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Abstract: Industrial Control Systems (ICS), which include Supervisory Control and Data Acquisition
(SCADA) systems, Distributed Control Systems (DCS), and Programmable Logic Controllers (PLC),
play a crucial role in managing and regulating industrial processes. However, ensuring the security
of these systems is of utmost importance due to the potentially severe consequences of cyber attacks.
This article presents an overview of ICS security, covering its components, protocols, industrial
applications, and performance aspects. It also highlights the typical threats and vulnerabilities faced
by these systems. Moreover, the article identifies key factors that influence the design decisions
concerning control, communication, reliability, and redundancy properties of ICS, as these are critical
in determining the security needs of the system. The article outlines existing security countermea-
sures, including network segmentation, access control, patch management, and security monitoring.
Furthermore, the article explores the integration of machine learning techniques to enhance the
cybersecurity of ICS. Machine learning offers several advantages, such as anomaly detection, threat
intelligence analysis, and predictive maintenance. However, combining machine learning with other
security measures is essential to establish a comprehensive defense strategy for ICS. The article
also addresses the challenges associated with existing measures and provides recommendations for
improving ICS security. This paper becomes a valuable reference for researchers aiming to make
meaningful contributions within the constantly evolving ICS domain by providing an in-depth
examination of the present state, challenges, and potential future advancements.

Keywords: cyber defense; industrial control systems; SCADA; anomaly detection; cyber threats;
vulnerabilities; attacks; artificial intelligence; security

1. Introduction

Industrial Control System (ICS) is an encompassing term that refers to various control
systems and their associated instrumentation. It encompasses a diverse array of equipment,
systems, networks, and mechanisms employed for the purpose of managing and automat-
ing industrial operations [1]. Virtually every commercial building and industrial facility,
including those in production, transportation, power generation, and water treatment,
relies on ICS devices and protocols. These systems heavily depend on the automation
of mechanical and electrical processes. However, their connectivity to the internet poses
a significant vulnerability, making them susceptible to cyber-attacks [2]. The global ICS
market is experiencing substantial growth, primarily driven by the rising emphasis on au-
tomation, cloud computing, and digitization across various industries [3]. More innovative
technologies are being developed, enabling remote access and control over the internet and
within Information Technology environments. This shift towards increased automation
and connectivity aims to achieve substantial business benefits. However, it also presents a
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challenge, as integrating Industrial Control Systems with external networks, such as the
internet, expands the attack surface, making them more susceptible to cyber threats without
proper security measures [4]. Over the past decade, cyber attacks on Industrial Control
Systems have notably increased due to their heightened vulnerability to off-site attacks.
Previously, these systems operated in isolated environments, relying heavily on human
intervention. However, the growing inter-connectivity has exposed them to potential risks
from remote adversaries. Consequently, ensuring robust security measures has become
paramount to safeguarding ICSs from cyber threats [5].

An overview of an ICS contains several control loops, remote diagnostics, maintenance
tools, and human interfaces built on layered network architectures using various network
protocols. A summary of the basic components and process of an ICS is shown in Figure 1.

Human-Machine
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Controlled
Process
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Historian Internet

Corporate 
Network
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Figure 1. The basic components and operation of an Industrial Control System.

• A process consists of activities to achieve the desired output;
• A control loop utilizes sensors, actuators, and controllers or PLCs to adjust the output

value to the desired set-point automatically;
• A sensor detects changes in its environment and sends information as controlled

variables to the controller;
• A controller uses target set point and control algorithms to generate required output

variables and transmit them to the actuators;
• Actuators or movers are elements within a machine designed for the manipulation or

regulation of a mechanism, such as control valves, circuit breakers, switches, and mo-
tors;

• Human–Machine Interfaces (HMI) are utilities used to display process status informa-
tion and monitor and configure controller parameters;

• Remote Diagnostics and Maintenance applications do real-time diagnosis and main-
tenance operations such as remotely identifying, preventing, and recovering from
abnormal operations or failures;

• A Data Historian is a centralized database storing all process information within an
ICS environment. The logged data is exported to the corporate Information Systems
(IS) for process data analysis, control, and planning;

• A Communications Gateway device enables communication with a distant network,
such as the internet or an autonomous system, which is not accessible to the host
network nodes. This gateway can be realized using either hardware or software. It
directs the network traffic and may block specific traffic to protect it from malicious
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attacks. It also grants or denies access to computers within the network to the outside
world.

In the forthcoming part of this article, Section 2 provides a more in-depth review
of the ICS technologies. Section 3 outlines the system design considerations that help to
determine the security needs of the ICS system. In Section 4, we present some popular
examples of ICS cyber attack incidents that have occurred in the past. Section 5 discusses
the vulnerability of ICS. Section 6 offers an in-depth review of ICS communication protocols
for cyber vulnerabilities. We further delve into a comprehensive review of the existing
measures to strengthen the cybersecurity of ICSs in Section 7. In Section 8, we explore how
machine learning has been integrated to strengthen the cyber defense for ICS. In Section 9,
we discuss the challenges of machine learning approaches and mechanisms for defending
ICS. Section 10 presents a list of recommendations and the future direction of our research.
Finally, we conclude our study in Section 11 where we summarize the key fundamental
research explorations, emphasizing the future direction of our work.

2. Industrial Control Systems Technologies

ICS has different technologies such as SCADA, DCS, Industrial Automation and
Control Systems (IACS), PLCs, Programmable Automation Controllers (PACs), HMI, RTUs,
control servers, Intelligent Electronic Devices (IEDs), and sensors [6]. The integration of
these features contributes to the widespread adoption of Industrial Control Systems, leading
to a market value of USD 130,060 million in 2022. The market is expected to experience a
Compound Annual Growth Rate (CAGR) of 7.55% from 2023 to 2030, primarily driven by
the increasing demand for energy-efficient and safe operations [7].

2.1. Supervisory Control and Data Acquisition

SCADA is among the most widely utilized technologies in Industrial Control Sys-
tems [8]. It functions as a software application designed to control industrial processes by
collecting real-time data from remote locations, allowing for the management of equipment
and conditions [9]. SCADA systems are composed of both hardware and software compo-
nents. The hardware gathers and sends data to field controller systems, which subsequently
transmit the data to other systems for real-time processing and display through a HMI.
Additionally, SCADA systems maintain a comprehensive record of all events, enabling the
reporting of process status and any encountered issues. These applications also include
alarm functions that notify operators when hazardous conditions arise, ensuring prompt
and appropriate responses [10]. SCADA provides organizations with the tools to make
and deploy data-driven decisions regarding their industrial processes [11]. Applications of
SCADA include the below [12]:

• Electricity generation, transmission, and distribution;
• Manufacturing industries or plants;
• Food and pharma productions
• Telecom and IT-based systems;
• Traffic control;
• Lift and elevator control;
• Oil and gas systems;
• Mass transit and railway traction.

SCADA employs a central computer to store information related to local and remote
devices, enabling the control of industrial processes and facilities. The typical components
of SCADA can be classified based on their respective definitions, as depicted in Figure 2
below.
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Figure 2. SCADA components.

• Supervisory control: Supervisory control serves as the fundamental role of the HMI.
HMI software serves as an interface responsible for overseeing industrial processes.
On the other hand, a master terminal unit (MTU) functions as a central supervisory
controller that communicates with lower field devices, such as RTUs, through the
ICS network;

• Data acquisition: Data can be acquired from two primary sources in the context of
SCADA system as PLCs and Remote Telemetry Units (RTUs). Both the PLCs and RTUs
interface directly with actuators and sensors in the field. RTUs are specifically designed
to interface with sensors and collect telemetry data, which they then transmit to a
primary system for further action. On the other hand, PLCs interface with the actuators
to maintain and control industrial processes based on the telemetry data collected by
the RTUs [13]. PLCs and RTUs act as physical interfaces between SCADA systems and
field devices. However, their communication with the SCADA system differs. RTUs
are well-suited for wide geographical areas due to their use of wireless communication
methods. In contrast, PLCs are more tailored to local control applications [14];

• Data storage: The majority of SCADA systems employ a Structured Query Language
(SQL) database for storing data with timestamps. A historian is a fully integrated
SCADA software that collects real-time data from various SCADA devices and stores
them in a database, such as mySQL;

• Data exchange: Communication protocols are used to exchange data between SCADA
components.

SCADA Architecture

This section describes the four generations of SCADA architecture in detail and
summarizes the security strengths and vulnerabilities of each.

(a) First generation-Monolithic: The first generation of SCADA systems was developed
when networks were not yet in existence. These early systems were not designed
to connect with other systems, and communication was typically limited to Wide
Area Networks (WANs) interacting with remote terminal units (RTUs) [15]. It de-
fines application in remote areas within a factory where the conditions are unsafe,
and physical access is restricted [16]. In the early-generation systems, redundancy
was achieved by deploying two mainframe systems with identical configurations.
One was designated as the primary and the other as the backup. These two systems
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were connected at the bus level. The standby system’s main role was to act as a mon-
itoring entity for the primary system and would smoothly take over if it detected
any indications of failure. Consequently, the standby system usually operated in an
idle state, performing minimal to no processing tasks until a fail-over event became
necessary [17]. Figure 3 shows a typical first-generation SCADA architecture.

RTU

RTU

RTU

SCADA Master

Wide Area
 Network

Wide Area
   Network

Wide Area
  Network

Figure 3. Monolithic SCADA system.

(b) Distributed SCADA system: Control functions were distributed across multiple
systems during second generation [18]. Distributing the individual functions of the
SCADA system across multiple systems resulted in a collective processing power
that exceeded what could have been achieved with a single processor [19]. Dur-
ing the 1980s, SCADA systems harnessed the widespread adoption of proprietary
local area networks(LAN) and more compact yet potent computers. This facilitated
enhanced sharing of operational data not only within the plant but also at broader
levels. These individual stations were used to share real-time information and
command processing for performing control tasks to trip the alarm levels of possible
problems. Only the developers cared about the SCADA security [20]. Figure 4 below
shows the Distributed SCADA architecture [21].

SCADA 1SCADA 2SCADA 3

RTU 2

RTU 1

SCADA 4

Local Area Network

Figure 4. Distributed SCADA system.

(c) Internet of Things (IoT): IoT introduces a distinct approach to SCADA systems,
substituting the requirement for PLCs with an emphasis on data modeling and
advanced algorithms. This transition signifies a departure from the traditional
reliance on mainframes or server in a facility, as data goes to cloud-based servers
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for sharing and storage [22]. IoT SCADA systems are flexible and easy to maintain
and integrate. IoT brought several other advantages to SCADA, such as ease of
use, flexibility, availability, cost efficiency, big data processing, and scalability [23].
Figure 5 below shows the IoT SCADA architecture.

Cloud

Remote Accessing
 System

Remote Accessing
       System

SCADA Master

PC

Laptop

Tablet

PC

Laptop

Mobile Phone

Figure 5. Internet of Things (IoT) SCADA system.

(d) Networked SCADA Architecture: During the third generation, the monitoring
process heavily relied on the involvement of PLCs. They were integrated into the
SCADA system, providing efficient and reliable data acquisition and control capabil-
ities. This integration of PLCs enhanced the overall functionality and responsiveness
of the SCADA system, enabling real-time monitoring and control of industrial pro-
cesses across a distributed network. The third-generation SCADA architecture thus
facilitated greater flexibility, scalability, and accessibility, making it more adaptable
to modern industrial demands [24]. It can connect to the internet and third-party pe-
ripherals. Additionally, this architecture enhanced the performance level of SCADA
by allowing several servers to run in parallel to handle several tasks [25]. Figure 6
below shows the description of the Networked SCADA architecture.

SCADA Master

Wide Area
Network

Local Area Network

Communication Server

RTU
RTURTU

Figure 6. Networked SCADA architecture.
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2.2. Distributed Control Systems (DCS)

Distributed Control Systems are comprised of controllers, sensors, and actuators that
are distributed across different spatial locations [26]. The entire system’s sub-components
are controlled by multiple controllers, e.g., PLC [27]. DCS is frequently employed in various
industrial process industries, including but not limited to the following:

• Agriculture;
• Chemical plants;
• Petrochemical and refineries;
• Nuclear power plants;
• Water and sewage treatment plants;
• Food processing;
• Automobile manufacturing;
• Pharmaceutical manufacturing.

Within the domain of DCS, automatic control revolves around the exchange of signals,
facilitating bidirectional information flow, and the computation of control actions through
decision-making processes [28]. DCS is also defined as an architecture where the subsys-
tems are geographically distributed and functionally integrated [29]. DCS coordinates and
supervises a complete plant of many variable processes. See below a distributed control
system in Figure 7.

Operator Stations

Servers

Sensor Sensor

Controllers

Valves ValvesMotorMotor SwitchSwitch

Figure 7. A distributed control system.

Function and Components of DCS

Components of DCS consist of the basic components, as listed below:

• An engineering workstation: This is the supervisory controller for the DCS as a whole.
The station comes with configuration tools that empower users to undertake activities
such as generating new loops, establishing input/output (I/O) points, and configuring
distributed devices [30];

• An operator station: A station operator is a location where the user observes the
ongoing process. At the station operator’s interface, the operator can access process
variables, control parameters, and alarms, which are essential for retrieving the current
operating status [31];
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• A process control unit: This control center acts as the brain of all process control by
performing all the computation process algorithms and running all logical expressions.
The control module takes an input variable that will be controlled, calculates it, and the
results are compared with the set point, which is the value expected of the process.
If the calculation results differ from the set point, the value must be manipulated and
the results sent to the actuator [31]. This controller, which relies on microprocessor
technology, is specifically engineered for automatic and compound loop control;

• A communication system: This system facilitates the transfer of data from one station
to another, a crucial function in distributed control systems. The network protocols
employed encompass Ethernet, Profibus, and DeviceNet;

• Smart devices: These refer to intelligent devices or bus technologies employed to
substitute older I/O systems.

2.3. Programmable Logic Controllers

PLCs are industrial computer control systems designed to constantly monitor the
status of input devices and make decisions according to a customized program in order
to manage the status of output devices [32]. Early PLCs were able to execute tens of in-
structions per second; modern PLCs can perform bit operations in nanoseconds. They can
function as autonomous systems, optimizing processes intelligently and independently [33].
PLCs rely on a programmable memory that stores instructions for executing a wide range
of operations, encompassing logic functions, sequence control, timing, counting, and arith-
metic calculations. Using digital or analog input and output interfaces, this memory
supervises and manages a variety of mechanical equipment and production processes [34].
Industries that rely on PLCs include the following :

• Oil and Gas;
• Food and Beverage;
• Automotive;
• Pharmaceuticals;
• Transportation;
• Off Road Construction;
• Lifts and escalators;
• Medical applications;
• Automatic gate systems;
• Heating control systems.

2.3.1. Versions of PLCs

PLCs have evolved significantly, with a version incorporating Ethernet protocol based
network connectivity that enables them to share data with a variety of devices and sys-
tems such as other PCs, SCADA, and even cloud-based platforms [35]. This enhanced
connectivity and data sharing capability has further signified their pivotal role in ICS, as
seen below.

• Real-Time Monitoring and Control: PLCs facilitate real-time monitoring and control
of industrial processes. With their network connectivity, they can provide immediate
data feedback, allowing for rapid decision-making and adjustments;

• Data Aggregation and Analysis: PLCs can collect and transmit data to centralized
systems for analysis. This data is essential for process optimization, predictive mainte-
nance, and quality control;

• Remote Accessibility: Connectivity enables remote accessibility to PLCs, allowing
engineers and operators to manage and monitor processes from different locations,
improving operational efficiency and reducing the need for onsite presence.

This version of the Ethernet protocol-based PLCs has several limitations despite its
data sharing capability. These PLCs lacked standardization, leading to compatibility issues
between devices from different manufacturers. They also present with data handling,
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processing, and storage limitations for more advanced applications. PLCs have become
an integral part of the broader industrial landscape, especially within the frameworks of
Industry 4.0 and the Industrial Internet of Things (IoT). A team of researchers proposed
an IoT-PLC version that possesses regulatory control features, incorporates fog comput-
ing capabilities for tasks such as data filtering, field data storage, and supports various
wireless interfaces that can be managed autonomously [36]. Their incorporation into these
paradigms is of utmost importance and have solved the earlier mentioned limitations
with the below capabilities, hence resulting into robust and secure solutions for modern
industrial automation, as seen below [37].

• Enhanced Automation and Smart Manufacturing: PLCs contribute to the automation
and intelligent control of industrial processes, aligning perfectly with the objectives of
Industry 4.0 and industrial IoT, which aim to create smart and interconnected factories;

• Optimizing Resource Utilization: PLCs, as part of ICS, contribute to optimizing
resource utilization, reducing energy consumption, and minimizing waste, which are
central to sustainable and eco-friendly manufacturing practices;

• Data-Driven Decision Making: In Industry 4.0 and industrial IoT, data is a valuable
asset. PLCs’ connectivity enables them to generate and share data, which is the
foundation for data-driven decision-making, predictive maintenance, and process op-
timization.

2.3.2. Components of PLC system

Figure 8 below shows the components of a PLC system.

Power Supply

Memory

Processor

Input Module Output Module

Out Put
Signals

Input
Signals

Programmable Devices

Figure 8. Components of a PLC system .

• Power Supply Unit: The power requirements are contingent upon the particular type
of PLC employed in the application. This unit converts AC to DC voltage suitable
for PLC. This unit comprises short-circuit protection switches at all levels, control
transformers, switching power supply, and other components [38];

• Processor or CPU: This component includes a microprocessor, system memory, serial
communication ports, and a LAN connection. A power supply may also be included
in specific cases to deliver the necessary power to the CPU;

• Input/Out modules: Input and output modules serve as the connection points be-
tween the control environment’s field devices (comprising both input and output
equipment) and the processor. The input devices encompass sensors, push buttons,
limit switches, and similar items, while the output devices consist of motors, relays,
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solenoid valves, and the like. I/O devices can be broadly categorized into two groups:
discrete or digital modules and analog modules;

• Programmable devices: As seen in Figure 8 above, Programming tools are utilized to
load the specific program into the CPU’s memory. We can develop our program using
a widely recognized and user-friendly language called ladder logic.

3. ICS System Design Considerations

While Section 2 introduced the essential components and functions of Industrial
Control System technologies, designing an ICS, including whether a SCADA, DCS, or PLC-
based topology is used, depends on many factors. This section identifies key factors that
drive design decisions regarding the ICS’s control, communication, reliability, and redun-
dancy properties [39]. These factors also help to determine the security needs of the system.

• Control Timing Requirements: Within ICS, a spectrum of time-related demands exists,
encompassing the need for rapid responses, consistency, regularity, and synchro-
nization. These requirements can present difficulties for humans in consistently and
reliably meeting them, emphasizing the importance of implementing automated con-
trollers. In certain specific situations, it becomes vital for computations to occur close
to sensors and actuators to minimize communication delays and ensure the timely
execution of essential control functions;

• Safety: The inclusion of safety requirements in the system’s design is of utmost impor-
tance. Systems must possess the ability to detect unsafe conditions and take measures
to transform them into safe conditions. In numerous safety-critical operations, the pres-
ence of human oversight and control within potentially hazardous processes remains
an indispensable element of the safety system;

• Geographic Distribution: The level of distribution in systems can exhibit a broad
spectrum, ranging from compact systems such as local PLC-controlled processes to
far-reaching, extensively distributed systems such as oil pipelines and the electric
power grid. A higher degree of distribution often necessitates using wide-area commu-
nication methods such as leased lines, circuit switching, packet switching, and mobile
communication solutions;

• Impact of Failures: Failures in control functions can lead to varying consequences
in different domains. Systems with more significant impacts often necessitate the
ability to sustain operations through redundant controls or the capacity to operate in
a reduced-capability state. The design must specifically cater to these requirements;

• Hierarchy: To create a central hub that can gather data from diverse locations, supervi-
sory control is utilized, enabling control decisions to be made based on the system’s
current status. Hierarchical or centralized control is commonly employed to provide
human operators with a holistic view of the entire system;

• Control Complexity: Simple controllers and predetermined algorithms are often
sufficient for managing control functions. Nevertheless, in highly complex systems
such as air traffic control, the presence of human operators becomes essential to ensure
that all control actions align with the overarching objectives of the system;

• Availability: The system’s dependability, indicating its accessibility, remains critical
during the design phase. Systems requiring exceptional availability or continuous
operation might require heightened redundancy or alternative communication and
control components strategies.

4. ICS Cyber Attack Incidents

In year 2020, the Cybersecurity and Infrastructure Security Agency detailed four
primary priorities that served as the central focus of its endeavors to reduce cyber risks
within control systems [40].

• Protecting ICS environments from the most critical threats is an absolute necessity;
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• It is vital to preserve operational resilience by addressing systemic weaknesses and
fortifying the capacity of control systems to withstand cyber incidents with minimal
adverse effects on critical infrastructure;

• We must provide critical infrastructure owners, operators, and cybersecurity defenders
with the necessary technologies and tools to significantly increase the time, costs,
and technical hurdles for adversaries;

• Identify and proactively counteract adversaries, preempting any potential harm. CISA
and its partners will cooperate to improve visibility within OT environments, guar-
anteeing swift detection and elimination of malicious activity before it can cause
widespread damage.

4.1. Recent Attacks on ICS

In 2021, the actual threats confronting ICS garnered increased attention. The number
of vulnerabilities identified in operational technology (OT) devices and their corresponding
management systems witnessed a growth of over 50%. Concurrently, ransomware groups
continued to target manufacturing and critical infrastructure with persistence. The re-
ported vulnerabilities in 2021 surged by 52%, reaching almost 1440, in contrast to the
prior year [41]. Cyber attacks targeting industrial facilities result in widespread repercus-
sions [42]. Frequently, threat actors focus on Industrial Control Systems (ICS) to execute
these attacks, leading to complete or partial shutdowns of crucial facilities, financial losses,
data breaches, and potential health hazards [43]. In 2022, there was a significant surge
in ICS, with an 87% increase in ransomware attacks targeting industrial organizations
and a 35% rise in the number of ransomware groups focusing on industrial control and
operational technology (OT) systems [44]. Based on the cyber incidents witnessed globally,
it has become evident that threat actors’ technical capabilities have evolved substantially.
Equally concerning is their readiness to cause physical harm [45]. Below are some of the
recent most significant cyber attacks on industrial facilities that disrupted government and
non-government facilities.

4.1.1. Colonial Pipeline—Ransomware Attack

The cyberattack that occurred on 7 May 2021, targeting Colonial Pipeline, gained
worldwide attention due to its far-reaching consequences, including a severe fuel shortage
and skyrocketing prices. The breach transpired when hackers managed to access the
company’s network by exploiting an inactive virtual private network (VPN) account that
had remote access to their computer system. To regain control of their network, Colonial
Pipeline ultimately had to pay USD 4.4 million to the DarkSide hacker group in exchange
for the decryption tool required for network restoration [46].

4.1.2. CPC Corp. Taiwan—Ransomware

In May 2020, CPC Corp, Taiwan’s state-owned petroleum and natural gas company,
encountered a ransomware incident that left its payment system unusable. The attackers
used a USB flash drive to breach the company’s computer network. While it did not affect
oil production, it did disrupt CPC Corp’s payment card system. This cyberattack was
attributed to the Winnti Umbrella group, a China-linked entity known for its targeting of
software companies and political organizations [47].

4.1.3. Triton (2017)—Malware

During the incident in 2017, a Russian agency utilized Triton to specifically focus on a
Schneider Electric Triconex safety instrumented system (SIS), which holds the responsibility
of initiating safe shutdown protocols during emergencies. Following their initial access,
the attackers then traversed through both IT and OT networks until they reached the
safety system, where they introduced the Triton malware. This malicious software made
alterations to the in-memory firmware, introducing harmful code. The FBI cautioned that
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this situation could have led to damage to the facility, system disruptions, or even potential
loss of life if the SIS had failed to carry out the safe shutdown procedures [48,49].

4.1.4. Ukraine Power Grid Hack—Malware Attack

On 23 December 2015, a power outage that impacted approximately 1.4 million
residents of Ukraine was linked to the espionage Trojan called Black Energy. This incident
appears to represent the first instance of malware being employed to facilitate a widespread
power disruption.

4.1.5. SFMTA Ransomware Attack

On 25 November 2016, a malware infection struck approximately 2000 of the San
Francisco Municipal Transport Authority’s (SFMTA) 8000 computer systems. This malware
also managed to compromise physical ticketing machines, leading to the SFMTA offering
free rides to passengers over the Thanksgiving weekend. Additionally, Muni bus drivers
were forced to create handwritten route assignments. The agency expected to incur a daily
revenue loss of around USD 559,000 during the period when they were unable to collect
fares [50].

Table 1 below provides an overview of potential ICS threat events and their corre-
sponding descriptions.

Table 1. Potential ICS threat event.

Threat Description

Denial of control action

Control systems can face disruptions when the flow of information is deliberately delayed or
blocked, resulting in the unavailability of networks to control system operators. This can
manifest as bottlenecks in information transfer or as a denial of service, particularly when

related to IT-resident services such as DNS

Unauthorized reprogramming
of control devices

Unauthorized modifications to programmed instructions in PLCs, RTUs, DCS, or SCADA
controllers, along with alterations to alarm thresholds or unauthorized commands issued to

control equipment, have the potential to lead to various adverse outcomes. These
consequences may include equipment damage if operational tolerances are exceeded,

premature shutdown of processes (such as the untimely shutdown of transmission lines),
triggering environmental incidents, or even the disabling of control equipment

Spoofed System Status Information
The transmission of false information to control system operators can serve two main
purposes: to conceal unauthorized changes or to instigate improper actions by system

operators

Control Logic Manipulation Control system software or configuration settings modified, producing unpredictable results

Safety Systems Modified Safety systems operation are manipulated so that they either (1) do not operate when
needed or (2) perform incorrect control actions that damage the ICS

Malware on Control Systems Malicious software (e.g., virus, worm, Trojan horse) introduced into the system

5. Vulnerability of Industrial Control System(ICS)

Remote attacks often serve as the initial point of entry for targeting ecosystems of
devices. Attackers take advantage of known vulnerabilities in specific protocol implementa-
tions, using readily available pre-written attack scripts, simplifying the attack process [51].
By monitoring non-encrypted traffic, attackers can gather valuable information about the
system, enabling them to escalate the attack and eventually gain control over the targeted
device. This emphasizes the significance of putting in place robust security measures, in-
cluding encryption and routine vulnerability assessments, to fortify defenses against cyber
threats and ensure the protection of critical industrial systems [52]. Indeed, attackers target-
ing industrial control systems rely on exploiting one or more existing vulnerabilities [53].
These vulnerabilities can stem from various areas, including:
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• Architecture and Design Vulnerabilities: Deficiencies in the overarching system archi-
tecture and design can be leveraged by malicious actors to obtain unauthorized access
or manipulate control processes;

• Configuration and Maintenance Vulnerabilities: Incorrect or inadequate system con-
figurations and poor maintenance practices can create opportunities for attackers to
compromise the system’s security;

• Physical Vulnerabilities: Physical access to industrial control systems can lead to
potential exploits, such as unauthorized tampering with hardware or gaining direct
access to critical components;

• Software Development Vulnerabilities: Errors or flaws in software development can
introduce vulnerabilities that attackers may exploit to infiltrate and compromise
the system;

• Communication and Network Configuration Vulnerabilities: Insecure communication
protocols and improperly configured networks can provide attackers with entry points
to intercept or manipulate data and control commands.

5.1. Architecture and Design Vulnerabilities

(a) Inadequate incorporation of security into architecture and design: Incorporating
security into the architecture and design of ICS should be considered from the outset,
considering the budget and schedule constraints of the ICS project [54]. The secu-
rity architecture should be integral to the overall Enterprise Architecture [55]. To
effectively address security concerns, the ICS architecture must encompass several
essential aspects, including:

• Identification and Authorization of Users: Robust authentication mechanisms
should be implemented to verify the identity of users accessing the ICS. Au-
thorization procedures must guarantee that users are allocated appropriate
privileges in accordance with their designated roles and responsibilities;

• Access Control Mechanism: Access control policies and mechanisms should
be implemented to restrict and manage users’ access to critical components
and functions within the ICS. This ensures that only authorized personnel can
interact with specific system elements;

• Network Topology: The network architecture of the ICS should be designed
with security in mind. Network segmentation, firewalls, and other security
measures should be deployed to prevent unauthorized access and isolate
critical components from less secure areas;

• System Configuration and Integrity Mechanisms: Implementing system con-
figuration controls and integrity mechanisms ensures that the ICS operates
within specified parameters and that any unauthorized changes or tampering
are promptly detected and addressed.

By proactively integrating these security considerations into the ICS architecture
and design, organizations can build resilient and secure systems that protect against
potential cyber threats and ensure the continuity and safety of critical industrial
processes.

(b) The insecure architectural design permitted to evolve : The network infrastructure
of ICS has frequently evolved and adapted to meet business and operational needs,
often without sufficient consideration of the potential security consequences of these
alterations. As a result, security vulnerabilities may have unintentionally emerged
in certain parts of the infrastructure. In the absence of corrective measures, these
vulnerabilities could serve as potential points of unauthorized access into the ICS.

(c) No security perimeter defined: Without a clearly defined security perimeter for the
ICS, it becomes challenging to guarantee the proper deployment and configuration
of essential security measures [56]. This situation can result in unauthorized access
to systems and data, along with other potential issues.
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(d) Inadequate collection of event data history: Investigative analysis relies on the
gathering and preservation of an ample amount of data. In the absence of thorough
and precise data collection, determining the cause of a security incident may become
exceedingly difficult or even impossible [57]. Security incidents have the potential
to go undetected, leading to additional harm and disruption. Consistent security
monitoring is equally crucial for identifying issues related to security controls, such
as misconfigurations and malfunctions.

5.2. Configuration and Maintenance Vulnerabilities

(a) Operating system (OS) and application security patches are not maintained or
vendor declines to patch vulnerability: Outdated operating systems and applications
may house newly uncovered vulnerabilities that could be taken advantage of. It
is of utmost importance to create documented guidelines for overseeing security
patch management. In situations where unsupported ICS operating systems are
utilized, access to security patch support may not be available. Consequently, these
procedures should also incorporate backup plans for addressing vulnerabilities that
may never receive prompt patch updates.

(b) OS and vendor software patches may not be developed until a considerable time
after security vulnerabilities are initially discovered: Due to the close integration
between ICS software and the underlying ICS infrastructure, any modifications must
undergo extensive and time-consuming regression testing, incurring significant
costs. The duration required for this testing and the subsequent distribution of
updated software can create a prolonged window of vulnerability.

(c) The installation of malicious software, known as malware, is a prevalent form of
attack: Installation of malicious software, or malware, is a common attack. Malware
protection software, such as antivirus software, must be kept current in a dynamic
environment. Outdated malware protection software and definitions open the
system to new malware threats.

(d) Insufficient examination of security modifications: Introducing modifications to
hardware, firmware, and software without conducting prior testing poses a risk
to the smooth operation of the ICS. It is imperative to establish well-documented
procedures for evaluating the security ramifications of any changes. It is vital to
refrain from using operational systems in live environments for testing. Additionally,
the testing of system modifications may necessitate collaboration and coordination
with system vendors and integrators.

(e) Inadequate remote access management: There are various reasons why remote
access may be required for an ICS, such as system maintenance tasks performed by
vendors and system integrator or ICS engineers accessing geographically distant
system components. To safeguard against unauthorized access, it is essential to
maintain robust control over remote access capabilities.

(f) Critical configurations are neither stored nor subjected to backup procedures: Proce-
dures for restoring ICS configuration settings should be easily accessible to address
unintentional or malicious configuration alterations, ensuring system availabil-
ity and data protection. It is imperative to establish thorough and meticulously
documented procedures for maintaining ICS configuration settings.

(g) Unsecured information stored on portable devices: The security of the system
could be compromised if confidential information, such as passwords and dial-
up numbers, is stored without encryption on portable devices such as laptops
and mobile devices. To minimize this risk, it is essential to implement policies,
procedures, and mechanisms to safeguard this data.

(h) Passwords generated, utilized, and safeguarded in a manner inconsistent with
established policies: The extensive knowledge about password management in IT is
relevant to ICS. Maintaining effectiveness requires strict compliance with password
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policies and procedures. Departures from these guidelines can considerably increase
vulnerabilities in ICS.

(i) Insufficient access controls implemented: Access controls should align with how the
organization assigns responsibilities and privileges to its personnel. Poorly defined
access controls can grant an ICS user too many privileges or restrict them excessively.

(j) The absence of configuration management for hardware, firmware, and software
can give rise to significant challenges: The organization may lack visibility into its
inventory, the versions in use, their locations, or their patch status, resulting in an
inconsistent and ineffective security posture. To safeguard an ICS against inade-
quate or improper modifications at all stages, including before, during, and after
system implementation, it is essential to establish a structured process for controlling
changes to hardware, firmware, software, and documentation. Failing to institute
configuration change management procedures can introduce security oversights,
vulnerabilities, and risks. To comprehensively secure an ICS, maintaining an accu-
rate inventory of system assets and their current configurations is imperative [58].
These processes are essential for the implementation of business continuity and
disaster recovery plans.

(k) Improper data linking: Data storage systems within ICS can be connected to non-ICS
data sources. One such example is database links, which facilitate the automatic
replication of data from one database to others. However, incorrect configuration of
data linkage can introduce vulnerabilities, potentially enabling unauthorized access
to or manipulation of data.

(l) Malware protection deployed without thorough testing: If malware protection
software is deployed without adequate testing, it has the potential to disrupt the
normal operation of the ICS and hinder the system’s ability to carry out essential
control actions [59].

(m) Denial of service (DoS): ICS software might be prone to DoS attacks, leading to the
obstruction of authorized access to a system resource or the disruption of system
operations and functions [60,61].

(n) Lack of installed intrusion detection/prevention software: Incidents can result
in system availability and integrity loss, data capture, modification, and deletion,
and incorrect execution of control commands. IDS/IPS software may stop or prevent
various types of attacks, including DoS attacks, and also identify attacked internal
hosts, such as those infected with worms. IDS/IPS software must be tested before
deployment to determine that it does not compromise the normal operation of
the ICS.

(o) Lack of log maintenance: In the absence of accurate logs, pinpointing the cause of a
security incident can become a challenging task.

(p) Unauthorized personnel have physical access to equipment: Limited physical access
to ICS equipment should be exclusively granted to essential personnel, while consid-
ering safety prerequisites such as emergency shutdowns or restarts. Inappropriate
access to ICS equipment can result in any of the following consequences:

• Theft of data and hardware;
• Physical harm or destruction of data and hardware;
• Unauthorized alterations to the operational environment (e.g., data connections,

unauthorized utilization of removable media, addition/removal of resources);
• Disconnection of physical data links;
• Untraceable interception of data (including keystroke and other input logging).

(q) Radio frequency, electromagnetic pulse (EMP), static discharge, brownouts,
and voltage spikes: Control systems hardware is susceptible to various threats,
including radio frequency interference,EMP, static discharges, brownouts, and volt-
age spikes [62]. The consequences can vary from temporary disruption of command
and control to irreversible harm to circuit boards. It is advisable to implement ade-
quate shielding, grounding, power conditioning, and surge suppression measures.
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(r) Lack of backup power: In the absence of backup power for essential assets, a
widespread power outage can result in the ICS shutdown, potentially creating a
hazardous situation. Additionally, the loss of power could result in the activation of
insecure default settings.

(s) Physical ports lacking security measures: Unprotected USB and PS/2 ports could
permit unauthorized connections, including thumb drives and keystroke loggers [63].

5.3. Software Development Vulnerabilities

(a) Inadequate data validation: ICS software might fail to effectively validate user
inputs or incoming data for accuracy, potentially leading to various vulnerabilities.
These vulnerabilities encompass issues like buffer overflows, command injections,
cross-site scripting, and path traversals.

(b) Installed security features remain inactive in their default settings: The security
features bundled with the product become ineffectual unless they are actively
activated or, at a minimum, acknowledged as disabled.

5.4. Communication and Network Configuration Vulnerabilities

(a) Unused data flows: Data flow controls are essential based on the attributes of the
data, as they help regulate the permissible transfer of information between systems.
These controls play a crucial role in preventing data exfiltration and unauthorized
operations.

(b) Inadequate firewall and router logs: In the absence of precise and comprehensive
logs, identifying the root cause of a security incident might become an insurmount-
able challenge.

(c) Standard, well-documented communication protocols are used in plain text: Ad-
versaries with the ability to monitor ICS network activity can exploit the lack of
encryption in certain protocols. Protocol analyzers and other utilities can be utilized
to decode data transferred over protocols such as Telnet, File Transfer Protocol
(FTP), Hypertext Transfer Protocol (HTTP), and Network File System (NFS). Since
these protocols do not employ encryption, the data transmitted is easily readable
by anyone monitoring the network. This exposes sensitive information, includ-
ing login credentials and commands sent between devices, potentially leading to
unauthorized access and manipulation of the ICS network. Adversaries can lever-
age this vulnerability to perform attacks against the ICS, such as eavesdropping,
session hijacking, and man-in-the-middle attacks. By exploiting the lack of encryp-
tion, they can manipulate ICS network activity, disrupt operations, and potentially
cause significant harm to industrial processes and critical infrastructure. To counter
these threats, it is crucial to implement secure communication protocols, such as
Secure Shell (SSH) and Secure Socket Layer/Transport Layer Security (SSL/TLS),
that encrypt data transmissions and protect against unauthorized access and ma-
nipulation of ICS network activity. Employing robust authentication mechanisms
and regular security assessments also enhances the overall security posture of the
ICS environment.

(d) Firewalls are either absent or configured incorrectly: Insufficiently configured fire-
walls can lead to unrestricted data flow between diverse networks, such as control
and corporate networks. This situation can create openings for potential attacks and
the spread of malware across networks, ultimately exposing sensitive data to poten-
tial monitoring, eavesdropping, and allowing unauthorized access to systems [64].

(e) Authentication of users, data, or devices is either inadequate or entirely absent:
Numerous ICS protocols lack authentication at any level. In the absence of authen-
tication, there exists the possibility of data or device manipulation, replay attacks,
and spoofing of elements like sensors and user identities.

(f) Absence of communication integrity verification: Most industrial control protocols
lack built-in integrity checks, potentially allowing adversaries to tamper with com-
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munications without detection. To ensure integrity, ICS systems can implement
lower-layer protocols like IPsec, which provide data integrity protection.

(g) Insufficient authentication measures between wireless clients and access points: It
is essential to establish robust mutual authentication between wireless clients and
access points to prevent clients from connecting to rogue access points deployed
by adversaries. Additionally, this authentication ensures that adversaries cannot
connect to any of the ICS’s wireless networks.

6. ICS Communication Protocols Cyber Vulnerabilities

With the existing system integration, the primary function of ICS is to gather real-time
data, realize device automation, and supervise the entire system [65]. This is achieved
through a number of communication protocols, including but not limited to DNP3, Mod-
bus, IEC 60870-5-104, IEC 61400-25,IEEE C37.118, Message Queuing Telemetry Transport
(MQTT), and Open Platform Communications(OPC). In this section, we analyze vulnera-
bilities of industrial protocols under an application scenario, as shown in Figure 9.

IEC 61850
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IED RTU
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PMU
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RTU
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IEC
61400
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IEC-60870-5-104

Figure 9. Vulnerabilities of industrial protocols under an application scenario.

(a) Distributed Network Protocol 3 (DNP3): DNP3 is an application layer protocol with
a multi-tier structure, primarily utilized in smart grid applications [66]. DNP3 is an
internationally recognized standard created to ensure dependable data transmission
and support functionalities for ICS. DNP3 incorporates the Enhanced Performance
Architecture (EPA), a streamlined version derived from the OSI reference model,
offering significant workload reduction. DNP3 typically operates over the Trans-
mission Control Protocol (TCP) and is assigned to port 20000. It adheres to a
client–server model, involving two distinct entities: the master, which performs
client functions, and the slave or outstation, which carries out server functions.
The primary purpose of the slave or outstation is to respond to requests initiated
by the master [67]. In this model, the master is empowered to supervise, regulate,
and collect data from slaves, thereby facilitating comprehensive control over the
production processes [68]. It is divided into three layers, namely:

• The Data Link layer: It is responsible for sending and receiving frames and
contains header information such as source DNP3 address and destination
DNP3 address. At the same time, it is also responsible for calculating errors
through Cyclic Redundancy Check (CRC) and checking the link’s status;
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• The Transport layer: The main purpose for this layer lies in the fragmentation
of large packets received by the Application layer, while its header contains
the information required to reassemble the fragments;

• The Application layer: This layer creates the message to be communicated;
however, this layer’s header differs depending on whether the message creator
is a master or a slave, as the latter’s header contains the Internal Indications
field to better describe the node’s status.

(b) Modbus: The Modbus protocol, initially created in 1979 by the American com-
pany Gould-Modicon, is an openly available communication standard designed
for enabling the communication of programmable logic controllers. With Modbus,
a master device can efficiently exchange data with multiple slave devices. While
theoretically, every node on the network can transmit messages, it is most com-
mon for communication to be instigated by the master device [69]. The Modbus
protocol has become the most widespread protocol for communication between
control devices and industrial automation. The Modbus was developed especially
for industrial applications, public domain, and with no royalties charged, easy to
use and maintain, while enabling Bit and word communication between devices of
different manufacturers without restrictions [70]. The protocol adopts a unique pro-
tocol data unit (PDU) different from ordinary architectures. The Modbus mapping
on a particular bus can bring in extra fields to the application data unit (ADU).

Figure 10 below illustrates the concrete format of the general message frame of a
Modbus.

Additional Address Function Code Data Erorr Checking

ADU

PDU

Figure 10. General Modbus framework.

They are three primary variations of the Modbus protocol, as seen below:

(a) Modbus RTU: Modbus RTU is a widely used communication protocol in industrial
automation and control systems. It is part of the Modbus family of protocols and is
designed for serial communication over RS-232 or RS-485 interfaces. Modbus RTU
is known for its simplicity and efficiency in transmitting data between devices such
as PLCs, HMIs, sensors, and other industrial equipment [71].
Key features and characteristics of Modbus RTU include:

• Modbus RTU uses serial communication, which is well-suited for industrial
environments. It can be transmitted over RS-232 or RS-485, allowing for long-
distance communication and noise immunity;

• Modbus RTU follows a master–slave architecture, where a master device (e.g.,
a PLC or HMI) initiates requests, and slave devices (e.g., sensors or actuators)
respond to those requests. This architecture enables centralized control and
data acquisition;

• Communication in Modbus RTU is based on frames or packets. Each frame
includes a start bit, address, function code, data, and error-checking (CRC or
LRC). The structure is designed for simplicity and ease of implementation;

• Modbus RTU supports various data types, including binary (coils), discrete
inputs, input registers, and holding registers, allowing for the exchange of
different types of data;
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• The master device typically polls slave devices by sending requests for data.
This polling mechanism allows the master to request specific information from
each slave device;

• Modbus RTU is known for its efficiency and speed in data transmission. It is
suitable for real-time control and monitoring applications in industrial settings.

(b) Modbus ASCII: Modbus ASCII is another variant of the Modbus communication
protocol used in industrial automation and control systems. Like Modbus RTU, it is
designed for serial communication, but it employs a different encoding format [72].
Key characteristics of Modbus ASCII include:

• Modbus ASCII represents data using ASCII characters, making it more human-
readable than Modbus RTU. Each 8-bit byte of data is converted to 2 ASCII
characters;

• Modbus ASCII is character-oriented, and each character is transmitted as a
single byte (8 bits). This makes it more suitable for systems where ASCII-based
communication is preferred;

• Modbus ASCII devices can often communicate with Modbus RTU devices with
proper configuration and protocol translation. This compatibility allows for
flexibility when integrating different devices;

• The ASCII format of Modbus ASCII frames makes it human-readable, which
can be advantageous for troubleshooting and debugging purposes;

• Modbus ASCII has a higher overhead compared to Modbus RTU due to the
character-based encoding. This can result in slower data transfer rates, which
may not be suitable for real-time applications.

(c) Modbus TCP: Modbus TCP uses the more modern Ethernet communication protocol
and is frequently employed in industrial automation and control systems to establish
network connections with devices such as PLCs, HMIs, and sensors [73]. Below are
some key features and characteristics of Modbus TCP

• Modbus TCP operates over standard Ethernet networks, allowing for fast and
efficient data transmission. It is well-suited for modern industrial environments
and can be used alongside traditional office IT networks;

• Modbus TCP follows a client–server architecture. In this setup, client devices
(typically master devices such as PLCs or HMI) request data from server
devices (slave devices), and the server responds with the requested information.
This architecture allows for distributed control and monitoring;

• Modbus TCP uses standard TCP/IP communication protocols. It relies on the
widely used Transmission Control Protocol (TCP) to establish connections and
ensure reliable data transfer;

• Unlike Modbus RTU and Modbus ASCII, which use character-based frames,
Modbus TCP uses binary frames. Each frame consists of a transaction identifier,
protocol identifier, length field, unit identifier, function code, and data. This
binary format allows for efficient data transmission;

• Modbus TCP offers high-speed data transmission, making it suitable for real-
time control and monitoring applications. Ethernet’s speed and efficiency
contribute to the quick exchange of data;

• Modbus TCP is widely used in various industries and is considered a stan-
dard for Ethernet-based communication in industrial automation and control
systems;

• Similar to other Modbus variants, Modbus TCP is an open and standardized
protocol, allowing devices from various manufacturers to communicate as long
as they adhere to the protocol specifications;

• Devices using Modbus TCP communicate based on IP addresses, making it
possible to have devices distributed across a network or even connected over
the internet.
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A group of researchers proposed the Modbus/TCP Security protocol, which incor-
porates authentication and authorization mechanisms to ensure protection against
deliberate unauthorized access as an enhancement for improved security in the ICS
framework [74].

(d) IEC 60870-5-104: It is an unencrypted protocol, meaning it transmits data in plain
text without any authentication mechanism over TCP/IP.
IEC-60870-5-104 is an international standard providing communication standards
between the SCADA system and substations. In transmission, the application layer
of this protocol conveys an application service data unit(ASDU).

(e) IEC 61850: It is a collection of communication norms that outline protocols for
designating devices, data, and communication systems linked to the automation of
electric power substations [75].
The IEC 61850 standard presents guidelines for establishing best practices in sub-
station engineering, encompassing protection, monitoring, integration, metering,
testing, and control. Within the domain of substation automation, the need for
high-speed communication is imperative to meet the data transfer rates required by
modern automatic control and monitoring systems (source: [76]).
The IEC 61850 standard delivers services, protocols, and a structure engineered to
streamline the modeling and communication of Intelligent Electronic Devices (IEDs)
and supervisory equipment in power system automation [77].
The substation communication system is divided into three layers by IEC 61850: the
process bus, the interval, and the station.

• Process Layer: The process layer includes various primary equipment and
intelligent electronics components, realizing the major functions of smart sub-
stations. The process layer within the substation involves gathering data from
transformers and transducers that are interconnected with the primary power
system process [78];

• Interval Layer: This includes secondary devices like relay protection equipment
and control devices and functions as a barrier between the other two layers,
guaranteeing safe and dependable operations;

• Station Control Layer: This layer primarily handles the monitoring and man-
agement of the intelligent station, enabling comprehensive measurement and
control capabilities for the entire station.

(f) IEC 61400-25: This protocol is specially designed to communicate the wind farm
supervisory system and is an extension of the IEC 61850 standard in wind power
generation. The basic purpose of this protocol is to provide network communication
standards between the wind farm supervisory system and other subsystems and to
realize the equipment’s interoperability with different manufacturers. IEC 61400-25
interface uses MMS and web service for remote supervisory control at wind power
plants [79].

(g) IEEE C37.118: In substations, this protocol is commonly used to establish synchro-
nization and define the standards for data transmission formats. It outlines four
distinct message types: data, header, configuration, and command. In the typi-
cal transmission process, these messages are converted into frames, and the PMU
exclusively transmits data frames to other devices.

(h) Message Queuing Telemetry Transport(MQTT): MQTT is a lightweight publish-
subscribe messaging protocol designed for low-bandwidth, high-latency, or un-
reliable networks [80]. It is widely used in IoT applications for real-time data
communication between devices and systems [81]. MQTT’s lightweight nature
makes it suitable for resource-constrained devices. MQTT can be vulnerable to
eavesdropping, man-in-the-middle attacks, and unauthorized access if not prop-
erly secured. Robust security mechanisms, and security considerations are often
implemented at the application level, which include using TLS/SSL for encryption
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and username/password authentication. The Figure 11 below illustrates the MQTT
protocol design.

MQTT Broker

Actor Node
Sensor Node

Application

TCP/IP Based Network

Figure 11. MQTT protocol design.

(i) Open Platform Communications (OPC): OPC is a set of standards for industrial
communication, and it plays a crucial role in Industry 4.0, which focuses on the
automation and digitization of manufacturing processes [82]. OPC enables the
interoperability of devices, equipment, and systems in industrial environments. It
includes various specifications, such as OPC Data Access (DA) and OPC Unified
Architecture (UA). Some of the common threats include data interception, unau-
thorized access, and denial-of-service attacks. OPC UA, in particular, has robust
security features, including authentication, encryption, and authorization, making
it suitable for secure industrial communication [83]. Figure 12 below illustrates the
general OPC protocol design.
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Figure 12. OPC protocol design.

Cybersecurity Issues Related to the Discussed Protocols

Given that the ICS integrates both cyber and physical subsystems, it possesses inher-
ent vulnerabilities that render the system susceptible to attacks from both internal and
external sources [84]. Every form of threat can have catastrophic consequences for power
systems. It’s widely acknowledged that cybersecurity typically involves aspects such as
authentication, authorization, encryption, confidentiality, integrity, and availability.

• Confidentiality: Unauthorized individuals can exploit this vulnerability to access
confidential information about the ICS for illicit purposes;

• Availability: In the event of availability loss, the system could forfeit its capacity to
maintain control, resulting in substantial economic losses;

• Integrity: When a missing or corrupted data packet is received, it renders the entire
transmission process ineffective, causing significant disruptions to normal operations;

• Authorization and Authentication: Malicious actors may exploit this vulnerability
by manipulating the function code to send arbitrary data to others, ostensibly under
the guise of seeking constructive feedback. Prominent protocols lack authentication
mechanisms for verifying identity, making it easy for unauthorized parties to obtain
privileges and forge protocol packets.

The known vulnerabilities in protocols are examined, and the corresponding weak-
nesses are identified and documented accordingly; see Table 2 below.
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Table 2. Vulnerabilities of the proposed protocols.

Protocol Lack of
Integrity

Lack of Con-
fidentiality

Lack of
Availability

Lack of Au-
thentication

Lack of Au-
thorization

Lack of
Encryption Reference

DNP3 X X X X [85]

Modbus X X X [86]

IEC 60870-5-104 X X X X [87]

IEC 61850 X X [88]

IEC 61400-25 X [89]

IEEE C37.118 X X X [90]

7. Existing Measures to Strengthen the Cybersecurity of Industrial Control Systems

The Industrial Control system should not only be able to deal with known attacks but
also be resilient against any possible evasion tactics [39]. With the increasing number of inci-
dents reported to the ICS-Cyber Emergency Response Team (CERT), including those that go
unreported or undetected, there is increasing frequency and complexity in our adversaries.
Securing ICSs against the modern threat requires well-planned and well-implemented
strategies that will provide network defense teams with a very effective way to detect,
counter, and expel an adversary, preserving the critical process and business continuity
of industrial control systems [91]. In this section, we study the strategic countermeasures
against cyber attacks for industrial control systems in detail, as shown in Figure 13 below.

ICS CYBER SECURITY
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RISK MANAGEMENT
AND CYBERSECURITY
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ICS NETWORK
ARCHITECTURE
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Figure 13. Countermeasure for defending ICSs.

7.1. Risk Management and Cybersecurity Governance

• Identify threats to the organization, which generally includes the steps of inventorying
system elements, defining metrics (how to measure the level of risk), and the threats
are taken into account;
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• Maintain ICS asset inventory of all hardware, software, and supporting infrastructure
technologies, which makes it possible to establish a list of the company’s critical assets
and processes. The impact analysis is carried out by examining the consequences on
each of the security objectives: availability, integrity, and confidentiality [92];

• Develop cybersecurity policies, procedures, training, and educational materials that
apply to the organization’s ICS available on Cybersecurity and Infrastructure Security
Agency [93];

• Organizations should embrace adaptive cybersecurity measures for critical infras-
tructure by evolving policies beyond mere tools for enforcing predefined security
requirements. These policies should become adaptive entities capable of responding
and evolving in the face of emerging threats and attacks [94];

• Develop and practice incident response procedures that join IT and OT response pro-
cesses.

7.2. ICS Network Architecture

• Implement network segmentation whenever feasible, categorizing systems into net-
work zones according to their roles, significance to the business, risk profiles, or other
criteria established by the organization. To accomplish this, employ a filtering device
like a packet filtering or stateful inspection firewall at the entry point of each zone.
Ensure that each zone adheres to a clearly defined baseline, consistently applied to all
systems within that specific zone [95]. A network zone should always have one entry
point, as depicted in Figure 14 below;

Zone Access
Point

FireWall

Zone A Zone B

Figure 14. Network segmentation or zoning.

• Design a network topology for ICS that incorporates multiple layers, prioritizing the
most crucial communications within the most secure and dependable layer [96];

• The cost of a total system failure can be catastrophic in ICS. The use of true data diodes
utilize proprietary software to control data flow and allow one-way network traffic to
be handled properly [97]. Data diodes and unidirectional gateways are engineered to
block reverse communications at the physical layer, often employing a single fiber-
optic connection represented by a single fiber strand. The ”transmit” component
typically does not incorporate “receive” circuitry, while the “receive” component lacks
“transmit” capabilities. This configuration guarantees absolute physical layer security
but sacrifices bidirectional communication [98];

• Establish demilitarized zones (DMZs) to configure a physical and logical subnet-
work that serves as an intermediary for connected security devices, preventing direct
exposure [99].
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7.3. ICS Network Perimeter Security

• Configure firewalls to control traffic between the ICS and corporate IT networks.
Firewalls are network devices created to monitor and inspect incoming and outgoing
traffic. They provide a layer of defense between networks. A set of rules, or access
control lists (ACLs), can be established to allow or block certain packets between those
networks [100];

• Utilize IP geo-blocking that enables blocking outgoing and incoming network con-
nections based on a geographic location [101]. This technology relies on devices’ IP
addresses and other identifying factors. IP filtering is sometimes used as a security
tool to protect from certain types of hackers [102,103];

• Use jump servers as a central authorization location between ICS network security
zones. These measures aid in achieving network isolation between segments with
varying security levels. Jump servers are sometimes used in conjunction with ad-
ditional security tools such as firewalls and Intrusion Detection Systems (IDS) to
create an exceptionally secure environment in alignment with the Defense-In-Depth
concept [104];

• Prohibit remote and ongoing vendor or employee access to the control network,
including the use of backdoor passwords and maintenance accounts. Manufacturers
should disclose in written documentation if they employ any such accounts [105];

• Catalog and monitor all remote connections to the network. While playing important
roles in the ICS context, PLCs and RTUs lack adequate security mechanisms to over-
come buffer overflow exploits or man-in-the-middle and a wider array of other cyber
attacks [106,107]. The author’s suggested Shadow Security Unit (SSU) is connected in
parallel to RTU/PLCs, allowing it to capture and decode the SCADA protocol data
flow. It then correlates this data with the status of the physical I/O modules that
communicate with sensors and actuators in the field. This makes it feasible to establish
a redundant security-checking mechanism that adopts a “black box” approach when
assessing the behavior of the monitored devices [108].

7.4. Security Monitoring

• Measuring the baseline of normal operations and network traffic for ICS researchers
have proposed a method using machine learning combined with passive monitoring
and a priori knowledge of protocols used. It is important that no measuring device or
monitoring system interferes with the ICS environment under scrutiny [109];

• Configure Intrusion Detection Systems (IDS) to create alarms for any ICS network
traffic outside normal operations;

• Track and monitor audit trails on critical areas of ICS. Set up a Security Information
and Event Management system (SIEM) to gather pertinent data from various origins,
detect variances from established norms, and execute suitable responses [110];

• Establish a SIEM system to oversee, analyze, and correlate event logs throughout the
ICS network for the detection of intrusion attempts [111].

7.5. Host Security

• Promote a culture of patching and vulnerability management. Patch management
reduces cybersecurity risks and ensures production availability [112]. Smart priori-
tization is a method for sequencing patches in a complex, interconnected network,
consisting of three fundamental steps. It seamlessly integrates principles from system
modeling, risk assessment, and game theory. Smart prioritization makes use of ex-
isting knowledge, insights, and previous experiences related to system dynamics to
identify an efficient and exceptionally effective defensive strategy [113];

• Test all patches in off-line test environments before implementation;
• Implement application whitelisting on human–machine interfaces. Application

whitelisting is a security technique that enhances security by allowing systems to
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run only those applications that have been explicitly approved and listed in a desig-
nated whitelist [114];

• Harden field devices, including tablets and smartphones;
• Replace out-of-date software and hardware devices;
• After conducting thorough testing to confirm that it will not disrupt ICS operations,

disable unused ports and services on ICS devices;
• Implement and test system backups and recovery processes;
• Configure encryption and security for ICS protocols.

8. Machine Learning Integration in Defending ICS from Cyber Attacks

Machine learning, a branch of artificial intelligence (AI) and computer science, centers
on utilizing data and algorithms to mimic the learning process of humans, with the aim of
progressively enhancing its accuracy [115]. Applying machine learning in cybersecurity
makes the malware detection process more actionable, scalable, and effective than tradi-
tional approaches, which require human intervention [116]. Machine learning revolves
around the creation of new patterns and the management of these patterns through al-
gorithms. It can offer real-time detection of active threats, thereby aiding cybersecurity
teams in proactively preventing security breaches [117]. Machine learning has a substantial
impact on cybersecurity, as it facilitates a range of techniques for the detection and miti-
gation of cyber threats [118]. This section discusses the most common machine learning
approaches used in strengthening the cybersecurity for industrial control systems.

Anomaly Detection

This approach entails training a machine learning model on a dataset that represents
normal behavior, enabling it to identify deviations or anomalies effectively [119]. It can
help detect abnormal activities, such as network intrusions, system misuse, or suspicious
user behavior [120]. The correct detection of unusual events empowers the decision maker
to act on the system to correctly avoid, correct, or react to the associated situations [121].
The strength of different machine learning anomaly detection techniques can vary depend-
ing on the specific use case, dataset, and goals of the anomaly detection task. Table 3 shows
some common machine learning anomaly detection techniques and their strengths.

Table 3. Strength of different machine learning techniques for anomaly detection.

Technique
Effective in

High-
Dimensional

Spaces

Non-
Linearity
Handling

Tunable
Margin

Robust to
Noisy Data

Feature
Importance Scalability Ease of In-

terpretation
Feature

Learning References

Support
Vector

Machines
X X X [122]

Random
Forest X X X X [123]

Neural
Networks X X X X [124]

Gradient
Boosting X X X [125]

Autoencoders X X X [126]

Isolation
Forest X X X X [127]

Density-
based

Clustering
X X X [128]

Local Outlier
Factor X X X [129]

Gaussian
Mixture
Models

X X [130]

The above mentioned machine learning techniques for anomaly detection are powerful
tools for identifying outliers and unusual patterns in data, but they come with limitations
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and challenges. Table 4 highlights some common limitations of different machine learning
anomaly detection techniques.

Table 4. Limitations of different machine learning techniques for anomaly detection.

Technique Computationally
Expensive

Not
Scalable

Lack of
Inter-

pretability

Limited
Multiclass
Anomaly
Detection

Lack of
Inter-

pretability

Difficulty
with

Multimodal
Data

Limited for
Time-Series

Data

Difficulty
with Highly
Imbalanced

Data
References

Support
Vector

Machines
X X X X X [131]

Random
Forest X X X X X [132]

Neural
Networks X X [133]

Gradient
Boosting X X X [134]

Autoencoders X X [135]

Isolation
Forest X X X [136]

Density-
based

Clustering
X X X X [137]

Local
Outlier
Factor

X X X X [138]

Gaussian
Mixture
Models

X X X X [139]

(a) Supervised machine learning-based anomaly detection approaches: Supervised
machine learning-based anomaly detection approaches can be applied to strengthen
the cybersecurity of ICS [140]. It involves training a model on labeled data to
classify normal and abnormal behavior in the system. Here are a few common
approaches [141]:

• Support Vector Machines (SVM): SVM is a widely employed supervised learn-
ing algorithm for tasks involving classification [142]. In anomaly detection,
SVM can be trained on labeled data, where normal behavior is labeled as one
class and anomalies as another [143]. SVM tries to find a hyperplane that
maximally separates the two classes. According to researchers, data in this
domain is referred to as industrial sensor data because it is recorded using
different sensors and collected for analysis. It has a temporal aspect, and time
series analysis is also used in works such as Ref. [144], according to research
conducted on the Petroleum industry, which is one of such real-world appli-
cation scenarios. In particular, heavy extraction machines for pumping and
generation operations such as turbo-machines are intensively monitored by
hundreds of sensors each that send measurements with a high frequency for
damage prevention. To deal with this and with the lack of labeled data for
training and validation of models in some scenarios [145,146], an approach
describing a combination of a fast and high-quality segmentation algorithm
with a one-class support vector machine for efficient anomaly detection in
turbomachines was suggested. Another researcher employed a technique that
merges unsupervised fuzzy C-means clustering (FCM) with a supervised sup-
port vector machine (SVM) to compute the distance between communication
data within industrial control networks and the cluster center. The support vec-
tor machine then categorizes data segments that meet specific threshold criteria.
Experimental findings demonstrate that, in comparison to the conventional
intrusion detection approach, this method can notably decrease the training
duration and enhance classification accuracy, all without prior knowledge of
class labels [147];
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• Random Forest: Random Forest is an ensemble learning technique that amal-
gamates numerous decision trees. In anomaly detection, each decision tree is
trained on labeled data, and the final decision is made based on the majority
vote of the trees. Random Forest can handle high-dimensional data and is
effective at identifying anomalies. Random Forests are collections of Decision
Trees, binary classifiers consisting of one root node, several internal split nodes,
and leaf nodes that are used to classify events [148];

• Neural Networks: Neural networks, such as feed-forward networks or re-
current neural networks (RNNs), can also be used for supervised anomaly
detection. These models are trained using labeled data and have the capability
to grasp intricate patterns and relationships within the data [149].
RNNs are useful with ICS data. The employment of parallel multi-view neural
networks to identify anomalies within an industrial control system has been
studied recently. These networks achieve this by forecasting operational states.
Integrating this predictive ability into the system enables semi-supervised
monitoring of system operations, ensuring that the real-time system state aligns
with a predefined region within the state space forecast earlier by the neural
networks. Additionally, in cases where the two predictive models disagree
in their assessment of the system’s state (leading to a lack of consensus), it is
probable that the system’s operation has been compromised. This divergence
could be attributed to issues such as faulty equipment, communication errors,
or other sources of malfunction. To obtain distinct perspectives on the system,
one of the predictive models is trained to analyze the data flow from system
control packets, while the other model is trained to examine gyrometric signals
collected from physical sensors within the control system [150];

• Gradient Boosting: Gradient Boosting is an ensemble learning approach that
blends several weak learners, such as decision trees, to construct a robust pre-
dictive model [151]. It iteratively builds models, focusing on the instances that
previous models misclassified. Gradient Boosting algorithms like XGBoost or
LightGBM have been successful in various anomaly detection tasks [152–154].
While the majority of machine learning methods concentrate on optimizing
hyperparameters to enhance detection rates, alternative research suggests an
approach that prioritizes the identification of the most promising dataset fea-
tures. This approach employs Gradient Boosting Feature Selection (GBFS) to
select these features before implementing the classification algorithm. This
combination enhances not just the detection rate but also accelerates execu-
tion speed. GBFS employs the Weighted Feature Importance (WFI) extraction
method to simplify classifier complexity. After identifying the most promising
features from the power grid dataset using a GBFS module, it accesses a range
of machine learning techniques based on decision trees [155,156];

• Deep Learning Autoencoders: Autoencoders are neural network structures that
acquire the ability to encode input data into a reduced-dimensional representa-
tion and subsequently decode it to reconstruct the original input. By training an
autoencoder on a large dataset of normal behavior, it learns to reconstruct the
normal data accurately [157]. Anomalies can then be detected by measuring the
reconstruction error, where higher errors indicate anomalies. Deep Learning
has demonstrated remarkable efficacy in autonomously acquiring valuable
representations of intricate data [158]. Autoencoders excel at identifying the
most challenging and nonlinear dependencies within the data, making them
particularly adept at achieving high-quality anomaly detection [159]. In certain
scenarios, autoencoders demand fewer computing resources. Some researchers
have devised an intrusion detection system for recognizing various injection
attacks, employing deep learning algorithms like stacked autoencoders and
deep belief networks that are customized for this purpose [160]. A group of
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researchers endeavored to create an intrusion detection system reliant on deep
learning. This system can swiftly detect intrusions and other undesirable activ-
ities that may disrupt networking systems. It leverages the One Hot encoder
for preprocessing and the Autoencoder for feature extraction [161].

(b) Unsupervised machine learning-based anomaly detection approaches: These play a
crucial role in enhancing the cybersecurity of ICS by identifying abnormal behavior
or potential cyber threats without needing labeled data. Here are some common
unsupervised anomaly detection approaches used in ICS:

• Isolation Forest: Isolation Forest is a tree-based algorithm that isolates anoma-
lies by recursively partitioning data until each data point is isolated in its tree
leaf. Anomalies are identified as instances that require fewer partitions to
isolate. The algorithm can be categorized into two main stages: Forest construc-
tion and element evaluation. During the creation of individual trees, the sample
element set is divided. More precisely, nodes for isolating trees are created
by randomly selecting an attribute and its associated partition. Conversely,
the evaluation function focuses on navigating the analyzed element through
these trees [162];

• Density-Based Clustering (like DBSCAN): Density-based clustering methods
group data points based on their density. In ICS, these methods can help iden-
tify clusters of normal behavior and consider isolated points as anomalies [119].
This approach is based on the assumption that data from healthy states tend
to cluster in high-density regions, while data from faulty states are typically
found in low-density regions. By delineating the boundaries of these regions,
it becomes possible to identify data points corresponding to anomalous states.
The method involves assessing the density values for both healthy and faulty
machinery. The rate at which the density changes from healthy to faulty is
determined as a fault threshold. This method can be particularly useful in
scenarios where obtaining faulty data is arduous or expensive [163];

• Local Outlier Factor (LOF): LOF calculates the density of data points with
respect to their neighbors. In ICS, LOF can identify points with significantly
lower density as anomalies [164]. LOF aims to forecast the imminent faults
of an appliance in the IoT system, whose predictive performance greatly de-
pends on the selection of its hyperparameters. Hyperparameter tuning for
unsupervised machine learning models such as LOF in IoT systems presents
a significant challenge due to the potential existence of previously unseen
anomalies in incoming data, which were not part of the training set. A novel
heuristic approach for hyperparameter tuning in LOF explicitly accounts for
the likelihood of encountering new types of anomalies has been studied. Uti-
lizing this novel approach to tune the LOF model resulted in robust predictive
performance, as demonstrated in both simulation experiments and real-world
data applications [165];

• One-Class Support Vector Machine (OCSVM): One-Class SVM is designed for
novelty detection and can be used in ICS to learn the boundaries of normal
behavior and classify instances. OCSVM can train anomaly detection model
with only one class of samples. Furthermore, OCSVM can build a more accurate
model and has robustness for noise samples. OCSVM has been proven to be an
effective machine learning method for intrusion detection in industrial control
systems [166];

• Gaussian Mixture Models: GMM assumes that data points are generated from
a mixture of several Gaussian distributions. Anomalies can be detected as
instances with low probabilities under the fitted GMM. In their study, certain
researchers employed a statistical traffic analysis approach that relies on the
Gaussian mixture model. This method was utilized to discern the presence of
anomalies, such as man-in-the-middle attacks, within a communication process
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by analyzing the timing of traffic communication. In modern network envi-
ronments, the usual communication process tends to demonstrate a significant
level of stability during normal conditions, resulting in the convergence of its
communication timings to a relatively consistent range of values. Nevertheless,
if there is a departure in the time elapsed for traffic generated by a particular
communication compared to the pattern observed in historical data, it is a
reasonable indication that anomalies, like potential man-in-the-middle attacks,
might be occurring in this process [167].

(c) Intrusion Detection Systems (IDS): Machine learning, when integrated into IDSs,
has yielded favorable outcomes by leveraging various learning approaches, encom-
passing supervised, unsupervised, and reinforcement learning [168,169]. Machine
Learning as a part of IDSs has had positive results by using different kinds of
learning, including supervised, unsupervised, and reinforcement learning [170].

• Random Forest (RF): In response to these challenges, a power industrial control
system intrusion detection model based on Random Forest was introduced.
Additionally, the same study introduced an enhanced grid search algorithm
(IGSA) designed to optimize the hyperparameters of the RF intrusion detection
model, thus enhancing its efficiency and effectiveness. The proposed IGSA sig-
nificantly accelerates computation speed, reducing it from O(nm) to O(n × m).
Following the hyperparameter optimization process, the suggested model was
evaluated using a publicly available power industrial control system dataset.
The experimental findings illustrate that our approach attains outstanding de-
tection performance, achieving an impressive accuracy rate of 98%. Moreover,
it surpasses comparable efforts within the same category [171]. The ensemble
Gradient Boosting algorithm is an ensemble learning method based on a com-
bination of additive models (weak learners), which can gradually learn from
the previous misclassifications to create a stronger learning model [172]. This
algorithm has been enhanced with a feature selection process, which elevates
its overall performance by extracting the most pertinent features from the
input data;

• Unsupervised Learning: Unsupervised learning does not necessitate labeled
data and proves beneficial when obtaining labeled data is scarce or challenging.
Common unsupervised learning algorithms for IDS in ICS include:

– Autoencoders: Autoencoders are neural network architectures that learn
to reconstruct the input data. They can be used for anomaly detection
by identifying instances with high reconstruction error [173]. These
autoencoder-based methods have been applied to build NIDS in IoT envi-
ronments recently. Some researchers used deep autoencoders to detect IoT
botnet attacks. Their proposed model comprised an ensemble of autoen-
coders, with each autoencoder trained to recognize the normal network
behaviors of a specific IoT device and flag any unusual traffic stemming
from that device. This model was assessed on a testbed network contain-
ing nine commercial IoT devices that had been compromised by the Mirai
and BASHLITE botnets. The model showcased exceptional performance,
achieving a true positive rate of 100% while keeping the false positive rate
at just 7% [174];

– Isolation Forest: The Isolation Forest algorithm is rooted in the Decision
Tree algorithm. It identifies outliers by randomly selecting a feature from
the available feature set and then randomly choosing a split value within
the range of that feature’s maximum and minimum values. This random
partitioning of features leads to shorter paths in trees for anomalous data
points, effectively distinguishing them from the majority of the data [175];

– Density-Based Clustering: The hypothesis is that if two packets belong to
the same attack type, they are more likely to fall into the same cluster when
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any clustering algorithm is applied with any hyperparameters. In other
words, when several clustering algorithms are applied, the more two
samples fall into the same cluster, the more likely they belong to the same
attack type [176].

• Semi-Supervised Learning: Semi-supervised Learning combines labeled and
unlabeled data during training. This can be useful in scenarios where obtaining
labeled data is costly or time-consuming:

– Reinforcement Learning: Reinforcement learning can be used in IDS for
dynamic decision-making in response to evolving cyber threats. However,
it might be less commonly used due to the need for careful tuning and
potential risks in real-world environments [177]. A team of researchers in-
troduced an innovative approach to network intrusion detection, merging
Q-learning-based reinforcement learning with a deep feed-forward neural
network technique for the purpose of network intrusion detection [178].
The proposed Deep Q-Learning (DQL) model offers a persistent self-
learning ability within a network environment. It employs an automated
trial-and-error approach to identify various types of network intrusions
and consistently improve its detection capabilities;

– Deep Learning: Deep learning models, including recurrent neural net-
works (RNNs) and convolutional neural networks (CNNs), can be utilized
in IDS to capture intricate patterns and temporal dependencies within ICS
data [179].

• Secure Authentication and Authorization: Machine learning can enhance au-
thentication and authorization processes, making it more difficult for attackers
to bypass access controls. Reinforcement learning methods, like Q-learning, can
be utilized for IoT device authentication and the identification of jamming and
malware attacks. These techniques acquire knowledge from the environment,
whether on the cloud or high-computational edge devices, without relying on
a pre-established training dataset [180];

• Leveraging Machine Learning for Predictive Maintenance in ICS: A group of
researchers introduced a Predictive Maintenance approach that enables the
adoption of dynamic decision rules for maintenance management, even in
scenarios involving high-dimensional and censored data challenges. This is ac-
complished by training multiple classification modules with varying prediction
horizons, offering diverse performance trade-offs concerning the frequency
of unforeseen failures and unused equipment lifespan. Subsequently, this
information is integrated into an operational cost-driven maintenance decision
system to minimize anticipated expenses. The efficacy of this methodology is
showcased through both a simulated illustration and a benchmark maintenance
problem in semiconductor manufacturing [181].

9. Challenges of Machine Learning Approaches and Mechanisms for Defending ICS

ML methods have demonstrated significant potential in improving cybersecurity but
encounter various challenges. Some of the key challenges of using machine learning in
cybersecurity include:

• Data Quality and Quantity: ML models require large amounts of high-quality, labeled
data for training. In cybersecurity, obtaining such data can be difficult due to the
scarcity of certain types of cyber attack data or the potential risks associated with
using real-world attack data [182]. Another challenge in ML-based systems is the
dependency on data labeling. Large datasets with labeled data are necessary for
ML-based systems, which are challenging and expensive to gather [183];

• Imbalanced Data: In cybersecurity, the number of normal instances (benign data) often
outweighs the number of malicious instances (attack data), resulting in imbalanced
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datasets. This can lead to biased models and poorer performance in detecting rare
cyber threats [184];

• Adversarial Attacks: Adversaries can attempt to manipulate ML models by crafting
adversarial examples, which are carefully designed inputs to cause misclassification.
Adversarial attacks can reduce the reliability and robustness of ML-based cyberse-
curity solutions [185]. As per findings from certain researchers, it is possible for an
adversary to target the training process directly. If the adversary manages to intro-
duce their own data samples or manipulate the training data in some way, they can
effectively manipulate the model, leading to erroneous associations between input
characteristics and categories (referred to as “false learning”) or undermining the
trustworthiness of the labeling, ultimately resulting in a reduction in the accuracy of
the model. In both scenarios, tampering with the training process undermines the
model’s reliability and weakens its ability to withstand adversarial inputs;

• Logic manipulation: In this instance, a malicious actor targets the machine learning
model by manipulating the model’s logic in order to interfere with the learning out-
comes. This is regarded as one of the most significant threats to the machine learning
process [186]. A single machine learning model may not be universally suitable for
all tasks across different scenarios that require attention. Typically, a specific machine
learning model is trained for a particular problem or, at best, can be adapted for a
similar task. Furthermore, Cyber-Physical Systems (CPS) exhibit considerable diver-
sity, making it challenging to apply a single machine learning model comprehensively.
Therefore, a range of models and diverse datasets are essential to create system-wide
solutions [187];

• Machine learning models impose stringent demands regarding the dimensions, con-
figurations, and formats of input data: Despite the vast amounts of data that Cyber-
Physical Systems (CPS) collect, there is no assurance of data quality, particularly as the
lifespan of newly introduced IoT hardware may remain unverified. To prepare input
data for machine learning, it must undergo transformation from its raw state into a
specific data format. This transformation process can result in substantial computa-
tional expenses. Alternatively, machine learning systems must possess the capability
to inherently manage and adapt to the raw data and associated noise.

10. Recommendations and Future Research Direction

• Threat Modeling and Risk Assessments: Conduct thorough threat modeling and risk
assessments to identify critical assets, vulnerabilities, and potential attack vectors.
Use this information to prioritize security measures based on risk levels [188]. Since
attackers are able to monitor non-encrypted traffic to gain information about the sys-
tem, machine learning approaches that can integrate threat modeling, risk assessment,
and automatic traffic encryption will be a great resource for strengthening the cyber
defense of industrial control systems;

• Security-by-Design: Incorporate cybersecurity considerations from the early stages
of ICS development and implementation. Security-by-design principles can help
minimize vulnerabilities and reduce the cost of retroactively implementing secu-
rity measures;

• Remote Continuous Monitoring and Incident Response: Implement real-time monitor-
ing of ICS networks and establish efficient incident response plans to quickly detect
and mitigate cyber threats with less human intervention;

• Intelligent Hardware Security: Develop and adopt hardware security measures, such
as secure boot, cryptographic processors, and physical tamper detection, to enhance
the overall security posture of ICS components;

• Develop diverse machine learning models: Machine learning models should be trained
to manage diverse tasks to make it possible to address more than one security situation.
Machine learning models trained for a specific problem, or can at most be retrained to
another similar task;
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• Automation and Response: Artificial Intelligence can automate the response to certain
security incidents. For example, AI-driven security orchestration can isolate compro-
mised systems, block malicious traffic, and initiate incident response processes;

• Collaborative Threat Intelligence: Artificial Intelligence can facilitate the sharing of
threat intelligence among organizations, enabling them to collectively defend against
emerging threats that target ICS environments;

• Robustness Testing and Simulation: AI can assist in simulating potential attack scenar-
ios to identify vulnerabilities and weaknesses in ICS systems, helping organizations
proactively strengthen their security posture;

• Continuous Monitoring and Updating: Cyber threats evolve, so it is crucial to contin-
uously monitor the system’s performance and update the machine learning models
accordingly. Regularly retraining the models with new data and adapting to emerging
attack patterns is necessary.

11. Conclusions

This article has comprehensively examined the intricate facets of ICS security. Its
primary goal has been to provide novel insights and foster the growth of knowledge
within the ICS security domain. Throughout the article, considerable attention has been
dedicated to the exploration of the fundamental elements influencing decision-making
in ICS design. A broad spectrum of established security measures has been meticulously
evaluated, alongside an in-depth analysis of the integration of cutting-edge methodologies
such as machine learning to fortify security measures. The holistic approach taken within
the article ensures a profound comprehension of the complexities inherent to ICS security,
thereby proposing the integration of machine learning, particularly in the context of training
models for diverse tasks, as a potential solution to address a myriad of security scenarios.
Additionally, it analyses the necessity of incorporating cybersecurity considerations right
from the outset of ICS development. Regular retraining of machine learning models with
up-to-date data to effectively adapt to evolving attack patterns has been recommended
in this article. The article’s emphasis on both the identification of challenges and the
formulation of practical recommendations not only communicates the current findings but
also lays a solid foundation for future research endeavors and improvements in the realm
of ICS security.

The insights presented in this article serve to advance the field of ICS security and pro-
vide valuable guidance for enhancing the security of critical infrastructure. By considering
the recommended strategies we shall continue the research and support organizations to
better protect their ICS environments against evolving cyber threats and contribute to the
overall resilience and reliability of Industrial systems.

Furthermore, it is essential for future research to maintain a dynamic approach to
ICS security. The landscape of threats is in a constant state of flux, with adversaries
continuously refining their tactics. Consequently, upcoming investigations should priori-
tize the development of adaptable security strategies capable of responding to emerging
threats. This entails the establishment of self-learning security systems with the ability
to dynamically adjust their defensive mechanisms, making effective use of artificial in-
telligence and machine learning for real-time threat intelligence and preemptive threat
mitigation. Additionally, fostering interdisciplinary cooperation between experts in cy-
bersecurity, control systems engineering, and data science is crucial for crafting holistic
security solutions that encompass both the technical and operational dimensions. In an
era marked by the proliferation of digitalization and increased connectivity in industrial
contexts, proactively outmaneuvering adversaries and preemptively countering nascent
risks holds paramount importance in preserving the integrity of critical infrastructure and
upholding the dependability of industrial systems.
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Abbreviations
The following abbreviations are used in this manuscript:

IOT Internet of Things
ICS Industrial Control System
CPS Cyber Physical System
DCS Distributed Control system
SCADA Supervisory Control and Data Acquisition
PLC Programmable Logic Controllers
RTU Remote Telemetry Units
WAN Wide Area Networks
HMI Human-machine interface
IDS Intrusion Detection System
IED Electromagnetic Device
DNP3 Distributed Network Protocol 3
OS Operating System
LAN Local Area Network
EMP Electromagnetic Pulse
ASDU Application Service Data Unit
MMQTT Message Queuing Telemetry Transport
OPC Open Platform Communications
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