for addressing the dynamic environments in which cats reside. For instance, the location
and lighting conditions of a litter box can vary. Our retraining mechanism ensures that
the monitoring system remains updated, factoring in these variable environments and
the changing appearances of cats. This continuous recalibration empowers our system
to consistently deliver precise identification.

Furthermore, we compile and utilize a cat body dataset obtained through monocular
cameras placed in litter boxes. This dataset includes bounding box labels for both the cat’s
face and body. For the body bounding box, there might be instances where the face is not
present, resulting in a higher degree of freedom for specific entities. Despite using these
body labels for training, our model exhibits good identification accuracy. This success not
only underscores the robustness of our ML algorithms, but also highlights the potential of
leveraging diverse data sources to enhance diagnostic precision.

One of the main contributions of this study is the determination of the optimal com-
bination for the classification module of our proposed monitoring system. The usability
of the model is enhanced by training it with a body image dataset that captures the entire
cat body, offering a higher degree of freedom, rather than focusing solely on the cat’s face.
In addition, we propose a model-retraining algorithm to ensure consistent performance,
especially for cats whose appearances may change rapidly.

The remainder of this paper is organized as follows. Section 2 reviews previous
research relates to animal identification and model retraining. Section 3 outlines our
method for investigating the best approach to cat identification across the entire architecture.
Section 4 presents the experimental results and identifies the optimal combination for the
classification module. Sections 5 and 6 provide a discussion and summary of this study,
along with our contributions and suggestions for future research.
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2. Related Works
2.1. ML-Based Identification Systems

Recent studies have proposed deep learning (DL)- and ML-based architectures for the
individual identification of various animal species. Hou et al. [10] conducted research on
recognizing the faces of 25 giant pandas (Ailuropoda melanoleuca) using an architecture composed
of a convolutional neural network (CNN)-based model, the Visual Geometry Group Network
(VGGNet) [11], with a softmax layer as the classifier. Hitelman et al. [12] designed a biometric
identification system for sheep (Ovis aries) by employing a two-step approach involving
detection and classification. They utilized a Faster R-CNN [13] for sheep-face detection,
and compared seven CNN classification models trained with the ArcFace loss function [14].
Schofield et al. [15] focused on the facial recognition of wild chimpanzees (Pan troglodytes
verus) using a single-shot detector (SSD) model [16] as the detector and a VGG-M [17] based
network for identification. Clapham et al. [18] concentrated on the facial recognition of
132 brown bears (Ursus arctos) by adopting Schroff et al.’s [19] approach and implementing the
overall structure using the dlib toolkit [20]. They utilized a sliding-window-based CNN and an
ensemble of regression trees for face detection and alignment in object detection. Following face
reorientation and cropping, they generated bear face embeddings via ResNet-34 [21]. Identity
classification was carried out using a linear support vector machine (SVM), and the encoding
model was trained utilizing pairwise hinge loss.

Similarly, in this study, we explore a CNN-based detector and feature extractor to
recognize cats. However, unlike previous studies, we focus on a system that identifies cat
body images rather than only cat faces. For the detection model, we utilize YOLOv4 [22],
which is known for its fast and accurate performance among the CNN-based detectors.
For the classification module, we design an architecture based on [19]. We use a CNN
model, EfficientNetV2 [23], as the feature extractor of our architecture. EfficientNetV2
is a powerful CNN model that specifically focuses on efficiency in terms of parameters,
floating-point operations or FLOPs, and training speed. Subsequently, ML-based classifiers
are used to identify individual cats. Table 1 summarizes existing DL- and ML-based animal
identification methods.

Table 1. A summary of existing animal identification methods. (OD = object detector, CL = classifier).

Method Region of Interest Architecture

Hou et al. [10] Face CL: VGGNet [11]

Hitelman et al. [12] Face OD: Faster R-CNN [13]
CL: CNN-based models

Schofield et al. [15] Face OD: SSD [16]
CL: VGG-M [17]

Clapham et al. [18] Face OD: CNN-based model
CL: ResNet-34 [21] + SVM

Ours Body OD: YOLOv4 [22]
CL: EfficientNetV2 [23] + ML-based models

2.2. Model Adaptation for Concept Drift

In ML and data science, the evolving appearance of pet cats as they mature and grow
can be equated to a form of concept drift. Concept drift refers to the phenomenon where
the statistics of a target variable in data-based learning models change after the initial
training [24]. In various real-world domains, shifts in the data distribution can trigger
concept drift, which degrades the model performance over time.

Typically, concept drift adaptive models are initially trained on the target variable,
detect drift from the classification accuracy or the statistical characteristics of the data distri-
bution, and are subsequently retrained to accommodate the detected drift. For example, the
drift detection method [25] analyzes the error rate of input data to detect abrupt drifts. In
the case of adaptive windowing [26], it assumes that there is no change in the distribution
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of the input data and the combined mean of the two sub-windows is compared when new
data are used.

In animal monitoring, the impact of concept drift is significant if there is no control
over the external environment or the subjects being monitored. Moallem et al. [27] proposed
a system for detecting wild birds by using a two-stage deep neural network pipeline. With
a particular focus on the changes in the background of the data, they suggested retraining
the model if the average of the images collected throughout the day deviated from the
mean images from any single day in the training set.

We propose a periodic retraining method without drift detection. With this method the
model continuously adapts to the concept drift stemming from cat class changes, appear-
ance changes in a cat’s life cycle, and environmental factors like lighting or backgrounds.
Considering the memory efficiency of the recognition server, the number of embedding
vectors is fixed when retraining the ML-based classifier. This iterative refinement ensures
that the model remains robust and accurate, capturing the intricacies of a cat’s evolving
appearance and the dynamic conditions under which they are observed.

3. Proposed Method
3.1. Cat Identification Architecture

Our cat identification architecture comprises two key components: the object detector
in an embedded computer within the cat litter box, and the classification module hosted on
the server. The overall architecture for our system is shown in Figure 1.
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Figure 1. Overall architecture of the proposed cat identification model.

When the cat enters the litter box, a RGB camera equipped with an embedded
computer detects its defecation activity and records it as a video. The object detector
in the litter box focuses on capturing the entire body of the cat during these activities.
When a series of body images for an activity are detected, they are transmitted to a
remote server for identification of the given cat body images.

We use YOLOv4 for the detector model, which enables accurate real-time detection
within an embedded computer. The structure of the YOLOv4 network is illustrated
in Figure 2. YOLOv4 incorporates various optimizations into the YOLOv3 [28] model.
Notably, YOLOv4 adopted the cross-stage hierarchy approach of the cross stage partial
network (CSPNet) [29] to change the Darknet53 from YOLOv3 to CSPDarknet53. This
approach significantly reduced the computational cost of each layer in the backbone, re-
sulting in improved performance during training and inference. Additionally, YOLOv4
leveraged the structures of the spatial pyramid pooling network (SPPNet) [30] and the
path aggregation network (PANet) [31] in its neck module to increase the receptive field
and enhance detection performance by augmenting different backbone paths. Based
on the exceptional performance and learning efficiency of YOLOv4, we adopt it as the
detector in our cat identification model.
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Figure 2. YOLOv4 network structure for cat body detection.

In the identification server, the final inference is achieved through with two model
components: a feature extractor and a classifier. When the feature extractor receives a body
image as input from the litter box, it extracts an embedding vector from the given image.
To accomplish this, the feature extractor employs EfficientNetV2. The overall structure of
the feature extractor is illustrated in Figure 3. EfficientNetV2 is an improved version of
the EfficientNet [32] model, which was derived from a mobile neural architecture search
network (MnasNet) [33] and utilizes a neural architecture search (NAS) [33,34] to determine
the optimal model compound scaling dimensions (depth, width, and resolution). By
incorporating mobile inverted bottleneck convolution (MBConv) blocks with squeeze and
excitation blocks, it reduced computational complexity while enhancing the performance.
EfficientNet demonstrated significantly higher performance with a much smaller number
of parameters than traditional CNN models. EfficientNetV2 focused on enhancing training
efficiency. This was achieved by using Fused-MBConv blocks early in the model, which
replaced depth-wise 3 × 3 convolutions with regular 3 × 3 convolutions, reducing the
overhead associated with depth-wise convolution GPU operations. Additionally, rather
than employing the traditional compound scaling method that uniformly scales the model
size, EfficientNetV2 utilized non-uniform scaling in the later stages of the model, placing
more emphasis on scaling to find a more efficient model structure for training. These
advancements in EfficientNetV2 have contributed to its superior efficiency and performance
compared to its predecessors. Considering the limited server resources and the need for
frequent retraining, we select EfficientNetV2 for its lightweight characteristics and rapid
training capabilities.
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Figure 3. Modified EfficientNetV2-S network structure for the feature extractor in the classifica-
tion module.

This network extracts a 128-dimensional embedding, following the architecture design
outlined in [19], which is then fed into the ML-based embedding classifier. The classifier
uses these feature vectors as inputs and subsequently determines the class of cats present
in each input image. Once a class is determined by the classifier, the server stores and
aggregates data regarding the cat’s activity. A user can check the daily or weekly litter box
usage status for each pet cat, along with the stored videos. By understanding the frequency
and condition of defecation and urination, the user can gauge the state of the cat’s digestive
and excretory organs.

3.2. Classification Module Adaptation

Within the litter box, the overall environment observed by the camera can continuously
change over time. The background may shift due to factors such as relocating the litter
box or altering the lighting conditions at the litter box location. Additionally, foreground
distribution can undergo significant changes owing to changes in the composition of cats
or individual transformations in the appearance of the cats themselves. In such dynamic
situations, retraining vision DL models and embedding-based ML models is crucial for
consistently maintaining high identification performance.

In this context, we design a classification module to effectively adapt to changes in
the composition or appearance of a user’s pet cats through an interactive scenario between
the user and the server. This allows the server to continuously update and refine its
identification capabilities based on user input and feedback, ensuring the accurate and
personalized identification of pet cats over time.

Initially, a user registers the information of the litter box and cats on the server. Since
the model classifier cannot make predictions from litter box images without any cues, a set
of images taken by the user for each cat is also transmitted to the server. After registration,
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a two-step retraining process is designed, comprising embedding vector selection and
fine-tuning. A flowchart illustrating these steps is shown in Figure 4.
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As the server continues to collect images over a specific period (T), the user verifies
whether the cat identification is properly conducted and relabels the classes of these images.
At this time, the user labels one video in which the cat entered and exited, and all images
corresponding to the labeled video are labeled at once. Then, the model classifier is
retrained with these relabeled litter box images to obtain more accurate identification. As
a certain number (M) of new images for each cat is gathered, a mean vector is calculated
using both the existing embedding vectors and the collected vectors. This mean vector
serves as a representation of the cat’s characteristics. To optimize the training data, the
embedding vectors closest to this mean vector are selected (N-prioritized vectors), while
the remaining vectors are discarded. Through this approach, we can remove outlier data for
a specific class and stabilize the amount of training data for that class, thereby maintaining
memory efficiency on the server. In addition, when a new cat is registered, the embedding
vector selection for that cat starts by learning the user’s image for the cat and importing the
images during period T. If a user deregisters a specific cat, the embedding vector for that
cat is deleted.

Once a sufficient number (C) of images for all cats are collected, the user again relabels
the images. The feature extractor is fine-tuned using the relabeled dataset. A fine-tuned
feature extractor is used to extract new embedding vectors from the training sample images.
By retraining the extracted embedding vectors back into the classifier, the model can adapt
to changes in the appearance of pet cats within a particular household.

This iterative and interactive approach ensures the continuous enhancement and
refinement of the system performance, as it continuously adapts to changes in the con-
figuration and individual appearance of a user’s pet cats, and to changes in the external
environment. By leveraging the new data and user feedback, our retraining process aims
to achieve the accurate and personalized identification of pet cats over time, ultimately
improving the overall efficiency and effectiveness of the system.

4. Results
4.1. Environment

The overall experiment is performed on a desktop computer equipped with an Intel®

Core™ i7-12700KF and 16.0 GB RAM. The architecture is trained using an NVIDIA RTX
A6000. All source codes, including training and testing, are implemented employing
Python 3.8 and PyTorch 11.3 libraries with the CUDA toolkit on Ubuntu 21.04.
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4.2. Dataset

To demonstrate the proposed cat monitoring system, we first create our own cat
body dataset. Using customized litter boxes (515 × 695 × 475 mm, with a hole in front)
with a monocular camera, we gather diverse cat image data by recording videos of their
activities. For experiments on the identification module, bounding boxes for the face and
body are labeled and used for the collected images. The litter boxes are positioned in
various environments such as cat cafés, streets, and shelters.

To make the architecture robust to changes in the color temperature, we diversify
the dataset by applying four color filters: warm white (2700 K), natural white (4100 K),
cool white (6500 K), and LED light (10,000 K) by 1:1:1:1, as shown in Figure 5. It
should be noted that when we acquire the data, we assume that the color temperature
environment was cool white. So there is no difference before and after passing through
the filter for cool white.
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on natural white (4100 K); (c) image on cool white (6500 K); and (d) image on LED light (10,000 K).

The dataset comprises 8934 RGB Full HD images of 36 cats. We divided the dataset
into 8:2 ratios using stratified sampling for model training and evaluation.

4.3. Classification Module Training

A metric learning technique is used to enable the feature extractor to learn the similarity
of data in the embedding space. We train the feature extractor using triplet loss [10]. The loss
function employed in this study demonstrated excellent performance in facial recognition
tasks. It utilizes a technique that learns the structure of the feature representation by
separating the positive pairs and negative pairs. This approach aims to enhance the
discriminative power of feature embeddings, allowing the model to effectively distinguish
between similar and dissimilar instances, thereby improving the accuracy and effectiveness
of the recognition system.

The overall training process comprises three stages; each stage utilizes semi-hard,
hard, and hardest triplets. The margin for calculating the loss is set at 0.2. We also add
a global orthogonal regularization term [35] to the loss function, to spread the features
throughout the embedding space. Adam is used as the model optimizer, with the learning
rate and momentum parameters β1 and β2 being set to 0.001, 0.9, and 0.999, respectively.
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To train the feature extractor, 7162 images of 36 cats are used, which are split into
8:2 ratios for training and validation. If the validation loss does not decrease for 5 epochs
during a stage, the training for that stage is stopped early; otherwise, it continues for up to
100 epochs. The loss graph for each training stage is shown in Figure 6.
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Once the feature extractor is trained, we obtain the embedding vectors from all training
and validation data and use them to fit the classifier. By comparing the identification
accuracies of different ML classifiers, we select the one with the highest accuracy as the
final model classifier.

4.4. Evaluation Metrics

In this experiment, we assess the classification module’s performance using several
evaluation metrics, including accuracy, confusion matrix, receiver operating characteristic
(ROC) curves, and precision-recall (PR) curves.

The accuracy is the percentage of samples that the classifier classifies from a given
sample into the correct class:

Accuracy = Correct predictions/All predictions. (1)

The confusion matrix visualizes the performance of the classification algorithm and
comprises true positives (TP), false negatives (FN), false positives (FP), and true negatives
(TN). TP is the number of samples which accurately classify a category of interest as a
category of interest. FN is the number of samples that misclassify a category of interest
as not a category of interest. FP is the number of samples that misclassify non-interest
categories as interest categories, and TN is the number of samples that accurately classify
non-interest categories.

The ROC curve expresses the relationship between the true positive rate (TPR) and
false positive rate (FPR) as practice values for trainees, which are calculated as follows:

TPR = TP/(TP + FN), (2)

FPR = FP/(FP + TN). (3)

The PR curve expresses the relationship between recall and precision as a threshold
for class-specific probability; recall and precision are calculated as follows:

Recall (R) = TP/(TP + FN), (4)

Precision (P) = TP/(TP + FP). (5)
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4.5. Experimental Results
4.5.1. Performance Comparison with Different Classifiers

In this study, the performance of various classification methods is evaluated using
a test dataset comprising 1772 images of 36 different cats. Each test image is classified
based on its embedding vector, using a complete set of embedding vectors from the
training dataset of 36 cats. We examine classifiers such as K-nearest neighbors (KNN),
random forest, and SVMs. The identification accuracies of the classifiers are listed in
Table 2. Notably, the SVM classifier equipped with a linear kernel achieves the highest
identification accuracy of 94.53%. Other performance metrics, such as the confusion
matrix, ROC curves, and PR curves, are illustrated in Figures 7 and 8. The additional
inference results are presented in Figure 9.

Table 2. Identification accuracy evaluated on the test dataset with different classifiers.

Classifier Accuracy

KNN (K = 3) 94.24%
KNN (K = 5) 94.41%
KNN (K = 7) 94.19%

Random forest 94.13%
SVM (RBF kernel) 94.41%

SVM (Linear kernel) 94.53%
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Figure 9. Examples of identification results for specific cat images of our dataset. Each row corre-
sponds to TP, FN, FP, and TN from the top to the bottom. For each image, if the identification result is
correct then the color of bounding box and information are displayed in blue; otherwise, they are
displayed in red.

4.5.2. Performance Comparison with Different Data

To confirm the superiority of our system’s performance when using cat body labels, we
conduct an additional experiment to compare the performance when identifying cats using
only the cat face, similar to other existing animal recognition methods. Within the complete
image dataset, some images comprise only body without a face. For a fair performance
comparison, we use 5115 images from 35 types after excluding those without faces; for
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class 13, no images include faces. Consistent with the previous experiment, the dataset
is divided into an 8:2 ratio using stratified sampling for model training and evaluation.
The training of the classification module is executed in the same manner as described
in Section 4.3., and an SVM classifier with a linear kernel is used for the final accuracy
measurement. Both models show a high performance of over 90%, and even with a higher
degree of freedom such as the body, the performance difference is minimal at about 0.69%.
The overall identification accuracy and confusion matrix for each dataset are presented in
Table 3 and Figures 10 and 11.

Table 3. Identification accuracy evaluated on the cat body dataset and cat face dataset.

Dataset Accuracy

Cat body with face 93.08%
Cat face only 93.77%
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color of each cell in the matrix represents the number of images or normalized ratio, with darker
colors corresponding to larger values.
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5. Discussion

In this study, we train and evaluate the proposed algorithm using a body dataset of
36 different cat species. During evaluation, we compute the identification accuracy for
the test dataset with all 36 class embeddings trained in the classifier. During the training
and evaluation phases, we observe a high identification accuracy, which is a promising
indicator of the system’s potential effectiveness. In particular, the combination of
EfficientNetV2-S with the SVM classifier yields outstanding results with an impressive
accuracy of 94.53%.

Notably, even in scenarios where the data could be confusing, such as images that
include not only the cat’s face but also its body, our architecture demonstrates only a
slight performance decrease of approximately 0.69% compared with the face recognition
model. This success underscores the ability of the model to handle diverse and complex
visual inputs.

6. Conclusions

We focus on the integration of a neural-network-based feature extractor with existing
ML-based classifiers to develop a cat monitoring system. Additionally, we propose a model
retraining algorithm with the aim of enabling the DL-based model to adapt seamlessly to
the dynamic appearance changes that occur during a cat’s life cycle and variations in the
camera environment.

To validate the monitoring performance of the proposed system, we collect a pet
cat body dataset through a monocular camera inside the litter box. Instead of the face
commonly used for animal identification, our system uses the entire body for identification
(where the face may not be included), making the scenario correspond to a more challenging
task. We perform testing on the classification module and compare the performance of
various ML-based classifiers. The combination of EfficientNetV2-S and the SVM classifier
demonstrates a high identification accuracy of 94.53% on the entire cat body dataset, and
the identification performance receiving a body dataset with face is only about 0.69% lower
than when receiving a face dataset. This indicates that our cat body identification system
has high applicability in monitoring the defecation and urination activities of pet cats in
multi-cat households.

In future research, there are several avenues for further improvement. Exploring
different stage combinations, optimizers, and advanced loss functions during training can
lead to performance enhancement. In addition, the evaluation and development of various
models for the detector part of the system will contribute to a more comprehensive and
refined architecture. Meanwhile, a mathematical validation of the model and retraining
method presented in this study is required. Especially, since a mathematical analysis of
the recognition system has not been addressed, there is a need to ascertain the solution for
the mathematical model of this research system and its stability [36,37]. Lastly, in addition
to the vision-based identification system, it is an important consideration in the future to
analyze the cat’s defecation and urination status more precisely and comprehensively by
measuring the cat’s litter box activity time or integrating more diverse sensors, such as
weight, humidity and pH of urine and feces.

The cat litter box monitoring system developed in this study contributes to managing
the urinary health of individual cats in multi-cat households. Moreover, the identification
architecture of this system is not limited to cat litter boxes and can be expanded to other
situations, aiding in personalized monitoring and diagnosis for multi-cat households.
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